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Abstract. Motivated by the theory of Diophantine m-tuples, we study rational points on
quadratic twists Hd : dy2 = (x2 + 6x − 18)(−x2 + 2x + 2), where |d| is a prime. If we denote
by S(X) = {d ∈ Z : Hd(Q) 6= ∅, |d| is a prime and |d| < X}, then, by assuming some standard
conjectures about the ranks of elliptic curves in the family of quadratic twists, we prove that
as X →∞

43
256 + o(1) ≤ #S(X)

2π(X) ≤
46
256 + o(1).

1. Introduction

For an integer d, a set of m distinct nonzero rational numbers with the property that the
product of any two of its distinct elements plus d is a square is called a rational Diophantine
m-tuple with the property D(d) or D(d)-m-tuple. The D(1)-m-tuples (with rational elements)
are called simply rational Diophantine m-tuples and have been studied since ancient times,
starting with Diophantus, Fermat, and Euler.

It is not known how large can a rational Diophantine tuple be. Dujella, Kazalicki, Mikić,
and Szikszai [DKMS17] proved that there are infinitely many rational Diophantine sextuples,
while no example of a rational Diophantine septuple is known. Also, no example of rational
D(d)-sextuple is known if d is not a perfect square. For more information on Diophantine
m-tuples see the survey article [Duj16].

We are interested in the following question.

Question. Does there exist a rational D(d)-quintuple for every d ∈ Z?

Dujella and Fuchs [DF12] proved that there are infinitely many squarefree integers d’s for
which there are infinitely many rational D(d)-quintuples, and Dražić [Dra22] (improving the
similar result from [DF12]) proved, assuming the Parity conjecture for the quadratic twists of
several explicitly given elliptic curves, that for at least 99.5% of squarefree integers d there are
infinitely many rational D(d)-quintuples.

Following an idea from [DF12], we start with a D(16
9 x

2(x2 − x− 3)(x2 + 2x− 12))-quintuple
in Z[x]{

1
3(x2 + 6x− 18)(−x2 + 2x+ 2), 1

3x
2(x+ 5)(−x+ 3), (x− 2)(5x+ 6), 1

3(x2 + 4x− 6)(−x2 + 4x+ 6), 4x2
}

found by Dujella [Duj99] (and used to prove that there are infinitely many D(−1)-quintuples
in [Duj02]). Note that for rational u 6= 0, if {a, b, c, d, e} isD(qu2)-quintuple, then { a

u
, b
u
, c
u
, d
u
, e
u
}

is D(q)-quintuple. In particular, for squarefree integer d, if
dy2 = (x2 − x− 3)(x2 + 2x− 12)

for some x, y ∈ Q then by dividing the elements of quintuple above with 4
3xy we obtain D(d)-

quintuple. Thus, if the equation above has infinitely many solution, we may conclude that
there are infinitely many D(d)-quintuples.
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Consider the genus one quartic
H : y2 = (x2 − x− 3)(x2 + 2x− 12).

For a squarefree integer d, we denote by Hd : dy2 = f(x) the quadratic twist of H with respect
to Q(

√
d). Quartic H, as a (singular) genus one curve with a rational point at infinity, is

birationally equivalent to the elliptic curve E/Q
E : y2 = (x− 9)(x− 8)(x+ 18).

Likewise, we denote by Ed the quadratic twist of E by Q(
√
d). Thus Hd(Q) 6= ∅ implies that

Hd is birationally equivalent to Ed. Since, by Proposition 3.4, Hd(Q) 6= ∅ implies that Hd(Q)
is infinite and consequently that there are infinitely many D(d)-quintuples, we are led to the
study of squarefree integers d for which Hd(Q) 6= ∅.

In this paper we will focus on twists by Q(
√
d) where |d| is prime. Let

S = {d ∈ Z : Hd(Q) 6= ∅ and |d| is a prime}.

Question. What is asymptotically the size of set S(X) = {d ∈ S : |d| < X} as X →∞?

Surprisingly, and in contrast with the analogous problem for the quadratic twists of elliptic
curves, not much is known about this question.

Çiperiani and Ozman gave a criterion for the set of rational points of the quadratic twist of
quartic to be non-empty in terms of the image of the global trace map trQ(

√
d)/Q on an elliptic

curve (see Section 2 of [cO15]), but in general, no estimates for the size of set S(X) are known.
For a squarefree d, the quartic Hd, as a 2-covering of Ed, represents an element of Sel(2)(Ed),

the 2-Selmer group of Ed, provided that Hd is everywhere locally solvable (i.e. Hd(Qv) 6= ∅
for all places v – we write ELS for short). For the interpretation of Selmer group elements as
2-covers of E see Section 1.2 of [Sto12].

If |d| = p is a prime, then Proposition 2.1 implies that Hd is ELS if and only if
(
p
13

)
= 1

or p = 13. Thus, for such d, Hd(Q) = ∅ if and only if Hd represents a nontrivial element in
X(Ed)[2] (where X(Ed) denotes the Tate-Shafarevich group of Ed), or more precisely, if and
only if the image of Hd under the map ι : Sel(2)(Ed)→X(Ed)[2] from the exact sequence
(1.1) 0 −→ Ed(Q)/2Ed(Q) −→ Sel(2)(Ed) −→X(Ed)[2] −→ 0
is nonzero. In this case, we say that Hd represents the element of order two in X(Ed).

Our main tool for studying the image of Hd in X(Ed)[2] is the Cassels-Tate pairing on
X(Ed) with values in Q/Z, or more precisely, its extension to a pairing on 2-Selmer group by
(1.1)

〈·, ·〉CT : Sel(2)(Ed)× Sel(2)(Ed)→ Z/2Z = {0, 1}.
This pairing is bilinear, alternating, and non-degenerate on X(Ed)[2]/2X(Ed)[4], or equiv-

alently, on Sel(2)(Ed)/2 Sel(4)(Ed) (see Section 4). In particular, dimF2 X(Ed)[2]/2X(Ed)[4]
is even, thus equal to 0 or 2 if |d| is a prime (see Proposition 3.1). Thus, if we find a class
L ∈ Sel(2)(Ed) such that 〈Hd, L〉CT = 1, we can conclude that ι(Hd) 6= 0, and, hence, that
Hd represents the element of order two in X(Ed). If X(Ed)[2] is nontrivial and X(Ed)[2] =
2X(Ed)[4] (see Proposition 3.9), then we can not obtain any information about Hd using this
method.

For estimating the asymptotic behaviour of #S(X) as X →∞ we will assume the following
“standard” conjectures.

Conjecture 1. 100% of quadratic twists Ed where |d| is a prime have rank 0 or 1.

Note that this conjecture is now a theorem under the BSD conjecture if we let d range over
all squarefree integers (see Smith [Smi22a,Smi22b]).
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Conjecture 2 (The parity conjecture). For all d ∈ Z where |d| is prime,

(−1)rank(Ed) = w(Ed),
where w(Ed) is the root number of the elliptic curve Ed.

It follows from Proposition 3.4 that the contribution of d’s (|d| is a prime) for which the
root number w(Ed) is equal to 1 to the #S(X) is negligible since by Conjecture 1 100% of the
curves Ed will have rank 0 or 1 and by Conjecture 2 that rank is even, hence zero.

