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Abstract. Let d be prime or the product of two primes. In this pa-
per we study the connection between 2-parts and 3-parts of the class
numbers h(−d) and h(−3d) and ray class groups of Q(

√
d) unramified

outside 2 (and 3). We obtain certain “reflection” theorems, and we
reproduce the result of Williams on divisibility of h(−d) by 16 when
d is prime (and we get a similar result when d is the product of two
primes). The main ingredients of the proofs are congruences between
L2(1, χd) (and L3(1, χd)) and h(−d)(and h(−3d)) modulo powers of 2
(and 3) which we prove using modular forms. We also obtain similar
congruences for the central values of L-functions associated to Ramanu-
jan Delta-function, and we relate them to the structure of 2-adic and
3-adic Galois representation attached to the Delta-function.

1. Introduction and statement of results

Let K = Q(
√
−d) be an imaginary quadratic field, and let Cl(Q(

√
−d))

denote its ideal class group. Starting with Gauss, who developed genus
theory, many people have investigated the structure of the 2-Sylow subgroup
of Cl(Q(

√
−d)). In the case when d = p is prime, Cohn and Barrucand

[1] in 1961 discovered the beautiful fact that the class number h(−p) :=
h(Q(

√
−p)) is divisible by 8 if and only if p = x2 + 32y2, where x and y are

integers. In the early 1980s [22], Williams showed that if ε = T + U
√
p is a

fundamental unit of the real quadratic field Q(
√
p), then

(1.1) h(−p) ≡ T + (p− 1) (mod 16),

where 8|h(−p). Yamamoto [23] and Stevenhagen [18] proved this and similar
results by studying small degree extensions of Q(

√
p) and Q(

√
−p).

Let d be prime or the product of two primes. We study the connection
between the 2-part and 3-part of the class numbers h(−d) and h(−3d) and

ray class groups of Q(
√
d) unramified outside 2 and 3. More precisely, if p1

and p2 are primes above 2 and 3 in Q(
√
d) (we assume that 2 and 3 split),
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we investigate the ray class groups Gm,n of Q(
√
d) of modulus m = pm1 p

n
2 ,

where m,n > Cd, for some constant Cd. If rk(Q(
√
d)) denotes the k-rank

of any such Gm,n, we obtain the following “reflection” theorems.

Theorem 1.1. Suppose that p is prime. Then the following are true:

(1) If p ≡ 1 (mod 16), then we have

4||h(−p) ⇐⇒ r4(Q(
√
p)) = 1

8||h(−p) ⇐⇒ r4(Q(
√
p)) = 2 and r8(Q(

√
p)) = 1

16|h(−p) ⇐⇒ r8(Q(
√
p)) = 2.

(2) If p ≡ 9 (mod 16), then we have

4||h(−p) ⇐⇒ r4(Q(
√
p)) = 1

8||h(−p) ⇐⇒ r8(Q(
√
p)) = 2

16|h(−p) ⇐⇒ r4(Q(
√
p)) = 2 and r8(Q(

√
p)) = 1.

Remark. Since h(−p) is odd for p ≡ 3, 7 (mod 8) and h(−p) ≡ 2 (mod 4)
for p ≡ 5 (mod 8), the only interesting case is for p ≡ 1 (mod 8).

Theorem 1.2. If p and q are primes for which p, q ≡ 3, 5 (mod 8) and
pq ≡ 1 (mod 8), then we have

4||h(−pq) ⇐⇒ r4(Q(
√
pq)) = 1,

8||h(−pq) ⇐⇒ r8(Q(
√
pq)) = 2,

16|h(−pq) ⇐⇒ r4(Q(
√
pq)) = 2 and r8(Q(

√
pq)) = 1.

Theorem 1.3. If p ≡ 1 (mod 8) is prime, then we have 3 - h(−3p) if and
only if r3(Q(

√
p)) = 1.

As a consequence of these theorems, we recover (1.1) and we obtain the
following result relating the divisibility of class numbers to congruence prop-
erties of fundamental units.

For primes p and q, we denote by
(
p
q

)
and

(
p
q

)
4

the quadratic and quartic

residue symbol.

Theorem 1.4. If p and q are primes for which p, q ≡ 5 (mod 8), then we
have

16|h(−pq) ⇐⇒

{
T ≡ 9 (mod 16) if

(
p
q

)
= 1 and

(
p
q

)
4

(
q
p

)
4

= −1,

T ≡ 4 (mod 8) if
(
p
q

)
= −1,

where T + U
√
pq is a fundamental unit of Q(

√
pq). When Norm(ε) = −1,

we choose the fundamental unit such that T ≡ 1 (mod 4).

Remark. If p, q ≡ 3 (mod 8) then we have 4||h(−pq). Therefore, we don’t
consider this case.
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Using class field theory and facts about fundamental units, we show for
the quadratic fields in Theorems 1.1, 1.2 and 1.3 that the structure of the
ray class groups Gm,n is constrained by the 2 and 3-adic valuation of the

regulator of Q(
√
d). On the other hand, the regulator is connected via the

p-adic class number formula to the value at 1 of the 2 and 3-adic L-functions
of the character that corresponds to Q(

√
d). The following result relating

class numbers to p-adic L-function implies Theorems 1.1, 1.2 and 1.3.

Theorem 1.5. Let p and q be primes.

a) If p ≡ 1 (mod 16), then we have 16|
(

1
9
L2(1, χp) + 3h(−p)

)
.

b) If p ≡ 9 (mod 16), then we have 8||
(

1
9
L2(1, χp) + 3h(−p)

)
.

c) If pq ≡ 1 (mod 8) and p, q ≡ 3, 5 (mod 8), then we have 8||
(

1
9
L2(1, χpq) + 3h(−pq)

)
.

d) If p ≡ 1 (mod 8), then we have 3| (L3(1, χp) + 2h(−3p)) .

Remark. Shanks, Sime and Washington, in their paper on zeros of 2-adic L-
functions [15], obtained results that are similar to parts b) and c) of Theorem
1.5. In those two cases the 2-adic L-function has only one zero. L-function
from part a) has more than two zeros.

We prove Theorems 1.1, 1.2, 1.3, 1.4 and 1.5 by studying congruences
between certain half-integral weight modular forms, the Cohen-Eisenstein
series and the cube of the Jacobi theta function.

We also consider L-functions associated to Ramanujan’s Delta-function,

∆(z) =
∞∑
n=0

τ(n)zn := q
∞∏
n=1

(1− qn)24,

the unique weight 12 normalized cusp form for the full modular group.
Also, denote by σk(n) =

∑
d|n d

k the sum of kth powers of divisors of n.
Ramanujan observed that modulo the powers of certain small primes, there
are congruences relating τ(n) and σk(n). For example, for the powers of
two the following congruences are due to Kolberg[10]:

τ(n) ≡ σ11(n) (mod 211) if n ≡ 1 (mod 8)
τ(n) ≡ 1217σ11(n) (mod 213) if n ≡ 3 (mod 8)
τ(n) ≡ 1537σ11(n) (mod 212) if n ≡ 5 (mod 8)
τ(n) ≡ 705σ11(n) (mod 214) if n ≡ 7 (mod 8).

