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Abstract. For every positive integer m, there is a unique Drinfeld modular function,
holomorphic on the Drinfeld upper-half plane, jm(z) with the following t-expansion

jm(z) =
1

tm(q−1)
+

∞∑

i=1

cm(i)ti(q−1).

These functions are analogs of certain modular functions from the classical theory
that have many fascinating properties. For example, they are used to prove the
famous denominator formula for the Monster Lie algebra. Here we prove that (as in
the classical case) the zeros of jm(z) in the fundamental domain F of the Drinfeld
upper-half plane Ω for Γ := GL2(Fq[T ])

F := {z ∈ Ω : |z| = inf{|z − a| : a ∈ Fq[T ]} ≥ 1},
are on the unit circle |z| = 1. Moreover, if q is odd, the zeros are transcendental over
Fq(T ).

1. Introduction and statement of results

The modular functions jm(z), obtained by the action of the normalized mth weight
zero Hecke operator on the classical j-invariant modular function, are holomorphic
on H. Therefore we can express them using integer coefficient polynomials Pm(x), as
jm(z) = Pm(j(z)). These polynomials satisfy the beautiful identity

(1.1) j(τ)− j(z) = p−1 exp

(
−

∞∑
n=1

Pn(z) · pn

n

)
,

which is equivalent to the famous denominator formula for the Monster Lie algebra

j(τ)− j(z) = p−1
∏

m>0 and n∈Z
(1− pmqn)c(mn).

Here q = e2πiz, p = e2πiτ , and the exponents c(n) are defined as the coefficients of

j1(z) = j(z)− 744 =
∞∑

n=−1

c(n)qn.

K. Ono has conjectured that all the polynomials Pm(x) are irreducible, and recently
P. Guerzhoy proved a partial result toward this conjecture by presenting infinite families
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of these polynomials which are provably irreducible [5]. In addition, it is known that
the zeros of each jm(z) in the fundamental domain for SL2(Z) are located on the unit
circle |z| = 1 [1].

Here we study the properties of analogous polynomials in setting of Drinfeld modular
functions. In this setting we don’t have appropriate Hecke operators, so we are not
able to derive a formula analogous to (1.1), but still, we can prove that the zeros of
the modular function jm(z) in the fundamental domain are on the unit circle |z| = 1.

Let A = Fq[T ] be the ring of the polynomials over the finite field Fq, where q = ps

and K = Fq(T ). Completing K with respect to the absolute value | | that corresponds
to the degree valuation − deg : K → Z ∪ {∞}, normalized by |T | = q, we obtain the
field K∞ = Fq((

1
T
)). The completion of the algebraic closure of K∞ with respect to

the absolute value extending | | is denoted by C. Now as an analogue of the complex
upper half-plane, we define Ω := C −K∞ to be the Drinfeld upper half plane. For any
z ∈ C there is an A-lattice Λz := Az + A in C, and a corresponding Drinfeld module
φ determined by

φT (X) := TX + g(z)Xq + ∆(z)Xq2

.

The j-invariant of φ, j(z) := g(z)q+1

∆(z)
, is a Drinfeld modular function (meromorphic,

weight zero and type zero Drinfeld modular form) for Γ := GL2(A).
A meromorphic Drinfeld modular function for Γ = GL2(A), say f(z), has t-expansion

f(z) =
∞∑
i

af ((q − 1)i)t(q−1)i,

where as usual t(z) = e−1
L (π̃z). Here L = π̃A is one dimensional lattice corresponding

to the Carlitz module ρ that is defined by (see Section 4 of [4])

ρT = Tτ 0 + τ = TX + Xq,

and eL(z) is the “Carlitz exponential” function related to L (see Section 2 of [4]).
In particular,

j(z) = − 1

tq−1
+

∞∑
i=0

c(i)ti(q−1),

where the coefficients c(i) are in A. For every positive integer m, there is a Drin-
feld modular function jm := Pm(−j), where Pm(x) is a degree m polynomial with
coefficients in A, which has the following t-expansion

jm(z) =
1

tm(q−1)
+

∞∑
i=1

cm(i)ti(q−1).

We can define polynomials Pm(x) recursively. Set P0(x) := 1. If

(−j(z))m =
1

tm(q−1)
+

∞∑

j=−(m−1)

ajt
j(q−1)
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is the t-expansion of function (−j(z))m, then we define Pm(x) := xm−∑m−1
i=0 a−iPi(x).