On the other hand, in the case w(Ed) = −1, if dimF2 Sel(2)(Ed) = 3 (see Proposition 3.4 for
the description of Sel(2)(Ed)) then by Conjecture 2 rank(Ed) = 1 so X(Ed)[2] is trivial (note
that Ed has full rational two torsion, hence dimF2 X(Ed)[2] = dimF2 Sel(2)(Ed)−rank(Ed)−2 =
0).

Hence the only interesting case (in which we expect X(Ed)[2] generically to be nontrivial) is
when dimF2 Sel(2)(Ed) = 5 or equivalently (see Proposition 3.1) when d ∈ T = T+ ∪ T− where

T+ = {d > 0 : |d| is prime,
(
d

13

)
= 1,

(
d

3

)
= 1, d ≡ 1 (mod 8)},

T− = {d < 0 : |d| is prime,
(
d

13

)
= 1,

(
d

2

)
·
(
d

3

)
= −1, d ≡ 5, 7 (mod 8)}.

Define
H1 : y2 = 4x4 − 56x2 + 169 ∈ Sel(2)(E),
H2 : y2 = 18x4 − 24x3 − 32x2 + 40x+ 34 ∈ Sel(2)(E),
F1 : y2 = 11x4 + 12x3 + 56x2 + 24x+ 68 ∈ Sel(2)(E−1),
F2 : y2 = x4 + 56x2 + 676 ∈ Sel(2)(E−1).

(1.2)

We show in Proposition 3.1 that if d ∈ T , Sel(2)(Ed) is generated by the image of the two
torsion Ed[2] under the Kummer map, Hd, and by the quadratic twists of those classes in (1.2)
which land in Sel(2)(Ed). Hence for such d’s dimF2 Sel(2)(Ed) = 5. Proposition 2.3 describes
when these twists of quartics in (1.2) are ELS. Note that this simple explicit description of
Sel(2)(Ed) (see Proposition 3.1) is the main reason why we considered only quadratic twists by
d where |d| is prime. In general, for squarefree d, dimF2 Sel(2)(Ed) is unbounded.

Assuming the parity conjecture for Ed, where d ∈ T , we can deduce that dimF2 X(Ed)[2] = 0
or 2. Assume further that X(Ed)[2] 6= 2X(Ed)[4]. The non-degeneracy of the Cassels-Tate
pairing implies that for d such that ι(Hd) 6= 0 there exists class L ∈ Sel(2)(Ed) (also with
ι(L) 6= 0) for which 〈Hd, L〉CT = 1. The following theorem then follows easily from Section 4,
Proposition 3.1 and the previous discussion.

Theorem 1.1. Let d ∈ T such that X(Ed)[2] 6= 2X(Ed)[4]. Assuming the parity conjecture
for Ed, the following is true.

a) If d < 0 and d ≡ 1 (mod 4) then 〈Hd, F−d1 〉CT = 1. In particular, ι(Hd) 6= 0 ∈
X(Ed)[2].

b) If d < 0 and d ≡ 3 (mod 4) then ι(Hd) 6= 0 if and only if 〈Hd, F−d2 〉CT = 1.
c) If d > 0 then ι(Hd) 6= 0 if and only if 〈Hd, Hd

1 〉CT = 1 or 〈Hd, Hd
2 〉CT = 1.

It remains to explain how to compute the Cassels-Tate pairing of the quadratic twists of
quartics. To each pair (A,B) of quartics from Table 1 (see (1.2)), by the work of Smith (see
Theorem 3.2. in [Smi16]), we can associate the governing field LA,B such that the value of
pairing 〈Ad, Bd〉CT is determined by 〈A,B〉CT and the splitting behaviour of d in LA,B. For
example, for d ∈ T , it follows that 〈Hd, Hd

2 〉CT = 0 if and only if d splits completely in
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L = Q(
√
−1,
√

2,
√

13)(
√

4 + 2
√

13). For complete description of governing fields see Table 1
and Section 4. Section 4 and Proposition 3.9 imply the following corollary of Theorem 1.1.

〈Ad, Bd〉CT KA,B αA,B
〈Hd, Hd

1 〉CT Q(
√

3,
√

13) 4 +
√

13
〈Hd, Hd

2 〉CT Q(
√
−1,
√

2,
√

13) 4 + 2
√

13
〈H−d, F d

1 〉CT Q(
√
−2,
√

13) −1
〈H−d, F d

2 〉CT Q(
√

13,
√
−1,
√
−3) 3(1 +

√
13)(3 +

√
13)

〈Hd
1 , H

d
2 〉CT Q(

√
3,
√
−1,
√

2) 8(1 +
√

3)(4 + 2
√

3)
〈F d

1 , F
d
2 〉CT Q(

√
3,
√
−1,
√

2) 8(1 +
√

3)(4 + 2
√

3)
Table 1. For d = p > 0 which splits completely in KA,B (and in the case
〈Hd, Hd

1 〉CT we in addition require p ≡ 1 (mod 4)), we have 〈Ad, Bd〉CT = 0 if
and only if d splits completely in a governing field LA,B = KA,B(√αA,B).

Corollary 1.2. Let d ∈ T . Assuming the parity conjecture for Ed, if d does not split completely
in LH1,H2 = LF1,F2 and

a) d = −p < 0 with p ≡ 1 mod 4 and p splits completely in LH−1,F2, or
b) d = p > 0 and p splits completely in LH,H1 and LH,H2,

then Hd(Q) 6= ∅. Hence, for such d there exists infinitely many D(d)-quintuples.

Remark 1.3. As we already noted, if for d = ±p we have that
(
p
13

)
= 1 and

(
p
2

)
·
(
p
3

)
·
(
p
13

)
= 1

(hence w(Ed) = −1 by Proposition 2.4), but if d /∈ T (hence dimF2 Sel(2)(Ed) = 3), then
by Conjecture 2 X(Ed)[2] is trivial, and Hd(Q) 6= ∅, so there exists infinitely many D(d)-
quintuples.
Example 1.4. The set of d ∈ T , |d| < 3000, for which Corollary 1.2 implies that Hd(Q) 6= ∅ is
equal to

{−2857,−2833,−1993,−601,−337,−313, 1993, 2833, 2857}.
For d = −313, we find a point (−2107/1202, 389073/1444804) ∈ H−313(Q) which produces a
D(−313)-quintuple{

81062614477261
1313828969096 ,

15660515591
623554328 ,

9009021853
546517874 ,

28246175292437
1313828969096 ,

2532614
129691

}
.

Remark 1.5. Results about infinite number of D(d)-quintuples obtained as above from d ∈ T
where d < 0 are new, they are not covered in [Dra22].

Using Chebotarev’s density theorem to determine the factorization of primes in governing
fields, we obtain the following bounds for S(X).
Corollary 1.6. Assuming Conjecture 1, we have that as X →∞

C1 + o(1) ≤ #S(X)
2π(X) ≤ C2 + o(1),

where C1 = 43
256 and C2 = 46

256 .