By the work of Eichler, Shimura, Deligne and Serre, for every prime l
there is a 2-dimensional l-adic Galois representation ρl : Gal(Q̄/Q) →
GL2(Zl) with the property that Tr(ρ(Frobp)) = τ(p) for every prime p 6= l
(Frobp ∈ Gal(Q̄/Q) is a Frobenius element for the prime p). Swinnerton-
Dyer [19] showed that the image of these representations is “small” for
primes l = 2, 3, 5, 7 and 691. Moreover, he showed that Kolberg’s congru-
ences determine the structure of ρ2. More precisely, up to conjugation by
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an element of GL2(Q2), the image of ρ2 consists of matrices of the form

σ =

(
1 + 27A 24B

25C 1 + 2D

)
,

where A,B,C,D ∈ Z2. Since the representation ρ2 is reducible modulo 25,
inspired by Bloch-Kato conjecture, one expects to find some congruences
modulo the powers of two between the algebraic part of the central value
of the L-function associated to the Delta function and its quadratic twists,
and a value of the corresponding Dirichlet L-function.

For a positive fundamental discriminant d, we denote by ∆d the twist of
∆(z) by the quadratic character

(
d
·

)
. Square roots of the algebraic parts√

Lalg(∆d, 6) will be defined later in this section. We prove the following
theorem.

Theorem 1.6. If d is a positive fundamental discriminant, then the follow-
ing are true:

√
Lalg(∆d, 6) ≡ 49 · 4L2(11, χd) (mod 29) for d ≡ 1 (mod 16)√
Lalg(∆d, 6) ≡ 71 · 4L2(11, χd) (mod 29) for d ≡ 5 (mod 16)√
Lalg(∆d, 6) ≡ 369 · 4L2(11, χd) (mod 29) for d ≡ 9 (mod 16)√
Lalg(∆d, 6) ≡ 7 · 4L2(11, χd) (mod 29) for d ≡ 13 (mod 16)√
Lalg(∆d, 6) ≡ d · 12L3(15, χd) (mod 34) for all d.

Remark. The question of how congruences modulo a power of a prime be-
tween the coefficients of Hecke eigenforms give rise to congruences between
the algebraic parts of the critical values of the associated L-functions was
initially studied by Mazur [12], [13]. Using modular symbols to study alge-
braic parts of L-values, Vatsal [20] proved a general result for congruences
between Eisenstein series and cuspidal newforms of weight 2. Vatsal re-
marks that his result could be generalized to higher weights k, but only if
p > k. Here, we consider small primes p ∈ {2, 3}.

Another approach to these questions, introduced by Maeda in [11], is
to use Kohnen-Waldspurger theorem to translate congruences between L-
values to congruences between half-integral weight modular forms that cor-
respond to integral weight modular forms via Shimura Correspondence.
More precisely, one can show ([14], p.154) that the Kohnen newform in
S new

6+ 1
2

(Γ0(4)) associated to ∆(z) is

(1.2) g(z) =
∞∑
n=1

b(n)qn =
E4(4z)Θ(θ0(z))

2
− Θ(E4(4z))θ0(z)

16
,
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where for integer k, E2k(z) is the normalized Eisenstein series of weight
2k on SL2(Z), and Θ is Ramanujan’s Theta-operator defined by

Θ

(
∞∑
n=0

a(n)qn

)
=
∞∑
n=0

na(n)qn.

Now the Waldspurger-Kohnen theorem for positive fundamental discrimi-
nants d implies that

L(∆d, 6) =
〈∆,∆〉π6

120d
11
2 〈g, g〉

· b(d)2

(〈·, ·〉 is the standard Petersson inner product). We define the algebraic
part of L(∆d, 6) to be Lalg(∆d, 6) := b(d)2, and we define the square root of

the algebraic part to be
√
Lalg(∆d, 6) := b(d). Koblitz [8] showed that the

Shimura lifting on cusp forms, as modified by Kohnen, extends to Eisenstein
series. The 6 + 1

2
weight modular form that corresponds to E12(z) is the

Cohen-Eisenstein series H6+ 1
2
(z) ∈ M6+ 1

2
(Γ0(4)). In general, for r ≥ 1 we

have Cohen-Eisenstein series of weight r + 1
2

[2]

Hr+ 1
2
(z) =

∑
N≥0

H(r,N)qN ∈Mr+ 1
2
(Γ0(4)),

where H(r,N) is a certain explicit arithmetic function. For example, if D =
(−1)rN is a discriminant of a quadratic field, then H(r,N) = L(1− r, χD).

Koblitz proved that the congruence ∆(z) ≡ E12(z) (mod 691) descends
to the congruence g(z) ≡ −252H6+ 1

2
(z) (mod 691), and Guerzhoy and

Datskovsky [3] generalized this to other weights. We have an analogous
theorem for moduli which are powers of 2. The difference is that we prove
congruences modulo a theta series of weight 1

2
. More precisely we write

f(z) ≡′ g(z) (mod N) ⇐⇒ f(z)− g(z) ≡ h(z) (mod N),

for some p-adic modular form h(z), whose non-zero coefficients are sup-
ported on squares.

For a modular form f(z) =
∑
a(n)qn, we denote by f(z)+ =

∑
n≡1 (mod 8)

a(n)qn

and f(z)− =
∑

n≡5 (mod 8)

a(n)qn modular forms obtained by “twisting”.

Theorem 1.7. With g(z) as in 1.2, we have

g(z)+ ≡′ 49 · 4H6+ 1
2
(z)+ (mod 29)

g(z)− ≡′ 39 · 4H6+ 1
2
(z)− (mod 29)

When we compare H6+ 1
2
(z) and θ0(z)3 modulo powers of two and three,

we get the following corollary.



6 MATIJA KAZALICKI

Corollary 1.8. If d is a positive fundamental discriminant, then the fol-
lowing are true.

a) If d ≡ 1 (mod 8), then we have 25|
√
Lalg(∆d, 6) + 12h(−d).

b) If d ≡ 1 (mod 8), then we have 33|
√
Lalg(∆d, 6)− 120d ·H(−3d).

Here, H(−N) denotes the Hurwitz class number.

