
RANKS OF ELLIPTIC CURVES AND DEEP NEURAL NETWORKS

MATIJA KAZALICKI AND DOMAGOJ VLAH

1. Abstract

Determining the rank of an elliptic curve E/Q is a difficult problem. In applications
such as the search for curves of high rank, one often relies on heuristics to estimate
the analytic rank (which is equal to the rank under the Birch and Swinnerton-Dyer
conjecture).

In this paper, we propose a novel rank classification method based on deep convolu-
tional neural networks (CNNs). The method takes as input the conductor of E and a
sequence of normalized Frobenius traces ap for primes p in a certain range (p < 10k for
k = 3, 4, 5), and aims to predict the rank or detect curves of “high” rank. We compare
our method with eight simple neural network models of the Mestre-Nagao sums, which
are widely used heuristics for estimating the rank of elliptic curves.

We evaluate our method on two datasets: the LMFDB and a custom dataset con-
sisting of elliptic curves with trivial torsion, conductor up to 1030, and rank up to 10.
Our experiments demonstrate that the CNNs outperform the Mestre-Nagao sums on
the LMFDB dataset (remarkably, the neural network that took as an input all Mestre-
Nagao sums performed much better than each sum individually). On the custom
dataset, the performance of the CNNs and the Mestre-Nagao sums is comparable.

2. Introduction

Let E be an elliptic curve over Q with discriminant ∆ and conductor N . A celebrated
theorem of Mordell states that the group of rational points E(Q) is a finitely generated
abelian group isomorphic to E(Q)tors × Zr, where E(Q)tors is the torsion subgroup of
E(Q) and r is the rank of E(Q). While the possible torsion subgroups were completely
classified by Mazur [Maz77] and easy to compute, the rank of the elliptic curve is a
much more mysterious quantity. Not only it is not known which values can be obtained
as ranks (although this question was already asked by Poincaré [Poi01]), there is also
no agreement on whether the rank is unbounded or not. Up until recently, the folklore
conjecture was that the rank is unbounded which was challenged by the series of papers
[WDE+14, Wat15, PPVW19] that predict (based on different heuristic models) that
there are only finitely many elliptic curves with rank greater than 21. The current rank
record is 28 by Elkies [Elk06]. For more information about the rank records for curves
with fixed torsion subgroups as well for rank in families, see [Duj].

1

2 MATIJA KAZALICKI AND DOMAGOJ VLAH

The search for curves of high rank is challenging, partly because determining the rank
of an elliptic curve is a computationally expensive task. Also, there is no algorithm
known to correctly compute the rank in all cases. This is mainly because finding
rational points on elliptic curves is a difficult problem, and descent algorithms that are
commonly used eventually reduce to a naive point search on some auxiliary curves.
To overcome this difficulty, researchers use rank heuristics that are inspired by the
Birch and Swinnerton-Dyer conjecture. These heuristics help in identifying probable
candidates for elliptic curves of high rank, thereby reducing the computational burden
of computing the rank of all curves.

For each prime of good reduction p, we define ap = p + 1 − #E(Fp). For p|N , we
set ap = 0,−1, or 1 if, respectively, E has additive, split multiplicative or non-split
multiplicative reduction at p. The L-function attached to E/Q is then defined as an
Euler product

LE(s) =
∏
p|∆

(
1− ap

ps

)−1∏
p-∆

(
1− ap

ps
+

p

p2s

)−1

,

which converges absolutely for <(s) > 3/2 and extends to an entire function by the
Modularity theorem [Wil95, BCDT01]. The Birch and Swinnerton-Dyer (BSD) con-
jecture states that the order of vanishing of LE(s) at s = 1 (the quantity known as
analytic rank) is equal to the rank of E(Q).

Mestre [Mes82] and Nagao [Nag92], and later others [EK20, Bob13], motivated by
BSD conjecture, considered certain sums (see Section 3 for the list of sums examined
in this paper) which heuristically should be able to detect curves of high analytic rank.
In an abuse of terminology, we refer to all such sums as the Mestre-Nagao sums. For
example, one of these sums (see Section 2 in [EK20])

S̃5(B) =
∑
p<B,

good reduction

log

(
p+ 1− ap

p

)

has a property that exp(−S̃5(B)) is the partial product of LE(s)

(2.1)
∏
p<B,

good reduction

(
1− app−s + p1−2s

)−1
,

evaluated at s = 1 (ignoring the primes of bad reduction). One expects that S̃5(B)
should be large if E has a large rank since then the partial product should rapidly
approach zero. This sum was used in [EK20] as a first step in finding rank-record
breaking curves with fixed cyclic torsion Z/nZ for n = 2, 3, . . . 7.