Remark 1.7. We can rephrase the result above by saying that the classes Hd ∈ Sel(2)(Ed), for
d ∈ T , are “equidistributed” in the quotient Sel(2)(Ed)/κ(Ed[2])−{0} with respect to the image
of rational points Ed(Q) (rank is generically 1) under the Kummer map κ : Ed(Q)/2Ed(Q) →
Sel(2)(Ed), since we have that the probability forHd ∈ κ(Ed(Q))/κ(Ed[2]) ⊂ Sel(2)(Ed)/κ(Ed[2])
is 1/7. Recall that by Proposition 3.4 Hd is never an element of κ(Ed[2]) (thus 1/7 and not
1/8 is the “right” answer).
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By Proposition 3.9 and Conjecture 1 the density of d’s (|d| is a prime) for which X(Ed)[2]
is nontrivial and X(Ed)[2] = 2X(Ed)[4] is 3

256 , so with this method we can not bridge the gap
between C1 and C2.

2. Local properties

Proposition 2.1. For a square-free d ∈ Z, the quartic Hd is everywhere locally solvable if and
only if for all primes p|d we have

(
p
13

)
= 1 or p = 13.

Proof. Assume that Hd is ELS. It follows that for every prime p|d, p 6= 13, the equation
(x2 − x − 3)(x2 + 2x − 12) = 0 has a solution in Fp, which implies that

(
p
13

)
= 1 since the

discriminant of quadratic factors is 13 and 4 · 13 respectively.
Conversely assume that for all primes p|d we have

(
p
13

)
= 0 or 1. Obviously, Hd(R) 6= ∅. If

p|d, then by assumption there is a solution (x2 − x− 3)(x2 + 2x− 12) = 0 in Fp which lifts by
Hensel lemma to Hd(Qp). If p - 2 · 3 · 13d, then Hd has a good mod p reduction since 2, 3 and
13 are only primes dividing discriminant of (x2 − x− 3)(x2 + 2x− 12). It follows that Hd/Fp
is a genus one curve, hence Hd(Fp) 6= ∅, thus by Hensel’s lemma Hd(Qp) 6= ∅. It remains to
consider cases p = 2, 3, 13 and p - d. Here reductions mod 2, 3 and 13 of Hd are geometrically
irreducible genus zero curve, so it follows that Hd(Fp) 6= ∅, and consequently Hd(Qp) 6= ∅ for
p = 2, 3, 13. �

Remark 2.2. Novak [Nov22] showed (assuming GRH) that asymptotically the number of square-
free d’s, 0 < d < x, for which Hd is ELS is equal to

2
√

273
13 π−3/2∏

p

(
1 + 1

p

)( p13)/2
x√

log x
.

Similarly, the following proposition describes local solvability of quartics from (1.2).
Proposition 2.3. Let p be a prime and d = ±p.

a) Hd
1 is everywhere locally solvable if and only if d ≡ 1 (mod 12) or d = −3.

b) Hd
2 is everywhere locally solvable if and only if d > 0 and d ≡ 1 (mod 8).

c) F d
1 is everywhere locally solvable if and only if d > 0 and d ≡ 1, 3 (mod 8).

d) F d
2 is everywhere locally solvable if and only if d > 0 and d ≡ 1 (mod 12).

The following proposition computes the root number of Ed.
Proposition 2.4. For d = ±p where p 6= 2, 3, 13 is a prime, the root number w(Ed) is equal
to −1 if and only if (

p

2

)
·
(
p

3

)
·
(
p

13

)
= 1.

Here
(
·
2

)
is the Kronecker symbol for odd d defined by(

d

2

)
=

1, if |d| ≡ 1, 7 mod (8)
−1, if |d| ≡ 3, 5 mod (8).

Proof. Theorem 1.1. in [Des20] implies that

(2.1) w(Ed) = −w2(Ed)w3(Ed)w13(Ed)
(
−1
p

)
,

where wp(Ed) is a local root number at p of Ed. Since Ed has multiplicative reduction at 13,
Proposition 2 in [Roh93] implies that w13(Ed) = −

(
6b
13

)
where b = 64108800d3, thus w13 = −

(
p
13

)
(since w13(Ed) = −1 if and only if the reduction is split multiplicative). Likewise, for p 6= 3,
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Ed has multiplicative reduction at 3, hence w3(Ed) = −
(
d
3

)
= −sgn(d)

(
p
3

)
. Moreover, since

j-invariant j(Ed) = 22235451328
123201 is integral at 2, Ed has additive, potentially good reduction at 2.

One can check that v2(c4(Ed)) = 4, c4(Ed)/24 ≡ 3 (mod 4), v2(c6(Ed)) = 7 and v2(∆(Ed)) = 6,
hence it follows from Table 1. in [Hal98] that w2(Ed) = 1 if and only if c4/24 − 4c6/27 ≡ 7, 11
(mod 16). Thus, one can check that w2(Ed) = 1 if and only if d ≡ 1, 3 (mod 8), or equivalently
w2(Ed) =

(
−1
d

)(
d
2

)
= sgn(d)

(
−1
p

)(
p
2

)
. Claim now follows from (2.1). �

3. Structure of Sel(2)(Ed)

In this section we describe the structure of Sel(2)(Ed) in the case when |d| is prime. We prove
the following proposition.
Proposition 3.1. For prime p 6= 2, 3, 13, let d = ±p be such that

(
d
13

)
= 1 and w(Ed) = −1.

a) If d ∈ T (i.e. d ≡ 1 (mod 8) if d > 0 or d ≡ 5, 7 (mod 8) if d < 0), then dimF2 Sel(2)(Ed) =
5. More precisely, if d > 0, then Sel(2)(Ed) is generated by torsion classes, Hd, Hd

1 and
Hd

2 . If d < 0, then Sel(2)(Ed) is generated by torsion classes, Hd, F−d1 , and F−d2 if d ≡ 7
(mod 8) or Hd

1 if d ≡ 5 (mod 8).
b) If d /∈ T , then we have that dimF2 Sel(2)(Ed) = 3.

Since E has full 2-torsion over Q, each class inH1(Q, E[2]) can be identified with an element of
(Q×/Q×2)3 in the following way. Denote by P1 = (8, 0), P2 = (−18, 0) and P3 = (9, 0) nontrivial
elements in E[2], by e2 : E[2]× E[2]→ µ2 the Weil pairing (hence e2(Pi, Pj) = −1 if and only
if i 6= j), and by ω : E[2] → Hom(E[2], µ3

2), T 7→ (Pi 7→ e2(T, Pi)) the group homomorphism
induces by e2. For each class F ∈ H1(Q, E[2]), we denote by ω∗(F ) the pushforward of ω
from H1(Q, E[2]) to H1(Q, µ3

2) ∼= H1(Q, µ2)3 ∼= (Q×/Q×2)3 where the last isomorphism is given
by the Kummer map sending α ∈ Q×/Q×2 to ξ ∈ H1(Q, µ2) such that ξ(σ) =

√
α
σ

√
α

for every
σ ∈ Gal(Q/Q). One has that ω∗(F ) = (a1, a2, a3) is equivalent to F (σ) = χa1(σ)P1 + χa2(σ)P2,
for all σ ∈ Gal(Q/Q), and a1a2a3 ∈ Q×2, where, for a ∈ Q. Here, we denote by χa the nontrivial
character of Q(

√
a)) with values in Z/2Z (if Q(

√
a) = Q then χa is trivial). It follows that F is

defined over Q(√a1,
√
a2).