Kohnen first proved results similar to part b) in [9], and he used it together
with the result of Davenport and Heilbronn on the 3-part of the class group
to obtain nonvanishing of a positive proportion of central L-values L(∆d, 6).
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3. Preliminaries for the proofs of the theorems

3.1. Ray class groups and class field theory. In this subsection we use
class field theory to show that the structure of the 2-and 3-parts of ray class
groups from the introduction are determined by 2-adic and 3-adic properties
of fundamental units.

Let E be the unit group of the real quadratic field K = Q(
√
d). For a

prime p of K, denote by Up the group of units of the completion Kp. Fix a
rational prime P that splits in K. Denote by p1 and p2 primes of K above
P . For integers m,n ≥ 0 let Fm,n be the ray class field of K of modulus
m = pm1 p

n
2 . Let

Um,n = (1 + pm1 )(1 + pn2 ), U =
∏

Up, U ′ =
∏
p|P

Up, U ′′ =
∏
p-P

Up

be subgroups of IK , the group of ideles of K (we put 1 at all other places).
As usual, we embed K diagonally in IK . The image of E in U ′ = Up1Up2

under this map is denoted by Ē. Let H be the Hilbert class field of K.
We will determine the structure of Gm,n by studying Gal(Fm,n/H) and

Cl(K) separately. It is easy to describe the structure of Gal(Fm,n/H) using
the idelic formalism (see [21], p.269, p.396).

Theorem 3.1. Using the notation above we have

Gal(Fm,n/H) ∼=

∏
p|p

Up

 /ĒUm,n.
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Proof. By class field theory, K×U and K×U ′′Um,n are open subgroups of
finite index of IK that correspond to the fields H and Fm,n. Hence, we have

Gal(Fm,n/H) ∼= K×U/K×U ′′Um,n ∼= (K×U ′′Um,n)U ′/K×U ′′Um,n
∼= U ′/(U ′ ∩K×U ′′Um,n).

Next we show that U ′∩K×U ′′Um,n = ĒUm,n. One inclusion is easy; if ε ∈ E
then we have ε̄ ∈ U ′ and ε̄ = ε

(
ε̄
ε

)
∈ K×U ′′. For the other direction, let

x ∈ K×, u′′ ∈ U ′′ and u ∈ Um,n. Suppose that xu′′u ∈ U ′. First, observe
that x is a unit since it is a local unit for every finite place. Next, note that
xu′′ ∈ Ē. Hence, we have xu′′u ∈ ĒUm,n. �

The following two lemmas imply that for the real quadratic fields of in-
terest, the Hilbert class field is disjoint from the cyclotomic extension.

For prime p, we define the first step of cyclotomic Zp-extension of number
fields L/K to be the intermediate field F , such that Gal(F/K) ∼= Z/pZ

Lemma 3.2. If d ≡ 1 (mod 4) is a positive fundamental discriminant, then

the first step in the cyclotomic Z2-extension of Q(
√
d) is Q(

√
2,
√
d), and

the extension Q(
√

2,
√
d)/Q(

√
d) is ramified over primes above 2.

Proof. The first statement is well known (e.g. see [21], p.319). For the

second statement, note that 2 ramifies in the extension Q(
√

2,
√
d)/Q since

it ramifies in Q(
√

2), but that it does not ramify in Q(
√
d)/Q. Hence,

primes above 2 must ramify in Q(
√

2,
√
d)/Q(

√
d). �

Lemma 3.3. If d is a positive fundamental discriminant such that 3 - d,

then the first step in the cyclotomic Z3 extension of Q(
√
d) is ramified above

primes above 3.

Proof. Let Q(ζ) be the first step in the cyclotomic Z3 extension of Q. Then

Q(ζ)/Q is ramified above 3. Since 3 does not ramify in Q(
√
d), it ramifies

in Q(
√
d, ζ)/Q(

√
d) which is the first step in the cyclotomic Z3 tower over

Q(
√
d). �

Now consider P = 2 and P = 3 in detail.

Ray Class Groups unramified outside 2.

In this case Up
∼= Z×2 = 1 + 2Z2, and we have the following well known

result.
For prime p, we define vp to be the p-adic valuation on Zp, normalized

such that vp(p) = 1.
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Lemma 3.4. The 2-adic logarithm induces an isomorphism

1 + 2Z2

1 + 2kZ2

∼= Z/2Z× Z/2k−2Z.

Under this map an element ε with 2 ≤ v2(ε − 1) = t ≤ k is mapped to the
element of Z/2k−2Z of order 2k−t.

Remark. More precisely, the 2-adic logarithm induces an isomorphism Φ(x)

1 + 4Z2

1 + 2kZ2

∼= 4Z2/2
kZ2 = Z/2k−2Z.

The isomorphism from Lemma 3.4 maps x ∈ (1 + 2Z2) − (1 + 4Z2) to
(1,Φ(−x)), and it maps x ∈ (1 + 4Z2) to (0,Φ(x)).

We will need the following proposition from group theory.

Proposition 3.5. Let G = G0×G1×G2 be a direct product of cyclic groups
of order 2, 2k1 and 2k2, and let 1 ∈ G0, ε1 ∈ G1 and ε2 ∈ G2 be elements of
order 2, 2l1 and 2l2. Denote by H the subgroup of G generated by (1, ε1, ε2).
Then we have

G/H ∼= Z/2min(k1−l1,k2−l2)+1Z× Z/2k1+k2−min(k1−l1,k2−l2)−max(l1,l2)Z.

Proof. We may assume that min(k1 − l1, k2 − l2) = k1 − l1. Let g1 ∈ G1

and g2 ∈ G2 be generators such that ε1 = g2k1−l1

1 and ε2 = g2k2−l2

2 . It is

easy to check that the element ε = (1, g1, g
2k2−l2−(k1−l1)

2 ) ∈ G generates the
subgroup of G/H isomorphic to Z/2min(k1−l1,k2−l2)+1Z. The G1 component
of εr is not a power of ε1 for 0 < r < 2k1−l1 , so it is not in H. Also, the
G0 component of ε is 1, so ε is not a square in G/H. Now the claim follows
since H contains an element of order 2 which implies that G/H is a product
of two cyclic groups. �

Now we work out in detail special cases of Theorem 3.1 for K = Q(
√
d)

where d ≡ 1 (mod 8) is prime, or a product of two primes q, r ≡ 3, 5
(mod 8).

Theorem 3.6. Let ε = T + U
√
d (T, U ∈ Z), be a fundamental unit of K,

and let k = v2(Norm(ε− 1))− 2

a) If d ≡ 1 (mod 8) is prime, or a product of two primes p, q ≡ 5
(mod 8), if Norm(ε) = −1, and if m,n ≥ 2 are integers, then we
have

Gal(Fm,n/H) ∼= Z/2kZ× Z/2min(m,n)−2Z.
In particular, we have

r
2k+v2(Cl(Q(

√
d)))(Q(

√
d)) = 2.
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b) If d = pq is a product of two primes with p, q ≡ 3 (mod 8), or
p, q ≡ 5 (mod 8), and if Norm(ε) = 1 then

Gal(Fm,n/H) ∼= Z/2Z× Z/2min(m,n)−2Z.