The polynomials Pm(x) also satisfy the recursive formula (3.2). Since the holomorphic
Drinfeld modular functions that is zero at infinity is identically equal to zero, the jm

are well defined. In analogy with classical case, we have the following theorem.

Theorem 1.1. The roots of the polynomials Pm(x) have absolute value qq. The zeros
of jm(z) in the fundamental domain F = {z ∈ Ω : |z| = inf{|z − a| : a ∈ A} ≥ 1} are
on the unit circle |z| = 1. If q is odd, they are transcendental over K.
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3. Proofs of Results

3.1. Preliminaries. A meromorphic Drinfeld modular form for Γ of weight k and type
l (where k ≥ 0 is an integer and l is a class in Z/(q − 1)Z) is a meromorphic function
f : Ω → C that satisfies:

(i) f(γz) = (det γ)−l(cz + d)kf(z) for every γ =

(
a b
c d

)
∈ Γ,

(ii) f is meromorphic at the cusp ∞.

A Drinfeld modular function is a meromorphic Drinfeld modular form of weight zero
and type zero.

For an arbitrary element a ∈ A of degree d, let ρa =
∑d

i=0 ld−i(a)Xqi
be the value of

the Carlitz module at a. From Section 4 of [4], we know that

(3.1) deg li(a) = iqd−i,

and that l0(a) is equal to the leading coefficient of a. Define the a−th inverse cyclotomic
polynomial fa(X) ∈ A[X] by

fa(X) := ρa(X
−1)X |a| = l0(a) + l1(a)Xqd−qd−1

+ . . . + ld(a)Xqd−1.

Next, denote by ta(z) := t(az). An easy computation shows that

ta =
t|a|

fa(t)

as a power series in t with coefficients in A. We have the following t-expansion of the
normalized Eisenstein series g(z) := π̃1−qg(z) (see Section 6 of [4])

g(z) = 1− (T q − T )
∑

a∈A monic

tq−1
a .

Also, the t-expansion of the normalized Delta function is given by the infinite product

∆(z) := π̃1−q2

∆(z) = −tq−1
∏

a∈A monic

fa(t)
(q2−1)(q−1).
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3.2. Coefficients of the t-expansion of j-function. Here we investigate the abso-
lute values of the t-expansion coefficients of j-function. We are interested in the “big”
coefficients, and we’ll show that for our purposes we can approximate the j-function
with only four terms, namely with c(−1)t−(q−1) + c(0) + c(q− 1)t(q−1)(q−1) + c(q)tq(q−1).

Definition 3.1. We say that the power series f(t) =
∑

ait
i, with coefficients in A,

is (c,e)-small if it has the property that the degree of every non-zero coefficient ai is
less than or equal to e + ic, where c and e are real numbers. The coefficient ai of a
(c, e)-small power series f(t) is called maximal, if its degree is e + ic.

Similar to the Lemma 2.6.9 of [2], we have the following proposition.

Proposition 3.2. The series j(t) is ( q
q−1

, q)-small (i.e. deg c(i) ≤ (i + 1)q), and

the only maximal coefficients of j(t) are c(−1), c(0), c(q − 1) and c(q), with leading
coefficients −1, 1, 1 and −1.

Proof of Proposition 3.2. If f(t), g(t) ∈ A[[t]] are both (c, 0)-small, than it is easy to
see that the series f(t)g(t), f(t) + g(t) and 1

f(t)
are also (c, 0)-small. The formula (3.1)

implies that the inverse cyclotomic polynomial fa(t) is (1/(q−1), 0)-small, so the same
is true for the series

(T q − T )t(q−1)|a|
(

1

fa(t)

)q−1

,

when a is of degree greater than zero (i.e. if |a| ≥ q). In other words, the only “big”
coefficients of

g(z) = 1− (T q − T )
∑

a∈A monic

tq−1
a

are the first two nonzero one, i.e. the g(z) is (q/(q − 1), 0)-small, and its maximal
coefficients are 1 and −(T q−T )tq−1

1 = −(T q−T )tq−1. Now, g(z)q+1 is also (q/(q−1), 0)-
small, and its maximal terms are

(1− (T q − T )tq−1)q+1 = (1− (T q − T )tq−1)q(1− (T q − T )tq−1)

= (1 + (−T q + T )q tq(q−1))(1− (T q − T )tq−1)

= 1− (T q − T )tq−1 + (−T q + T )q tq(q−1) + (−T q + T )q+1t(q−1)(q+1).