We start with the following standard lemma.
Lemma 3.2. For elliptic curve Ẽ : y2 = (x − a1)(x − a2)(x − a3), where a1, a2, a3 ∈ Q, let F
be a quartic y2 = g(x), g(x) ∈ Z[x], isomorphic (over Q) to Ẽ, which represents an element
in H1(Q, Ẽ[2]) (the quartic is not necessarily everywhere solvable, i.e. the element of the 2-
Selmer group). For d ∈ Z let F d be the quadratic twist of F , thus representing the element in
H1(Q, Ẽd[2]). After identifying H1(Q, Ẽ[2]) ∼= H1(Q, Ẽd[2]), we have

ω∗(F ) = ω∗(F d).
Proof. The claim follows directly from the interpretation of the map ω∗ in terms of two-descent
theory. If ω∗(F ) = (q1, q2, q3), then F is isomorphic (over Q) to the curve

q1y
2 = x− a1,

q2y
2 = x− a2,

q3y
2 = x− a3,

while its twist over Q(
√
d) is given by

q1y
2 = x− da1, q2y

2 = x− da2, q3y
2 = x− da3.

where the isomorphism F → F d maps (x, y1, y2, y3) 7→ (dx,
√
dy1,
√
dy2,
√
dy3). Since Ẽd is

isomorphic to y2 = (x − da1)(x − da2)(x − da3), we recognize from the above that ω∗(F d) =
(q1, q2, q3) (we identified (ai, 0) with (dai, 0)), and the claim follows. �
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For the proof of Proposition 3.1, we need to introduce three more quartics.
H3 : y2 = 25x4 + 48x3 − 114x2 − 144x+ 225 ∈ Sel(E3),
F3 : y2 = −71x4 − 336x3 − 538x2 − 336x− 71 ∈ Sel(2)(E−1),
F4 : y2 = −5x4 + 76x3 − 168x2 − 296x− 92 ∈ Sel(2)(E−3).

Recall that quadratic twist Ed has the Weierstrass model Ed : y2 = (x−8d)(x−9d)(x+18d).
Next, we prove linear independence of classes needed for the proof of Proposition 3.1.

Lemma 3.3. For d ∈ Z, |d| prime, and |d| /∈ {2, 3, 13}, denote by Q1 = (8d, 0) and Q2 =
(−18d, 0) elements in Ed[2] which correspond to P1 and P2 under the natural isomorphism
E[2] ∼= Ed[2], and by κ : Ed(Q)/2Ed(Q) → Sel(2)(Ed) ⊂ H1(Q, Ed[2]) the Kummer map. We
have that

ω∗(Hd) = (13, 13, 1), ω∗(κ(Q1)) = (26d,−26,−d), ω∗(κ(Q2)) = (78,−26d,−3d),
ω∗(Hd

1 ) = (3, 1, 3), ω∗(Hd
2 ) = (2,−2,−1), ω∗(Hd

3 ) = (6,−6, 1),
ω∗(F d

1 ) = (−2,−2, 1), ω∗(F d
2 ) = (−3,−1, 3), ω∗(F d

3 ) = (6, 2, 3), ω∗(F d
4 ) = (6, 6, 1).

Moreover,
a) if d > 0, the the classes ω∗(F ), for F ∈ {κ(Q1), κ(Q2), Hd, Hd

1 , H
d
2 , H

d
3 , F

−d
3 } are (mul-

tiplicatively) independent in (Q×/Q×2)3 and locally solvable at infinity,
b) if d < 0, the classes ω∗(F ), for F ∈ {κ(Q1), κ(Q2), Hd, Hd

1 , F
−d
1 , F−d3 , F−3d

4 } are (multi-
plicatively) independent in (Q×/Q×2)3, and locally solvable at infinity.

Proof. Using Magma [BCP97], we can easily compute the values of ω∗(F d) for quartics F from
1.2 as they don’t depend on d by Lemma 3.2.

We can also compute classes of torsion points explicitly. For example, for Q1 = (8d, 0) ∈
Ed(Q), one can check that 2R1 = Q1, where R1 = (1

2r
2− 9d

2 ,
1
2r

3− 25d
2 ), with r4−50dr2+36d2 = 0.

Here Q(r) = Q(
√
−d,
√
−26), and by inspection one obtains that Rσ

1 − R1 = χ26d(σ)Q1 +
χ−26(σ)Q2, thus ω∗(κ(Q1)) = (26d,−26,−d). Similarly, one computes ω∗(κ(Q2)).

The existence of real points on quartic (which determine local solvability at infinity) can be
checked for each quartic separately.

If d > 0, it is not hard to see that the classes will be independent unless d is divisi-
ble only by 2, 3 and 13. In particular, for squarefree d, we compute that this happens for
{1, 2, 3, 6, 13, 26, 39, 78}, thus the claim in a) follows. The claim in b) is proved in a similar
way.

�

We have the following proposition as a consequence of the previous lemma.
Proposition 3.4. If d ∈ Z is square free integer such that Hd(Q) 6= ∅, then Hd(Q) is infinite.
Proof. Assume that for some d ∈ Z, Hd(Q) 6= ∅ and Hd(Q) is finite. It follows that the rank
of Mordell-Weil group of Ed(Q) is zero, hence Hd as an element of 2-Selmer group Sel(2)(Ed) is
in the image of the two torsion Ed[2] under the map Ed(Q)/2Ed(Q) ↪→ Sel(2)(Ed) from (1.1).
More precisely, there is a point of order 4, Q ∈ Ed[4], such that Hd corresponds to the cocycle
σ 7→ Qσ − Q. It follows from Lemma 3.3 that the image of this cocycle is of order 2 which
implies that Q is defined over quadratic field. There are only finitely many d′s that have a
point of order 4 defined over quadratic field. Note that if x0 is an x-coordinate of point of order
4 on E (it is defined over quadratic field), then d · x0 is an x-coordinate of point of order 4 on
Ed. Moreover, if Ed : y2 = fd(x) = (x − 8d)(x − 9d)(x + 18d), then fd(dx0) = d3 · f1(x0) is a
square in Q(x0) if and only if d · f1(x0) is a square. One can check that this is the case if and
only if d = {−26,−3,−1, 1, 3, 26}. The proposition follows after verifying the claim for these
special cases. �
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To obtain an upper bound for the size of 2-Selmer group, we will use the method and
terminology from the paper of Mazur and Rubin [MR10][Section 3] (see also [Kra81,BD10]).

Definition 3.5. Suppose Ẽ is an elliptic curve over Q. For every place v of Q, let Hf (Qv, Ẽ[2])
denote the image of the Kummer map

Ẽ(Qv)/2Ẽ(Qv)→ H1(Qv, Ẽ[2]).
The 2-Selmer group Sel(2)(Ẽ) is the F2-vector space defined by the exactness of the sequence

0→ Sel(2)(Ẽ)→ H1(Q, Ẽ[2])→
⊕
v

H1(Qv, Ẽ[2])/H1
f (Qv, Ẽ[2]).

We say that 2-Selmer group Sel(2)(Ẽ) is cut out by the local conditions Hf (Qv, Ẽ[2]).

The following lemma describes the size of local conditions.

Lemma 3.6. Let v be a finite rational place and d an odd squarefree integer. We have

dimF2 H
1
f (Qv, Ed[2]) =

2 if v 6= 2
3 if v = 2.