In particular, we have that

r
21+v2(Cl(Q(

√
d)))(Q(

√
d)) = 2.

Remark. It is easy to show that ifNorm(ε) = −1, then we have v2(Norm(ε−
1)) = v2(log2 ε) + 1. From the proof of part b), we see that for suitable ε,
v2(log2 ε) = 2, and v2(Norm(ε− 1)) = 4. We need these facts to relate the
structure of ray class groups to the regulator in the class number formula
(see Section 4.2).

Proof. a) Using Theorem 3.1 and Lemma 3.4, it follows that

Gal(Fm,n/H) ∼=
Z/2Z× Z/2m−2Z× Z/2Z× Z/2n−2Z

< −1, ε̃ >
.

Here 〈−1, ε̃〉 is the group generated by the image of −1 and ε under diagonal
embedding of E into Up1Up2 composed with the isomorphism from Lemma
3.4. (See the remark after Lemma 3.4.) Next, we calculate ε̃. Let ε1 ∈ Z2

and ε2 ∈ Z2 be embeddings of ε in Up1 and Up2 . Since 2||ε− ε̄ = 2U
√
p, we

can assume v2(ε1−1) = 1. Then we have v2(ε2−1) = k+1. Since the norm
of ε is -1, a short calculation shows that ε1 = 1 + 2 + 22 + . . .+ 2k + 2k+2r,
for some r ∈ Z2, and hence that v2(−ε1 − 1) = k + 1. Therefore, we have
ε̃ = (1, e1, 0, e2) where e1 ∈ Z/2m−2Z and e2 ∈ Z/2n−2Z are of order 2m−k−1

and 2n−k−1. Proposition 3.5 together with the fact that −1 = (1, 0, 1, 0)
implies that

Gal(Fm,n/H) ∼= Z/2min(m−2−(m−k−1),n−2−(n−k−1))+1Z× Z/2min(m,n)−2Z.

For the second statement, assume that d = pq (if d = p there is nothing
to prove because h(p) is odd). First, we recall that, if the extension L =
K(
√
η)/K is unramified outside 2, then we have (η) = I2 · J, where I and

J are ideals of OK , and J is a product of primes above 2. Since p, q ≡
5 (mod 8), the primes above 2 are not principal (x2 − pqy2 = ±2 does
not have solution mod p), and since they have an even order in the class
group, L can be either K(

√
2), K(

√
ε), or K(

√
2ε). Hence, we see that

r2(Gal(Fm,n/K)) = 2, and we can write Fm,n/K as a product of two cyclic
fields, one of them containing H. There is a totally real Z2-extension K2 of
K (the cyclotomic extension) that is unramified outside 2. It is disjoint from
H by Lemma 3.2, and obviously Gal((Fm,n ∩K2) ·H/H) ∼= Z/2min(m,n)−2Z.
It follows that

Gal(Fm,n/H) ∼= Z/2k+v2(Cl(Q(
√
d)))Z× Z/2min(m,n)−2Z
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and that r
2k+v2(Cl(Q(

√
d)))(Q(

√
d)) = 2.

b) We argue as in a). The difference is that now the norm of ε is 1. A
calculation shows that we can choose ε such that ε1, ε2 ≡ 5 (mod 8). Now,
let ε̃ = (0, e1, 0, e2), where e1 and e2 are generators of Z/2m−2Z and Z/2n−2Z.
From Proposition 3.5, the first claim follows. An argument similar to the
one in a) implies the second statement. �

Ray Class Groups unramified outside 3.

Lemma 3.7. The 3-adic logarithm induces an isomorphism

Z×3 ∼= ±
1 + 3Z3

1 + 3kZ2

' Z/2Z× Z/3k−1Z.

Under this map an element ε ∈ (1 + 3Z3) with v3(ε− 1) = t ≤ k is mapped
to the element of Z/3k−1Z of order 3k−t.

Theorem 3.8. If p ≡ 1 (mod 4) is prime, and if ε is a fundamental unit
of Q(

√
p), then we have

r3(Q(
√
p)) = 1 ⇐⇒ 3 - h(p) and v3(Norm(ε− 1)) = 1.

Proof. Let m,n > 0 be integers. We have r3(Q(
√
p)) = 1 if and only if

3 - h(p) and the 3-part of Gal(Fm,n/H) is cyclic since H is disjoint from
the Z3-cyclotomic extension of K by Lemma 3.3. From Theorem 3.1 and
Lemma 3.7, it follows that

Gal(Fm,n/H) ∼=
Z/2Z× Z/3m−1Z× Z/2Z× Z/3n−1Z

< −1, ε̃ >
.

Here 〈−1, ε̃〉 is the group generated by the image of −1 and ε under the
diagonal embedding of E into Up1Up2 composed with the isomorphism from
Lemma 3.7. Let ε1 ∈ Z3 and ε2 ∈ Z3 be embeddings of ε in Up1 and Up2 .
We may choose ε such that ε1 ≡ 1 (mod 3), and ε2 ≡ 2 (mod 3) since the

norm of ε is -1. One may check that
ε1 − 1

−ε2 − 1
is a unit. It follows that if

ε̃ = (0, e1, 1, e2), then e1 is a generator of Z/3m−1Z if and only if e2 is a
generator of Z/3n−1Z, which by Lemma 3.7 is equivalent to 3||ε1 − 1, or
v3(Norm(ε− 1)) = 1. �

Remark. Hoelscher in [7] obtained interesting results about ray class groups
of quadratic and cyclotomic fields unramified outside one prime.
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3.2. L-values and class numbers as the coefficients of modular
forms. We use modular forms to study congruences between L-values and
class numbers. In this subsection we introduce modular forms whose Fourier
coefficients are essentially the L-values that interest us. The main reference
for this subsection is [14].

Modular forms and the Shimura Correspondence([14], p.52, p.154).
For a positive integer k, and a positive and squarefree integer N , we will
denote by Mk+ 1

2
(Γ0(4N)) the space of half-integral weight modular forms of

weight k + 1
2

and level 4N , and by M+
k+ 1

2

(Γ0(4N)) the Kohnen plus-space.