Using the same reasoning,
∏

a∈A monic fa(t)
(q2−1)(q−1) is (1/(q − 1), 0)-small, hence

g(z)q+1

∏
a∈A
monic

fa(t)
(q2−1)(q−1)

is (q/(q − 1), 0)-small with the same maximal part as g(z)q+1, and finally

j(z) =
g(z)q+1

−tq−1
∏
a∈A
monic

fa(t)
(q2−1)(q−1)
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is (q/(q − 1), q)-small with the maximal part

−t−(q−1) + (T q − T )− (−T q + T )q t(q−1)(q−1) − (−T q + T )q+1tq(q−1).

¤

3.3. The leading coefficients of the maximal coefficients of jm. From the t-
expansion

jm−1(z)(−j(z)) = t−m(q−1)− c(0)t−(m−1)(q−1)− . . .− c(m−1)+ cm−1(1)+
∞∑
i=1

b(i)ti(q−1),

it follows that the polynomials Pm(x) satisfy the following recursive relation
(3.2)
Pm(x) = Pm−1(x)x + (c(0)Pm−1(x) + c(1)Pm−2(x) + . . . + c(m− 1)P0(x))− cm−1(1),

where m ≥ 1 and P0(x) := 1.
To calculate the degrees of the constant coefficients of the polynomials Pm(x), we

need to understand the degrees of coefficients cm−1(1), and this can be done by studying
relations between the maximal coefficients of all the jk functions.

Proposition 3.3. For every positive integer m, the jm(t) is ( q
q−1

,mq)-small.

Proof of Proposition 3.3. Follows by induction immediately from Proposition 3.2, the
recursive formula (3.2), and the fact that the product of (c, e)-small power series and
(c, f)-small power series is (c, e + f)-small power series. ¤
Definition 3.4. Define H(x, y) =

∑
m,n∈Z, m≥0 am,nx

myn to be the generating function
of the leading coefficients of the maximal coefficients of jm functions, i.e. am,n is the
leading coefficient of cm(n) when cm(n) is maximal coefficient of jm, zero otherwise.
For convenience let am,n be zero for m < 0.

Proposition 3.5. The generating function H(x, y) is equal to 1−xq

1−v(x,y)
, where v(x, y) =

xq − xq+1 + x(yq − yq−1 + 1
y
).

Proof of Proposition 3.5. Comparing the t-expansion coefficients of the both sides of
the recursive formula (3.2), after setting x to be −j, for m ≥ 1 and n 6= 0, we get the
following identity

c̃(−1)am,n + c̃(0)am−1,n + ˜c(q − 1)am−q,n + c̃(q)am−q−1,n =(3.3)

c̃(−1)am−1,n+1 + c̃(0)am−1,n + ˜c(q − 1)am−1,n−q+1 + c̃(q)am−1,n−q,

where c̃(i) is the leading coefficient of c(i). The generating function H(x, y) is uniquely
determined by the relation (3.3) and the “initial condition”

(3.4) a0,n :=

{
0 if n 6= 0,

c̃0(0) = 1 if n = 0
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and

(3.5) am,0 :=

{
1 if m = 0

0 if m 6= 0.

Since c̃(−1) = −1, ˜c(q − 1) = 1 and c̃(q) = −1, by comparing the coefficients of the
both sides of identity 1 + v(x, y) 1

1−v(x,y)
= 1

1−v(x,y)
, we see that the coefficients of the

power series 1
1−v(x,y)

=
∑∞

j=0 v(x, y)j =
∑

m,n∈Z, m≥0 bm,nx
myn(the series converges as

a power series in x) satisfy relation (3.3). The coefficients of 1−xq

1−v(x,y)
satisfy the same

relation, so to finish the proof, we need to check that this function also fulfills the
“initial condition”. Condition (3.4) is trivially satisfied. The constant coefficient of the
denominator (we consider denominator to be a polynomial in x) of the “regular part”

R(x, y) :=
1− xq

1− v(x, y)
− y

y − x
=

xy(y − 1)(xq − yq)

(x− y)2(−1 + xy(yq−1−xq−1

x−y
+ xq−yq

x−y
))

of the function 1−xq

1−v(x,y)
is −1 (since in characteristic p| q, xq − yq is divisible by (x −

y)2). This implies that the power expansion of R(x, y)(in variable x) does not contain
negative powers of y. On the other hand, since the numerator of R(x, y) is divisible
by y, it is easy to see that each term of the power expansion is divisible by y, so the
condition (3.5) is satisfied (because the only term of the forms axmy0 of the power
series y

y−x
=

∑∞
i=0(

x
y
)i is ( y

x
)0 = 1). ¤

Corollary 3.6. The only maximal coefficient of the form cm(1) (i.e. deg cm(1) =
(m + 1)q), for non-negative integer m, is cq−1(1), and its leading coefficient is 1.