Proof. By Lemma 2.2 in [MR10], if v - 2∞, then dimF2 H
1
f (Qv, Ed[2]) = dimF2 E

d(Qv)[2] = 2.
Following [Sil09, Chapter 4.], denote by F the formal group associated to the elliptic curve

Ed/Q2, and by F(2Z2) the group associated to that formal group. Theorem 6.4. b) in [Sil09]
implies that F(4Z2) is isomorphic (via formal logarithm map) to the additive group Ĝa(4Z2)
which implies that F(4Z2)/2F(4Z2) ∼= Z/2Z. On the other hand, since F(x, y) = x + y −
a1xy − a2(x2y + xy2) + · · · , where a1 and a2 are the usual Weierstrass coefficients of Ed,
it follows that [2](x) = 2x + O(x3) (as a1 = 0), thus 2F(2Z2) = F(4Z2). In particular,
F(2Z2)/2F(2Z2) ∼= Z/2Z.

If we denote by Ed
1(Q2) the subgroup of points in Ed(Q2) which reduce to the point at infinity

modulo two, then it is well known that Ed
1(Q2) ∼= F(2Z2). Moreover, Ed

0(Q2)/Ed
1(Q2), where

Ed
0(Q2) is the subgroup of points of nonsingular reduction, is generated by two torsion point

with odd x coordinate. Finally, Ed(Q2)/Ed
0(Q2) is generated by the point of order two with even

x coordinate (Tamagawa number of Ed is two), and we have that Ed(Q2)/2Ed(Q2) ∼= (Z/2Z)3,
so the claim follows. �

There is a natural identification of Galois modules E[2] ∼= Ed[2] - which is crucial for our
argument. We identify point (a, 0) ∈ E(Q) with (8a, 0) ∈ Ed(Q) for a ∈ {8, 9,−18}. It allows
us to view Sel(2)(Ed) as a subspace of the H1(Q, E[2]), but defined by the different sets of local
conditions H1

f (Qv, Ed[2]) ⊂ H1(Qv, E[2]).

Definition 3.7. If T̃ is a finite set of places of Q, define relaxed 2-Selmer group S T̃ by the
exactness of

0→ S T̃ → H1(Q, E[2])→
⊕
v/∈T̃

H1(Qv, E[2])/H1
f (Qv, E[2]),

where the second arrow is induced by the sum of localization maps H1(Q, E[2])→ H1(Qv, E[2]).

By definition Sel(2)(E) ⊂ S T̃ for any T̃ . We will choose T̃ such that Sel(2)(Ed) ⊂ S T̃ holds
as well. For that we will need the following criteria for equality of local conditions after twist
(see Lemma 2.10 and Lemma 2.11 in [MR10]).

Lemma 3.8. Let Ẽ/Q be an elliptic curve. Let v be a place of Q and d a squarefree integer. If
at least one of the following conditions holds

a) v splits in Q(
√
d),

b) v is a prime of good reduction of Ẽ and v is unramified in Q(
√
d)/Q,
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then H1
f (Qv, Ẽ[2]) = H1

f (Qv, Ẽd[2]). Moreover, if Ẽ has good reduction at v, and v is ramified
in Q(

√
d)/Q, then

H1
f (Qv, Ẽ[2]) ∩H1

f (Qv, Ẽd[2]) = 0.

Since primes of bad reduction of Ed are {2, 3, 13, p}, and since 13 splits in Q(
√
d), it follows

from Lemma 3.8 that local conditions H1
f (Qv, Ed[2]) and H1

f (Qv, E[2]) are equal outside the set
T̃ = {2, 3, p,∞}.

Proof of Proposition 3.1. Lower bound for the dimF2 Sel(2)(Ed) in both cases follows from Lemma
3.3 and Proposition 2.3. Note that if d ∈ T , the classes Hd

1 and Hd
2 are ELS if d > 0, classes

F−d1 and F−d2 are ELS if d < 0 and d ≡ 7 (mod 8), and classes F−d1 and Hd
1 are ELS if d < 0

and d ≡ 5 (mod 8).
For the upper bound we first consider the case d ∈ T . From the definition of T it follows

that for |d| > 3 primes 2 and 3 split in Q(
√
d), thus Lemma 3.8 implies that local conditions

H1
f (Qv, Ed[2]) and H1

f (Qv, E[2]) differ only at v = p (and possibly at v =∞ if d < 0 - note that
if d > 0 elliptic curves E and Ed are isomorphic over R).

Assume that d > 0 and set T̃ = {p}. Define a strict 2-Selmer group ST̃ := ST̃ (E) by the
exactness of

0→ ST̃ → S T̃ →
⊕
v∈T̃

H1(Qv, E[2]),

where the second arrow is the sum of the localization maps.
From the construction, it follows that ST̃ ⊂ Sel(2)(Ed) ⊂ S T̃ , and ST̃ ⊂ Sel(2)(E) ⊂ S T̃ . We

will show that ST̃ = Sel(2)(E). One can compute that E(Q) is generated by 2-torsion points
S1 = (−18, 0), S2 = (8, 0) and point S3 = (45/4,−117/8) of infinite order, and that Sel(2)(E)
is generated by the κ(Si), i = 1, 2, 3, where κ : E(Q)/2E(Q) → Sel(2)(E) is the Kummer map
- thus dimF2 Sel(2)(E) = 3. It is enough to show that the image of the κ(Si) in H1(Qp, E[2])
is trivial. Choose Qi ∈ E(Q) such that 2Qi = Si. The fields of definitions Ki of points Qi are
K1 = Q(α1) where α4

1 + 106α2
1 + 1 = 0, K2 = Q(α2) where α4

2− 50α2
2 + 729 = 0 and K3 = Q(α3)

where α2
3−3α3−43/4 = 0. It happens that p splits completely in all the fields, hence the claim

follows.
Lemma 3.2 in [MR10] implies that dimF2 S T̃ − dimF2 ST̃ = dimF2 H

1
f (Qp, E[2]). By Lemma

3.6 and inclusion Sel(2)(Ed) ⊂ ST , it follows dimF2 Sel(2)(Ed) ≤ 3+2 = 5, and the claim follows.
The case d < 0 is analogous - to get the equality of local conditions at v = ∞ one replaces

E with E−1, and then proceeds as in the d > 0 case.
Now assume that d /∈ T . Consider the case d < 0. In the case d > 0 one repeats the same

argument with E−1 replaced by E. Primes 2 and 3 do not need to split in Q(
√
d) any more,

hence we set T̃ = {2, 3, p} and S T̃ := S T̃ (E−1) and ST̃ := ST̃ (E−1) (we replaced E with E−1

in definitions to ensure the equality of local conditions at v = ∞). Lemma 3.2 in [MR10] and
Lemma 3.6 imply that dimF2 S T̃ − dimF2 ST̃ = dimF2 H

1
f (Q2, E

−1[2]) + dimF2 H
1
f (Q3, E

−1[2]) +
dimF2 H

1
f (Qp, E−1[2]) = 3 + 2 + 2 = 7. Since ST̃ ⊂ Sel(2)(E−1), if we show that the image

of each class in Sel(2)(E−1) (which is generated by H−1, F1 and F3) under the localization
loc2 : Sel(2)(E−1)→ H1(Q2, E

−1[2]) is different than zero, then it follows that ST̃ = 0. One can
check that, for any P ∈ E−1(Q)/2E−1(Q) and Q ∈ E−1(Q) such that 2Q = P , 2 is ramified in
the field of definition of Q, hence the localization of κ(P ) at v = 2 is nontrivial, and ST̃ = 0.
It follows that dimF2 S T̃ = 7.