It is the subspace of Mk+ 1
2
(Γ0(4N)) consisting of modular forms whose nth

Fourier coefficient vanishes whenever (−1)kn ≡ 2, 3 (mod 4). The signifi-
cance of these subspaces is that the restriction of Shimura Correspondence
the new part of M+

k+ 1
2

(Γ0(4N)) defines an isomorphism of Hecke modules

to the new part of M2k(Γ0(2N)), a space of integral weight modular forms.
When k = 6, the map defined by the following formula ([9], Theorem 1)

∑
n≥0

b(n)qn → b(0)

2
ζ(−5) +

∑
n≥1

∑
d|n

d5b

(
n2

d2

) qn,

is an isomorphism between M+
6+ 1

2

(Γ0(4)) and M12(Γ0(1)). The modular form

1.2,

g(z) =
∞∑
n=1

b(n)qn =
E4(4z)Θ(θ0(z))

2
− Θ(E4(4z))θ0(z)

16
,

corresponds under this map to ∆(z), and the Cohen-Eisenstein seriesH6+ 1
2
(z)

corresponds to the Eisenstein series E12(z).

The theta function([14], p.12, p.134).
A prototypical example of a half-integral weight modular form is the theta
function.

Definition 3.9. The theta function θ0(z) is given by the Fourier series

θ0(z) = 1 + 2
∞∑
n=1

qn
2 ∈M 1

2
(Γ0(4)).

We will be interested in

θ0(z)3 =
∞∑
n=0

r(n)qn = 1 + 6q + 12q2 + 8q3 + · · · .

A classical result of Gauss states that
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r(n) =


12H(−4n) if n ≡ 1, 2 (mod 4)
24H(−n) if n ≡ 3 (mod 8),
r(n/4) if n ≡ 0 (mod 4),
0 if n ≡ 7 (mod 8).

Here H(−n) is a Hurwitz class number. It is related to the class number
h(−n) by the following formula:

H(−n) =
h(−D)

w(−D)

∑
d|f

µ(d)

(
−D
d

)
σ1(f/d),

where −N = −Df 2 (−D is a negative fundamental discriminant), w(−D)
is half the number of units in Q(

√
−D), and µ(d) is the Möbius function.

Cohen-Eisenstein series([14], p.14).
To study special values of Dirichlet L-functions at negative integers we
define Cohen-Eisenstein series.

Definition 3.10. If r ≥ 2 is an integer, then the weight r + 1
2

Cohen-
Eisenstein series is defined by

Hr(z) =
∞∑
N=0

H(r,N)qN .

Here H(r,N) is defined by

H(r,N) = L(1− r, χD)
∑
d|n

µ(d)χD(d)dr−1σ2r−1(n/d),

where χD(d) =
(
D
d

)
. In particular, H(r,N) = L(1 − r, χD) if D = (−1)rN

is a fundamental discriminant.

Cohen proved the following important result([2]).

Theorem 3.11. If r ≥ 2 is an integer, then Hr(z) ∈Mr+ 1
2
(Γ0(4)).

Sturm’s Theorem([17], p.171).
Sturm’s Theorem states that in order to prove congruences between modular
forms it is enough to check congruences between a finite number of their
Fourier coefficients.

Let f(z) =
∑∞

n=0 a(n)qn ∈ Mk(Γ), be a modular form of weight k ∈ Z
for a congruence group Γ < SL2(Z) with a(n) ∈ OK , and let m ⊂ OK be an
ideal. Define

ordm(f) = min{n : a(n) /∈ m}.
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Theorem 3.12 (Sturm). If we have

ordm(f) >
k

12
[SL2(Z) : Γ],

then it follows that ordm(f) =∞.

We will apply this result to half-integral weight modular forms. We call
the quantity in the theorem the Sturm Bound for Mk(Γ).

Let N ,M and 2k be integers. Assume 4|N and N |M . We define

Mk(M,N) =
⊕
χ

Mk(Γ0(M), χ),

where the sum is over all Dirichlet characters of conductor dividing N .

Proposition 3.13. Let k be an integer. and f(z) ∈ Mk+ 1
2
(M,N). If we

have

ordm(f) >
2k + 1

24
Mφ(N)

∏
p|M

(1 +
1

p
),

then we have ordm(f) =∞.

For the proof, we will need the two elementary lemmas.

Lemma 3.14.

[SL2(Z) : Γ0(M) ∩ Γ1(N)] = φ(N)M
∏
p|M

(
1 +

1

p

)
.

Proof. It is easy to see that the map Γ0(M)→ (Z/NZ)×, given by ( a bc d ) 7−→
d mod N is surjective with kernel Γ0(M)∩Γ1(N). Since [SL2(Z) : Γ0(M)] =
M
∏

p|M(1 + 1
p
), the claim follows. �

Proof of Proposition 3.13. If f(z) ∈ Mk+ 1
2
(M,N), then we have f(z)2 ∈

M2k+1(M,N). By Lemma 3.14, the Sturm Bound is 2k+1
12

M
∏

p|M(1 + 1
p
).

The result follows. �

3.3. Weight 1 Eisenstein series. Let p be prime, and let n ≥ 2 be a
positive integer. In this subsection, we construct a weight one Eisenstein
series Wn ≡ 1 (mod pn).

Definition 3.15. For primitive Dirichlet characters ψ and φ, such that
(ψφ)(−1) = −1, we define an Eisenstein series

Eψ,φ
1 (z) = δ(φ)L(0, ψ) + δ(ψ)L(0, φ) + 2

∞∑
n=1

σψ,φ0 (n)qn.
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Here δ(ψ) = 1 if ψ = 1, and 0 otherwise, and the generalized divisor sum is

σψ,φ0 (n) =
∑
m|n

ψ
( n
m

)
φ(m).

Also for a positive integer t, we define

Eψ,φ,t
1 (z) = Eψ,φ

1 (tz).

The following well known result gives a basis for the Eisenstein subspace
of weight 1 (for the proof see [5], p.141).

Theorem 3.16. Let N be a positive integer. Let AN be a set of pairs
({ψ, φ}, t) where ψ and φ are primitive Dirichlet characters of modulus u
and v, such that (ψφ)(−1) = −1, and t is a positive integer such that tuv|N .
Then the set

{Eψ,φ,t
1 (z) : ({ψ, φ}, t) ∈ AN}

represents a basis of the Eisenstein subspace of M1(Γ1(N)).

Recall that the group of Dirichlet characters of modulus 2n is isomorphic
to Z/2Z × Z/2n−2Z. Also, if ψ is an odd Dirichlet character of conductor
f , we have

L(0, ψ) = −B1,ψ = − 1

f

f−1∑
i=0

ψ(i)i,

where B1,ψ is a generalized Bernoulli number.

Theorem 3.17. Let n ≥ 2 be a positive integer, and let ψ and φ be the
generators of the group of Dirichet characters of modulus 2n of order 2 and
2n−2. Then the Eisenstein series

Wn =
∞∑
i=0

aiq
i = −2

2n−2∑
i=0

(−1)iE1,ψφi

1 (z) ∈M1(Γ1(2n))

satisfies Wn ≡ 1 (mod 2n).