Proof of Corollary 3.6. This follows from the fact that the derivative of the “regular
part” R(x, y) of H(x, y) with respect to y, evaluated at y = 0 is xq−1 (it is easy to
see that we can differentiate with respect to y series H(x, y) = 1−xq

1−v(x,y)
− y

y−x
“term by

term”). ¤

3.4. Proof of the Theorem 1.1. Using the results developed in previous sections,
here we show that the Newton polygon of the polynomial Pm(x), with respect to the
valuation − deg, is a line of slope q, and than we conclude that all its zeros are of
degree q. The theorem then easily follows from the results of Cornelissen, Brown and
Yu (see [3], [2] and [7]).

Proof of the Theorem 1.1. First we prove by induction that the constant coefficient of
the polynomial Pm(x) has degree mq and the leading coefficient 1. By Proposition 3.2,
deg c(i) ≤ (i + 1)q so the induction assumption implies that the degree of the constant
coefficient of Pk(x)c(m − 1 − k) is less than or equal to mq. The only terms on the
right side of the recursive formula (3.2) that are affecting the degree of the constant
coefficient of Pm(x) are the ones corresponding to the maximal coefficients of j(t) (i.e.
deg c(i) = (i + 1)q) and cm−1(1). According to the Corollary 3.6, cm−1(1) has degree
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mq only if m = q − 1 (in other cases the degree is smaller). We consider the following
three cases:

Case 1: Assume that 1 ≤ m ≤ q − 1.
The only maximal coefficient appearing in the formula (3.2) is c(0) (and its
leading coefficient is 1), so the constant coefficient of Pm(x) in this case is equal
to the constant coefficient of Pm−1(x)c(0), which has degree mq and the leading
coefficient 1.

Case 2: Assume that m = q.
Now the constant coefficient is equal to the constant coefficient of Pq−1(x)c(0)+
P0(x)c(q − 1) − cq−1(1). The degree is again mq, and a leading coefficient
(Proposition 3.2, Corollary 3.6) is equal to 1 · 1 + 1 · 1− 1 = 1.

Case 3: Assume that m ≥ q + 1.
The leading coefficient of the constant coefficient of Pm−1(x)c(0)+Pm−q(x)c(q−
1) + Pm−q−1(x)c(q) is equal to 1 · 1 + 1 · 1 + 1 · (−1) = 1, so the claim follows.

Next, we prove by induction that for Pm(x) = xm + a1x
m−1 + . . . + am−1x + am the

degree of the coefficient ai is less than or equal to iq. This follows from the recursive
formula (3.2); the induction assumption and the fact that deg c(i) ≤ (i + 1)q and
deg cm(1) ≤ (m + 1)q (Proposition 3.2, Corollary 3.6).

Now, since deg ai ≤ iq and deg am = mq, we see that the Newton polygon of the
polynomial Pm(x) = xm + a1x

m−1 + . . . + am−1x + am with respect to the valuation
− deg, is a straight line of slope q. Hence the roots of the polynomial Pm(x) have the
absolute value qq (see IV.3 of [6]).

If z0 ∈ F = {z ∈ Ω : |z| = inf{|z− a| : a ∈ A} ≥ 1} is the zero of jm, then −j(z0) is
a zero of polynomial Pm(x), hence |j(z0)| = qq, and the estimates relating |j(z0)| and
|z0|

|j(z0)| = |t(z0)|−(q−1),

|t(z0)| = |π̃z0/T
n|−qn

,

where n = dlogq |z0|e and |π̃| = qq/(q−1) (see (2.6.11), (2.6.3) and (2.5.2) of [2]), imply
that |z0| = 1 (see the proof of Theorem 3 of [3]).

As in the Corollary 2 of [3], Theorem 5.6 of [7] implies that non-transcendental zeros
of jm(z) are quadratic over K, and hence have complex multiplication. For q odd,
an estimate of j-invariant of CM-points (see Theorem 2.8.2 of [2]) shows that these
invariants never have absolute value qq.

¤
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