Lemma 3.3 b) provides us with the generators of S T̃ once we show that the torsion classes
together with classes H,F1, H1, F2, F4 ∈ H1(Q, E) satisfy local conditions H1

f (Qv, E−1[2]) for
v outside the set T̃ . Equivalently, one can check that the quartics H−1, F1, H

−1
1 , F2 and F 3

4
(as two covers of E−1) are locally solvable outside the set T̃ . Local solvability at the finite
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places outside the set {2, 3, 13} follows immediately from Hensel lemma argument (as in the
proof of Proposition 2.1) since these are the bad primes of E−1, while solvability at v =∞ (i.e.
existence of the real points on quadratic twists) follows from the observation that polynomials
of degree 4 defining H and H1 have real roots. The local solvability at v = 13 follows from the
fact that

(
p
13

)
= 1, which implies that p is a square in Q13, thus quadratic twist by Q(

√
d) or

Q(
√
−d) of any quartic from Lemma 3.3 b) is isomorphic over Q13 to that quartic. Hence, we

only need to check that F 3
4 is locally solvable at v = 13 which is checked readily.

We will prove that dimF2 Sel(2)(Ed) ≤ 4, which will imply that dimF2 Sel(2)(Ed) = 3 since
dimF2 Sel(2)(Ed) is odd (by [DD10] (−1)dimF2 Sel(2)(Ed) = w(Ed) = −1) and greater or equal to 3
(since Hd and the torsion classes of Ed are linearly independent in Sel(2)(Ed)). Essentially, for
each class in S T̃ (generators are given by Lemma 3.3 b)), we will check if it satisfies the local
conditions H1

f (Qv, Ed[2]).
Observe that the local condition at v = p, H1

f (Qp, Ed[2]), for p 6= {2, 3, 13} is determined with
the image of 2-torsion κ(P1)(σ) = χ3(σ)P1 + χd(σ)P3, κ(P2) = χ−13d(σ)P1 + χ−2(σ)P3 (since
the elements are independent and dimension of the local condition is 2). As the remaining
generators of S T̃ , H : σ 7→ χ13(σ)P3, F1 : σ 7→ χ−2(σ)P3, H1 : σ 7→ χ3(σ)P1, F4 : σ 7→ χ6(σ)P3
and F2 + H1 = χ−1(σ)P3 do not depend on d (here χq denotes the nontrivial character of
Q(√q)), the local condition at v = p can be satisfied by some class from the subspace generated
by H,H1, F1, F4 and F2 only if the localization of that class at v = p is trivial. If p ≡ 5
(mod 8), then −1, 13 are squares in Qp while 2 and 3 are not, thus H, F2 +H1 and F4 generate
the subspace of S T̃ with required property, while if p ≡ 7 (mod 8), then 13, 2 are squares in
Qp while −1 and 3 are not, thus H,F1 + F4 and F1 + F2 + H1 generate the subspace of S T̃
consisting of elements whose localization at v = p is trivial.

Next, to rule out remaining classes, we focus on the local condition at v = 3. If p ≡ 5
(mod 8), then d is a square in Q3, and the classes loc3 κ(P1)(σ) = χ3(σ)P1 and loc3 κ(P2)(σ) =
χ−1(σ)P1 linearly independent, thus they generate 2-dimensional F2-vector space H1

f (Q3, E
d[2]).

Since, loc3(F4)(σ) = χ6(σ)P3 = χ−3(σ)P3 /∈ H1
f (Q3, E

d[2]), we conclude that in this case
dimF2 Sel(2)(Ed) ≤ 4, hence equal to 3.

If p ≡ 7 (mod 8), then loc3 κ(P1)(σ) = χ3(σ)P1 + χ−1(σ)P3 and loc3 κ(P2)(σ) = 0 generate
a 1-dimensional subspace of the 2-dimensional vector space H1

f (Q3, E
d[2]). Note that not all

the localisations of the classes of interest loc3(F1 + F4)(σ) = χ−3(σ)P3 and loc3(F1 + F2 +
H1)(σ) = χ−1(σ)P3 can lie in H1

f (Q3, E
d[2]) (since the subspace they generated does not contain

loc3 κ(P1)(σ)), hence dimF2 Sel(2)(Ed) ≤ 4, and the claim follows. �

The following proposition follows immediately from the explicit description of Sel(2)(Ed) given
in Proposition 3.1.

Proposition 3.9. Let d ∈ T (hence dimF2 Sel(2)(Ed) = 5). We have that X(Ed)[2] =
2X(Ed)[4] if and only if

a) 〈Hd
1 , H

d
2 〉CT = 0 and 〈Hd, Hd

i 〉CT = 0 for i = 1, 2 if d > 0,
b) 〈F−d1 , F−d2 〉CT = 0 and 〈Hd, F−di 〉CT = 0 for i = 1, 2 if d < 0 and d ≡ 7 (mod 8),

Proof. If X(Ed)[2] = 2X(Ed)[4], then the Cassels-Tate pairing on Sel(2)(Ed) is trivial (since
it is non-degenerate on X(Ed)[2]/2X(Ed)[4]), hence the claim follows. Similarly, if a),b)
o holds, then Proposition 3.1 implies the Cassels-Tate pairing on Sel(2)(Ed) is trivial, hence
X(Ed)[2] = 2X(Ed)[4]. Note that in the case d < 0 and d ≡ 5 (mod 8), we always have
〈Hd, F−d1 〉CT = 1 (see Theorem 1.1a)), hence X(Ed)[2] 6= 2X(Ed)[4]. �
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4. Cassels-Tate pairing and governing fields

Our main tool for studying Cassels-Tate pairing of quadratic twists of elements of 2-Selmer
groups is the following specialisation of the theorem of Smith (see Section 3 in [Smi16]).

Theorem 4.1 (Smith). Let Ẽ be an elliptic curve over Q with full 2-torsion over Q. Let

F, F ′ ∈ H1(Q, Ẽ[2]),

and let K be the minimal field over which F and F ′ are trivial. Next, let S be any set of places
of Q which contains all places of bad reduction of Ẽ, the archimedean place and 2. Take D to
be the set of pairs (d1, d2) of elements in Q× such that d1/d2 is square at all places of S, and
F d1 and F ′d2 are elements of 2-Selmer group of Ẽd1 and Ẽd2 respectively.
If F∪F ′ is alternating (as defined in Section 3 of [Smi16]), then 〈F d1 , F ′d1〉CT = 〈F d2 , F ′d2〉CT

for all (d1, d2) ∈ D. Otherwise, there is a quadratic extension L of K that is ramified only at
primes in S such that

〈F d1 , F ′d1〉CT = 〈F d2 , F ′d2〉CT +
[
L/K

d

]
,

for all (d1, d2) ∈ D, where the Galois group Gal(L/K) is identified with 1
2Z/Z. Here d is any

ideal of K coprime to the conductor of L/K that has norm in Q×/Q×2 equal to (d1/d2). Such
d exists for all (d1, d2) ∈ D. We denote by

[
·
·

]
the Artin symbol.

Remark 4.2. We will call field L from the statement of Theorem 4.1 a governing field of F and
F ′. It needs not to be unique.

Next, we compute the governing fields of some pairs of classes defined by quartics from (1.2)
(see Table 1).