Proof. First we will check that a0 = 1. We have

a0 = −2
2n−2−1∑
i=0

(−1)iL(0, ψφi) = 2
2n−2−1∑
i=0

(−1)iB1,ψφi

= 2
2n−2−1∑
i=0

1

2n

2n−1∑
c=0

(−1)i(ψφi)(c)c =
2

2n

2n−1∑
c=0

ψ(c)c
2n−2−1∑
i=0

(−1)iφi(c).

For a positive integer m, define the polynomial

Pm(x) = (1− x)(1 + x2) · · · (1 + x2m−1

) =
2m−1∑
i=0

(−1)ixi.
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Since the order of ψ is 2n−2, we have Pn−2(ψ(c)) = 2n−2 if ψ(c) = −1, and
Pn−2(ψ(c)) = 0, otherwise. If 0 ≤ c ≤ 2n − 1 then ψ(c) = −1 implies that
c = 2n−2 − 1 or c = 2n−2 + 1. In the first case, we have φ(c) = −1, and in
the second, we have φ(c) = 1. Therefore we have

a0 =
2

2n

∑
c=2n−2−1,2n−2+1

2n−2cψ(c) = 1.

To complete the proof, for a positive integer j, consider

aj = −4
2n−2−1∑
i=0

∑
m|j

(−1)iψ(m)φi(m) == −4
∑
m|j

ψ(m)Pn−2(φ(m)).

As before, 2n−2|Pn−2(φ(m)), so the theorem follows. �

Now consider prime p > 2. In this case the group of Dirichlet characters
is cyclic.

Theorem 3.18. Let n be a positive integer, let p > 2 be prime, let φ be
a generator of the group of Dirichlet characters of modulus pn, and u =
− 2

(p−1)(2−pn)
. Then the Eisenstein series

W ′
n =

∞∑
i=0

aiq
i = up

(p−1)pn−1

2
−1∑

i=0

E1,φ2i+1

1 (z) ∈M1(Γ1(pn))

satisfies W ′
n ≡ 1 (mod pn).

Proof. First we calculate a0. We have

a0 = up

(p−1)pn−1

2
−1∑

i=0

L(0, φ2i+1) = −up

(p−1)pn−1

2
−1∑

i=0

B1,φ2i+1

= −up

(p−1)pn−1

2
−1∑

i=0

1

pn

pn−1∑
c=0

(φ2i+1)(c)c =
−up
pn

pn−1∑
c=0

c

(p−1)pn−1

2
−1∑

i=0

φ2i+1(c).

For a positive integer m, define the polynomial

Pm(x) =

(p−1)pm−1

2
−1∑

i=0

x2i+1.

The following identity is easy to check: Pm+1(x)xp−1 = Pm(xp).
Let ζ be a (p−1)pn−1th root of unity. It follows from the previous identity

by an inductive argument, that if ζ /∈ {−1, 1}, then Pn(ζ) = 0. Now we
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have

a0 =
−up
pn

pn−1∑
c=0

cPn(φ(c)) =
−up
pn

(Pn(1) + (pn − 1)Pn(φ(pn − 1)))

= −up
pn

( (p−1)pn−1

2
)(1− pn + 1) = 1

For a positive integer j, we have

aj = up

(p−1)pn−1

2
−1∑

i=0

∑
m|j

φ2i+1(m) = up
∑
m|j

Pn(φ(m))

Now, since pn−1|Pn(φ(m)), the theorem follows. �

4. Proofs of the Theorems

4.1. Congruences between class numbers and special values of Dirich-
let L-functions. We require that U - and V -operators and the notion of a
twist. We briefly recall these ideas.

Definition 4.1. If d is a positive integer, the U- and V -operators are given
by (∑

n≥n0

c(n)qn

)
|U(d) =

∑
n≥n0

c(dn)qn(∑
n≥n0

c(n)qn

)
|V (d) =

∑
n≥n0

c(n)qdn.

Proposition 4.2. The following are true:

a) If f(z) ∈ Mr+ 1
2
(Γ1(4N)) and if d|N , then we have f(z)|U(d) ∈

Mr+ 1
2
(Γ1(4N)).

b) If f(z) ∈Mr+ 1
2
(Γ1(4N)), then we have f(z)|V (d) ∈Mr+ 1

2
(Γ1(4Nd)).

Definition 4.3. Suppose that ψ is a Dirichlet character, and suppose that

g(z) =
∞∑
n=0

c(n)qn ∈Mr+ 1
2
(Γ0(4N), χ).

Then the ψ-twist of g(z) is given by gψ(z) =
∑∞

n=0 ψ(n)c(n)qn.

Proposition 4.4. If ψ is Dirichlet character of conductor m, and if g(z)
is as in the previous definition, then gψ(z) ∈Mr+ 1

2
(Γ0(4Nm2), χψ2).

For a power series f(z) =
∑
c(n)qn, and positive integers a < b, with

gcd(a, b) = 1, denote by f(z)a, b a power series
∑

n≡a (mod b)

c(n)qn.
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Remark. The previous proposition implies that if f(z) is a modular form
of level 4N , then f(z)+ = f(z)1, 8 and f(z)− = f(z)5, 8 defined in the in-
troduction are modular forms of level 256N . In general, f(z)a, b is a mod-
ular form of level 4Nb2. In fact, it follows from Proposition 4.4, that if
f(z) ∈ Mk+ 1

2
(M, 2N), then f(z)a, 2b ∈ Mk+ 1

2
(M · 22b,max(2N , 2b−1)). More-

over, if N is a positive integer, then Θ(f(z)) is modular form mod N . More
precisely, we find that

Θ(f(z)) ≡
∑

0≤a<N

af(z)a,N (mod N).

The following Propositions imply Theorem 1.5.

Proposition 4.5. The following congruences hold.

a) We have 2θ0(z)3+ ≡ 59θ0(z)+ + 64F1(z) − 8H4+ 1
2
(z)+ (mod 128),

where F1(z) =
∑∞

n=0 a(n)qn ∈ M1(Γ1(128)) is an Eisenstein series.
Moreover, for prime numbers p and q we have a(p) ≡ 0 (mod 2) if p ≡ 1 (mod 16)

a(p) ≡ 1 (mod 2) if p ≡ 9 (mod 16),
a(pq) ≡ 1 (mod 2) if p, q ≡ 3, 5 (mod 8)and pq ≡ 1 (mod 8).

b) We have

9(H3+ 1
2
(z)|U(3))+ ≡ 6(θ0(z)3|U(3))++2θ0(z)++9(θ0(z)|V (9))+ (mod 27).