In general, following Section 3.1. in [Smi16], for F, F ′ ∈ H1(Q, E[2]) let ω∗(F ) = (a1, a2, a3)
and ω∗(F ′) = (a′1, a′2, a′3). For every place v we have the following relation of Hilbert symbols
(a1, a

′
1)v(a2, a

′
2)v(a3, a

′
3)v = 1. We can choose b ∈ Q× such that (a1, ba

′
1)v = (a2, ba

′
2)v =

(a3, ba
′
3)v = 1 which implies that we can find xi, yi, zi ∈ Q× such that x2

i − aiy
2
i = ba′iz

2
i for

i = 1, 2, 3. We can further scale xi, yi and zi by a common factor so that the field

LF,F ′ = KF,F ′

(√
(x1 + y1

√
a1)(x2 + y2

√
a2)(x3 + y3

√
a3)
)

avoids ramification at places unramified in the common field of definition

KF,F ′ := Q(√a1,
√
a2,

√
a′1,

√
a′2).

Lemma 4.3 (Smith). If F ∪ F ′ is not alternating and degKF,F ′/Q = 16, then LF,F ′ is a
governing field of F and F ′.

Although in our case degKF,F ′/Q is either four or eight, we can still compute governing fields
using the following lemma which follows from the proof of Proposition 2.1. in [Smi16].

Lemma 4.4. For integers a and b such that ab is not a perfect square let La,b/Q(
√
a,
√
b) be

quadratic extension such that La,b/Q is Galois with Galois group isomorphic to dihedral group
D8. There exist a map

γa,b : Gal(Q/Q) res
−−−� Gal(La,b/Q)→ µ2

which satisfies dγa,b = χa∪χb ∈ H2(Gal(Q/Q), µ2). Here µ2 = {±1} and the cup product χa∪χb
is induced by the natural bilinear map Z/2Z × Z/2Z → Z/2Z (hence for σ, τ ∈ Gal(Q/Q) we
have that (χa ∪ χb)(σ, τ) = −1 if and only if

√
a
σ = −

√
a and

√
b
τ = −

√
b).
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4.1. LH−1,F2 = Q(
√

13,
√
−1,
√
−3)(

√
3(1 +

√
13)(3 +

√
13)). It follows from Lemma 3.3 that

H−1(σ) = χ13(σ)P1 + χ13(σ)P2 and F2(σ) = χ−3(σ)P1 + χ−1(σ)P2 for all σ ∈ Gal(Q/Q). If we
define the cup product ∪ : H1(Gal(Q/Q), E[2])×H1(Gal(Q/Q), E[2])→ H2(Gal(Q/Q), µ2) using
the Weil pairing e2 : E[2]×E[2]→ µ2, it follows that H−1∪F2 = χ13∪χ−1 ·χ13∪χ−3 = χ13∪χ3.
The field LH,F2 has a property that it contains subfield L/Q(

√
13,
√

3) such that L/Q is D8
extension. Lemma 4.4 implies that there exists a map Γ : Gal(Q/Q) → µ2 defined over LH,F2

such that dΓ = χ13 ∪ χ3 = H−1 ∪ F2. One can check that LH,F2/Q is unramified outside the
set {2, 3, 13} of primes of bad reduction of E, hence it follows from the proof of Theorem 3.2.
in [Smi16] that LH,F2 is governing field of H−1 and F2. The choice of field LH−1,F2 is particularly
nice since it is easy to check that for prime p the Cassels-Tate pairing 〈H−p, F p

2 〉CT is equal to
0 if and only if p splits completely in LH−1,F2 provided that H−p and F p

2 define an element in
Sel(2)(E−p). It follows from Proposition 2.3 that H−p and F p

2 are ELS if and only if p = 13 or
p splits completely in the field of definition KH−1,F2 = Q(

√
13,
√
−1,
√
−3).

4.2. LH1,H2 = Q(
√

3,
√
−1,
√

2)(
√

8(1 +
√

3)(4 + 2
√

3)). It follows from Lemma 3.3 thatH1(σ) =
χ3(σ)P1 and H2(σ) = χ−1(σ)P1 + χ−2(σ)P2 for all σ ∈ Gal(Q/Q), thus H1 ∪ H2 = χ3 ∪ χ−2.
Since LH1,H2 is unramified outside {2, 3, 13} and since LH1,H2 contains a degree two exten-
sion L of Q(

√
3,
√
−2) such that L/Q is Galois with Galois group D8, same as in 4.1, we can

conclude that LH1,H2 is governing field of H1 and H2. Moreover, for p prime such that Hp
1

and Hp
2 define an element in Sel(2)(Ep) (or equivalently for prime p which splits completely

in KH1,H2 = Q(
√

3,
√
−1,
√

2)), we have that 〈Hp
1 , H

p
2 〉CT is equal to 0 if and only if p splits

completely in LH1,H2 .

4.3. LF1,F2 = Q(
√

3,
√
−1,
√

2)(
√

8(1 +
√

3)(4 + 2
√

3)). Here conclusion is the same as in 4.2,
for p prime such that F p

1 and F p
2 define an element in Sel(2)(E−p) (or equivalently for prime p

which splits completely in KF1,F2 = Q(
√

3,
√
−1,
√

2)), we have that 〈F p
1 , F

p
2 〉CT is equal to 0 if

and only if p splits completely in LF1,F2 = LH1,H2 .

4.4. LH,H2 = Q(
√
−1,
√

2,
√

13)(
√

4 + 2
√

13). Lemma 3.3 implies that H(σ) = χ13(σ)P2 and
H2(σ) = χ−1(σ)P1 + χ−2(σ)P2 for all σ ∈ Gal(Q/Q), thus H ∪H2 = χ13 ∪ χ−1. Since LH,H2 is
unramified outside {2, 3, 13} and since LH,H2 contains a degree two extension L of Q(

√
13,
√
−1)

such that L/Q is Galois with Galois group D8, same as in 4.1 we can conclude that LH,H2 is
governing field of H and H2. Also, for p prime such that Hp and Hp

2 define an element in
Sel(2)(Ep) (or equivalently for prime p which splits completely in KH,H2 = Q(

√
13,
√
−1,
√

2)),
we have that 〈Hp, Hp

2 〉CT is equal to 0 if and only if p splits completely in LH,H2 .

4.5. LH,H1 = Q(
√

3,
√

13)(
√

4 +
√

13). Lemma 3.3 implies that H(σ) = χ13(σ)P2 and H1(σ) =
χ3(σ)P1 for all σ ∈ Gal(Q/Q), thus H ∪ H1 = χ13 ∪ χ3. Since LH,H1 is unramified outside
{2, 3, 13} and since LH,H1/Q is D8 extension same as in 4.1 we conclude that LH,H1 is governing
field of H and H1. Also, for p prime such that Hp and Hp

1 define an element in Sel(2)(Ep), we
have that 〈Hp, Hp

1 〉CT is equal to 0 if and only if p splits completely in LH,H1 . Note that Hp

and Hp
1 are ELS if and only if p = 13 or p splits completely in KH,H1 = Q(

√
13,
√

3) and p ≡ 1
(mod 4).

4.6. LH−1,F1 = Q(
√
−2,
√

13)(
√
−1). It follows from Lemma 3.3 that for all σ ∈ Gal(Q/Q) we

have that H−1(σ) = χ13(σ)P1 + χ13(σ)P2 = χ13(σ)P3 and F1(σ) = χ−2(σ)P1 + χ−2(σ)P2 =
χ−2(σ)P3, thus e2(H−1(σ), F1(σ)) = 1. Therefore H−1 ∪ F1 is alternating (see Lemma 3.1.
in [Smi16]) and 〈H−d1 , F d1

1 〉CT = 〈H−d2 , F d2
1 〉CT for all pairs (d1, d2) ∈ D from Theorem 4.1.

For p prime such that H−p and F p
1 define an element in Sel(2)(E−p), we can check by computing

set D that 〈H−p, F p
1 〉CT is equal to 0 if and only if p splits completely in LH−1,F1 . Note that H−p



QUADRATIC TWISTS OF GENUS ONE CURVES AND DIOPHANTINE QUINTUPLES 13

and F p
1 are ELS if and only if p splits completely in KH−1,F1 = Q(

√
13,
√
−2), thus, as before,

the splitting behaviour of p in LH−1,F1 determines Cassels-Tate pairing even though LH−1,F1 is
not a governing field of H−1 and F1.

5. Proofs of main results

Proof of Theorem 1.1. From Section 4 (see also Table 1), we see that the governing field of the
pair (H−1, F1) is LH−1,F1 = Q(

√
−2,
√

13)(
√
−1). In particular,

〈Hd, F−d1 〉CT =

0 if |d| splits completely in LH−1,F1 ,

1 otherwise .

For d < 0, it follows from the description of set T that 〈Hd, F−d1 〉CT = 1 if d ≡ 1 (mod 4)
and 〈Hd, F−d1 〉CT = 0 if d ≡ 3 (mod 4). Hence a) follows. For b), assume that d ≡ 3 (mod 4)
and ι(Hd) 6= 0. As argued in the introduction, there is L ∈ Sel(2)(Ed) such that 〈Hd, L〉CT =
1. Since 〈Hd, F−d1 〉CT = 0, from the bilinearity of the Cassels-Tate pairing it follows that
〈Hd, F−d2 〉CT = 1 (as F2 is remaining generator of Sel(2)(Ed)). The other implication in b) is
obvious. Part c) is proved similarly. The only difference here is that in d > 0 case, Sel(2)(Ed)
is, in addition to torsion classes, generated by Hd, Hd

1 , and Hd
2 . �

Proof of Corollary 1.6. First we count the contribution to S(X) of d = ±p for which d /∈ T . It
follows from Conjectures 1 and 2, and Propositions 3.4 and 3.1 that the only significant case
is when w(Ed) = −1 (assuming Hd is ELS) in which case X(Ed)[2] is trivial. It follows from
Propositions 2.1, 2.4 and 3.1 that this is equivalent to

(
d
13

)
= 1,

(
d
2

)
·
(
d
3

)
·
(
d
13

)
= sgn(d) and

d 6≡ 1 (mod 8) if d > 0 or d 6≡ 5, 7 (mod 8) if d < 0. Thus if
d ≡ 29, 35, 53, 55, 77, 79, 101, 103, 107, 127, 131, 155, 173, 179, 199, 251, 269, 295 (mod 8 · 3 · 13)
when d > 0 or if d < 0 and

d ≡ 17, 43, 113, 139, 185, 209, 211, 233, 235, 257, 259, 283 (mod 8 · 3 · 13),
then Hd(Q) 6= ∅. There are 18 residue classes in the first case, and 12 in the second, thus by
Dirichlet’s theorem on arithmetic progressions, the contribution to C1 is 30

2φ(8·3·13) = 5
32 .

Next, consider the case d > 0, d ∈ T and X(Ed)[2] 6= 2X(Ed)[4]. Corollary 1.2 together
with Proposition 3.9 implies that in this caseHd(Q) 6= ∅ if and only if d does not split completely
in LH1,H2 , and splits completely in LH,H1 and LH,H2 . One can check that the assumption d > 0
and d ∈ T is equivalent to the requirement that d splits completely in KH,H1 , KH,H2 and
KH1,H2 , thus we need to find a density of d’s such that d splits completely in composition K =
LH,H1LH,H2KH1,H2 but not in its degree two extension L = LH,H1LH,H2LH1,H2 . By Chebotarev
density theorem the density of such d’s is 1

degK ·
1
2 . From Table 1 we see that KH1,H2 is

contained in LH,H1LH,H2 . Moreover, one can check that degLH,H1LH,H2 = 64, thus in this case
the contribution to C1 is equal to 1

2 ·
1

128 (we have extra 1
2 since C1 is a lower bound for S(X)

2π(X)

and not S(X)
π(X) ).

Finally, consider the case d < 0, d ∈ T and X(Ed)[2] 6= 2X(Ed)[4]. Corollary 1.2 together
with Proposition 3.9 implies that Hd(Q) 6= ∅ if and only if d = −p, where p ≡ 1 (mod 4), does
not split completely in LF1,F2 and splits completely in LH−1,F2 . One can check that assumption
p ≡ 1 (mod 4) and −p ∈ T is equivalent to p splits completely in KH−1,F2 (we see in Table
1 that Q(

√
−1) ⊂ KH−1,F2) and KF1,F2 . As in the previous case, we need to compute the

density of primes which split completely in composition LH−1,F2KF1,F2 , but not in its degree
two extension LH−1,F2LF1,F2 . Since degLH−1,F2KF1,F2 = 32, in this case the contribution to C1
is equal to 1

2 ·
1
64 . Hence it follows that C1 = 5

32 + 1
256 + 1

128 = 43
256 .
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To compute the upper bound C2, we need to find the density of the remaining case, d ∈ T
and X(Ed)[2] = 2X(Ed)[4], in which our method does not provide us an answer. If d > 0,
by Proposition 3.9 it is enough to compute the density of primes p which splits completely
in LH,H1 , LH,H2 and LH1,H2 . From Table 1, we see that the composition of these three fields
have degree 128, hence by Chebotarev density theorem the density of primes with this splitting
property in 1/128, hence contribution to C2 − C1 is 1/256.

If d < 0 and d ≡ 7 (mod 8), then p must split completely in LF1,F2 , LH,F2 and K =
Q(
√
−2,
√

13) (see Table 1), and furthermore it must either split completely in

L = Q(
√
−2,
√

13)(
√

4 + 2
√

13)
or none of its factors in K splits further in L (note that L/Q is not Galois extension). One
can check that this condition is equivalent for p to split completely in composition LF1,F2LH,F2

which is of degree 64, hence the density of such primes is 1/64, and contribution to C2 − C1 is
equal to 1/128. Hence C2 = C1 + 1/256 + 1/128 = 46/256. �

6. Future work

This paper left us with some interesting questions which may be addressed in the future
projects:

a) What information can be obtained aboutHd(Q) in the case whenX(Ed)[2] = 2X(Ed)[4]?
b) What can one say about Hd(Q) 6= ∅ for some larger class of d’s? The main reason why

we considered only d’s for which |d| is prime is that in this case we can control the
2-Selmer group of quadratic twists Ed - we have explicit generators. This might also be
the case, for example, for the set of d’s which are the products of two primes.

c) Can one obtain similar results for the quartics other that H? It seems this could be
within the reach of this method provided that, as in b), we have explicit description of
2-Selmer groups of quadratic twists.
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