Proof. a) By applying Proposition 3.13 to the form

2θ0(z)3+W6(z)−59θ0(z)+W5(z)4−64F1(z)θ0(z)+8H4+ 1
2
(z)+ ∈M4+ 1

2
(256, 128),

we get Sturm’s Bound 9216.
The Eisenstein subspace of M1(Γ1(128) has dimension 80, and

F1(z) = q + q25 + q33 + q41 + q57 + q65 + q73 + 26q76 + 5q81 − 40q82 + 52q83

− 58q84 − 20q85 + 104q86 + 8q87 − 9q89 − 72q90 − 48q91 + 12q92 − 26q93

− 28q94 − 32q95 + 2q97 + 78q98 − 10q99 +O(q100).

Since F1(z) is an Eisenstein series of weight 1 and level 128, it follows
from Theorem 3.16 that if p ≡ p′ (mod 128) and q ≡ q′ (mod 128) are
primes, then we have

a(p) ≡ a(p′) (mod 2) and a(pq) ≡ a(p′q′) (mod 2).

So to prove the second statement, one finds a prime in each relevant residue
class mod 128, and then checks the statement for these primes using a
computer. To check the first two congruences, we produce the following
table:
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mod 128 p a(p)
1 257 275436
9 137 30489
17 17 22
25 281 377907
33 673 8209442
41 41 451
49 433 1752562
57 313 562819
65 193 103678
73 73 3449
81 337 729396
89 89 6757
97 97 9326
105 233 195569
113 113 15540
128 761 12342375

We omit the details for the congruences a(pq) mod 2.
b) It follows from Proposition 3.13, that Sturm’s Bound for the modular

form

9(H3+ 1
2
(z)|U(3))+ − 6(θ0(z)3|U(3))+W ′

2(z)2 − 2θ0(z)+W ′
2(z)3

− 9(θ0(z)|V (9))+W ′
1(z)3 ∈M3+ 1

2
(28 · 9, 4 · 9),

is 16128. �

To relate Lp(1, χ) and Lp(1 − n, χ), we need the following result of Shi-
ratani [16].

Proposition 4.6 (Shiratani). For a prime p, p-adic integers s, s′, and
a Dirichlet character χ of the first kind, we have Lp(s, χ) ≡ Lp(s

′, χ)

(mod pv2(s−s′)−1q2), where q = 4 if p = 2 and q = p otherwise.

Proposition 4.6 implies the following corollary:

Corollary 4.7. If d 6= 8 is a positive integer (we exclude the field Q(
√

2)),
then the following are true:

a) L2(1, χd) ≡ L2(1− 22, χd) (mod 32),
b) L2(11, χd) ≡ L2(11− 26, χd) (mod 29),
c) L3(1, χd) ≡ L3(1− 3, χd) (mod 9),
d) L3(15, χd) ≡ L3(15− 33, χd) (mod 34).

Proposition 4.8. With g(z) as in 1.2, we prove the following congruences.
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a) We have

g(z)+ ≡ 49 · 4H6+ 1
2
(z)+ + 200

∑
d≡1 (mod 2)

qd
2

d2
(mod 29),

g(z)− ≡ 39 · 4H6+ 1
2
(z)− (mod 29).

b) We have

g(z)+ ≡ 369 · 4H54+ 1
2
(z)+ + 64 · 27 · 4H54+ 1

2
(z)1, 16+

+4 · 27
∑

d≡1 (mod 2) d
4qd

2
+ 4 · 72

∑
d≡±1 (mod 8) d

4qd
2

(mod 211),

g(z)− ≡ 7 · 4H54+ 1
2
(z)− + 64 · 4H54+ 1

2
(z)5, 16 (mod 210).

c) We have

g(z) ≡ 4 · 3Θ(H13+ 1
2
(z)|U(3)) + 9 · 5

∑
d≥1

d4qd
2

(mod 34).

d) We have

g(z)+ ≡ 5Θ(θ0(z)3|U(3))+ +
15

2

∑
d≡±1 mod 6

d2qd
2

(mod 33).

Proof. First note that

200
∑

d2≡1 (mod 8)

qd
2

d2
≡ 200

∑
i≡1 (mod 8)

0<i<25

1

i
θ0(z)i, 25 (mod 29),

4 · 27
∑

d2≡1 (mod 8)

d4qd
2 ≡ 4 · 27

∑
i≡1 (mod 8)

0<i<27

i2θ0(z)i, 27 (mod 211),

4 · 72
∑

d2≡1 (mod 16)

d4qd
2 ≡ 4 · 72

∑
i≡1 (mod 16)

0<i<24

i2θ0(z)i, 24 (mod 211).

For part a), we apply Proposition 3.13 to the forms

g(z)+ − 49 · 4H6+ 1
2
(z)+ − 200W4(z)6

∑
i≡1 (mod 8)

0<i<25

1

i
θ0(z)i, 25 ∈M6+ 1

2
(212, 24),

g(z)− − 39 · 4H6+ 1
2
(z)− ∈M6+ 1

2
(28, 23).

The Sturm Bounds are 26624 and 832.
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For b), we find that

g(z)+ ·W7(z)16·3 −369 · 4H54+ 1
2
(z)+ − 64 · 27 · 4H54+ 1

2
(z)1, 16

−4 · 27W7(z)2·27
∑

i≡1 (mod 8)
0<i<27

i2θ0(z)i, 27

−4 · 72W4(z)2·27
∑

i≡1 (mod 16)
0<i<24

i2θ0(z)i, 24 ∈M54+ 1
2
(216, 27), and

g(z)− ·W6(z)16·3 − 7 · 4H54+ 1
2
(z)− − 64 · 4H54+ 1

2
(z)5, 16 ∈M54+ 1

2
(210, 26).

In this case, the Sturm Bounds are 28573696 and 223232.
To prove the rest of the proposition, note that

4 · 3Θ(H13+ 1
2
(z)|U(3)) ≡ 4 · 3

∑
0<i<81

i(H13+ 1
2
(z)|U(3)i, 81 (mod 34),

9 · 5
∑
d≥1

d4qd
2 ≡ 9 · 5

∑
0≤i<9

i2
1

2
θ0(z)i, 9 (mod 34),

5Θ(θ0(z)3|U(3))+ ≡ 5
∑

0≤i<27

i(θ0(z)3|U(3))+
i, 27 (mod 33),

15

2

∑
d2≡1 mod 3·8

d2qd
2 ≡ 15

2

∑
i≡1 mod 24

0≤i<9

iθ0(z)i, 9 (mod 33).

Now a calculation as in a) and b) shows that we can “lift” forms from
part c) to the space M13+ 1

2
(4 · 39, 4 · 34) whose Sturm Bound is 19131876.

Similarly, we can lift forms from part d) to the space M6+ 1
2
(28 · 37, 22 · 33)

with Sturm Bound 21835008.
�

4.2. Proofs of the Theorems 1.1, 1.2, 1.3, 1.4 and 1.5.

Proof of Theorem 1.5. If d ≡ 1 (mod 8) is a positive fundamental discrim-
inant, then Proposition 4.5 implies that 3h(−d) ≡ L(−3, χd) (mod 16),
16h(−3d) ≡ L(−2, χ3d) (mod 3). Moreover, if d ≡ 9 (mod 16) is prime, or
d = pq where p and q are as in the statement of the theorem, 16||L(−3, χd)−
3h(−d). To prove parts a), b) and c) of the theorem we prove the congruence
L(−3, χd) ≡ 1

9
L2(1, χd) (mod 32).

To relate the Dirichlet L-function to the 2-adic L-function we need the
following formula ([21], p.57):

(4.1) L2(1− 2n, χd) = (1− χd(2)22n−1)L(1− 2n, χd).

Corollary 4.7 a) implies that
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L2(1, χd) ≡ L(1− 22, χd) ≡ (1 + χd(2)23)L(1− 22, χd) ≡ 9L(−3, χd) (mod 32)

since χd(2) = 1 for d ≡ 1 (mod 8). For the 3-adic L-function we have the
following identity ([21], p.57)

(4.2) L3(1− 3n, χd) = (1− χ3d(3)33n−1)L(1− 3n, χ3d).

From this formula it follows that L3(1− 3, χd) ≡ L(1− 3, χ3d) (mod 9).
On the other hand, Corollary 4.7 c) implies that L3(1, χd) ≡ L(1 − 3, χd)
(mod 9). Hence, we conclude that h(−3d) ≡ L3(1, χd) (mod 3). �

For the rest of the subsection we need the p-adic class number formula
([21], p.71). Let d ≡ 1 (mod 4) be a positive integer, and let ε be a funda-

mental unit of Q(
√
d). Then we have (up to sign)

2h(d) logp ε√
d

=

(
1− χd(p)

p

)−1

Lp(1, χd).

Proof of Theorem 1.1. a) Assume that 4||h(−p). Then Theorem 1.5 a) im-
plies that 4||L2(1, χp). On the other hand, it follows from the 2-adic class
number formula that 4||h(p) log2 ε. Now in the notation of Theorem 3.6 (see
the remark following the theorem), we have k = v2(log2 ε)−1 = 1−v2(h(p)).
Hence, it follows that r4(Q(

√
p)) = 1. Since all implications in this argu-

ment are equivalences, the claim follows. Similar arguments complete the
other cases of the theorem. �

Proof of Theorem 1.2. The argument is the same as in the previous theo-
rem. In the case when Norm(ε) = 1, we use the remark after Theorem
3.6. �

Proof of Theorem 1.3. Let ε be a fundamental unit of Q(
√
p). We fix an

embedding of Q(
√
p) in Q2. Assume that 3 - h(−3p). By Theorem 1.5 d)

this is equivalent to 3 - L3(1, χp), and by the 3-adic class number formula,
it is equivalent to 3||h(p) log3 ε. Scholtz’s result ([21], p.191) implies that
3 - h(p). Hence, we have v3(log3 ε) = v3(Norm(ε − 1)) = 1 where the first
equality follows from the fact that Norm(ε) = −1 and that v3(log3 ε) =
v3(ε− 1) if ε ≡ 1 (mod 3)). Now Theorem 3.8 implies that r3(Q(

√
p)) = 1.

If r3(Q(
√
p)) = 1, then Theorem 3.8 implies that 3 - h(p) and v3(Norm(ε−

1)) = v3(log3 ε) = 1. Hence we have 3||h(p) log3 ε, which we showed is equiv-
alent to 3 - h(−3p). �

Proof of Theorem 1.4. Since X2− pqY 2 = ±4 has no solution mod 8 unless
X and Y are both even, we see that U and T are integers. We will show that
v2(log2(ε)) ≥ 2. First, consider the case when Norm(ε) = −1. If we reduce
the equation T 2 − pqU2 = −1 mod 8, we immediately see that 4|T . Hence
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we have Norm(ε−1) = −2T . We conclude that 4| log2(ε). If Norm(ε) = 1,
we reduce T 2− pqU2 = 1 mod 8 to get T ≡ 1 (mod 4). By plugging in T =
5 + 8T ′ to the previous equation, we get pqU2 = 8(8T ′2 + 10T ′+ 3). Hence,
we find that 8||pqU2, which implies that T ≡ 1 (mod 8) and v2(log2(ε)) ≥ 2.
Note that we showed in 3.6 that v2(log2(ε)) = 2.

Theorems 1.2 and 3.6 imply that 16|h(−pq) if and only if v2(h(pq) log2(ε)) =
3. Since 2|h(pq) by genus theory, it follows that 16|h(−pq) is equivalent to
2||h(pq) and 4|| log2(ε). Then Theorem 2 of [6] implies that 2||h(pq) hap-
pens if either

(
p
q

)
= 1 and

(
p
q

)
4

(
q
p

)
4

= −1, or if
(
p
q

)
= −1. Finally, the result

of Dirichlet [4] implies that in the first case the norm of a fundamental unit
is 1, while in the second case it is −1. Now log2(ε) = 2 implies in the first
case that T ≡ 9 (mod 16) and in the second case that T ≡ 4 (mod 8). �

Remark. The same argument, reproduces the result (1.1) of Williams.

4.3. Proofs of the Theorems 1.6 and 1.7.

Proof of Theorem 1.6. Part b) of Proposition 4.8 implies that

g(z)1, 16 ≡′ 49 · 4H54+ 1
2
(z)1, 16 (mod 211),

g(z)5, 16 ≡′ 71 · 4H54+ 1
2
(z)5, 16 (mod 210),

g(z)9, 16 ≡′ 369 · 4H54+ 1
2
(z)9, 16 (mod 211),

g(z)13, 16 ≡′ 7 · 4H54+ 1
2
(z)13, 16 (mod 210),

3g(z) ≡′ 22 · 32Θ(H13+ 1
2
(z)|U(3)) (mod 35).

Using formulas (4.1) and (4.2), we get

L2(11− 26, χd) ≡ L(11− 26, χd) (mod 211), and

L3(15− 33, χd) ≡ L(15− 33, χ3d) (mod 34).

Now by recalling the interpretation of the coefficients of g(z) and Hr+ 1
2
(z),

the statements follow from Corollary 4.7, parts b) and d). �

Proof of Theorem 1.7. This follows from Proposition 4.8. �

Proof of Corollary 1.8. Propositions 4.8, 4.5, and 4.6 imply that

29|c(d)− 49 · 4L(1− 6, χd),

25|12h(−d) + 4L(1− 4, χd),

L2(1− 6, χd) ≡ L2(1− 4, χd) (mod 24).
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Part a) of the corollary now follows from formula (4.1). The formula is true
if we replace 2n by any even integer. Part b) of the corollary follows directly
from part d) of Proposition 4.8. �
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