Recently, some new fundamental results have been discovered with the assistance of
deep neural networks in topology and representation theory [DVB+21], combinatorics
[Wag21], as well as some applications to problems in statistics [IV21, IV23]. In number
theory, the utility of machine learning methods was shown in [HLO23, HLOP22] where

RANKS OF ELLIPTIC CURVES AND DEEP NEURAL NETWORKS 3

the authors, among other things, successfully used logistic regression for classifying
elliptic curves of rank zero and one.

In this paper, we investigate a deep learning algorithm for rank classification based on
convolutional neural networks (CNN). These networks take as an input the conductor
of the elliptic curve together with the sequence of normalized ap-s (i.e. ap/

√
p) for p in

a fixed range and output the rank of the elliptic curve. We compare its performance to
that of the Mestre-Nagao sums {S0, S1, . . . , S6,Ω} (defined in Section 3). A priori, it is
not clear how to decide on the rank of the elliptic curve based on the value of its Mestre-
Nagao sum (see related question (1) in Section 7 of [EK20]), so we train a simple fully
connected neural network to do that task for us. Since the answer critically depends
on the conductor of the elliptic curve, these networks, besides the Mestre-Nagao sum,
take the conductor of the elliptic curve as an input. Training these networks revealed
the optimal cutoff of the specific Mestre-Nagao sum for rank classification (for cutoffs
of S5 see Figure 3).

Architecture and the training process of our neural networks are described in Section
5. For training, we used two datasets. One is the LMFDB database [LMF22] which con-
tains 3, 824, 372 elliptic curves defined over Q, divided into 2, 917, 287 isogeny classes,
with rank between 0 and 5 and conductor less than 300, 000, 000. For more informa-
tion about the structure of LMFDB database (it consists of three distinct datasets) see
Section 4.1. The other one is a custom-made dataset that consists of 2, 033, 965 elliptic
curves with trivial torsion, the conductor less than 1030, and the rank in the range be-
tween 0 and 10. Although this dataset is biased and does not represent typical elliptic
curves from a given rank and conductor range (because its high-rank elliptic curves
have low height generators, for discussion see Section 4), it is useful for comparing
different classification methods.

For each neural network (the CNN or one of the Mestre-Nagao sums, in total 9) we
have performed 24 tests by varying

a) dataset - LMFDB or custom,
b) range of ap-s - we considered (ap)p≤B for B = 103, 104, and 105,
c) test curves - uniformly selected (20% from the dataset) or all curves in the

top conductor range (which is [108, 109] for the LMFDB and [1029, 1030] for the
custom dataset),

d) type of classification - binary or all ranks (for the LMFDB the rank range is
from 0 to 5, and for the custom dataset from 0 to 10).

In binary classification, curves are labeled as either of low or high rank. For the
LMFDB high rank means rank 4 (we did not consider 19 rank 5 curves), while for
custom dataset high rank is 8, 9 or 10. Here, the idea is to test how good neural
networks are in detecting elliptic curves of high rank.

The neural networks have been selected to maximize the Matthews correlation coeffi-
cient (MCC) or phi coefficient, which is generally regarded as a balanced measure of the
quality of the classification even if the classes are of very different sizes [BJEA17], and

4 MATIJA KAZALICKI AND DOMAGOJ VLAH

Number of ap-s used
Type of
classifier

LMFDB custom dataset
p < 103 p < 104 p < 105 p < 103 p < 104 p < 105

CNN 0.9507 0.9958 0.9992 0.6129 0.7218 0.7958
S5 0.6132 0.7774 0.8463 0.4987 0.5990 0.6696

Table 1. Comparison of the Matthews correlation coefficients of the
CNN and S5 all rank classifiers for the uniform test set.

thus prevents the classifier ignoring the small classes. This is relevant to our problem
since elliptic curves of high rank are sparsely represented in our datasets (see Tables
2 and 4 for distribution of ranks in datasets). For binary classification, the MCC is
computed using the following formula

MCC =
TP · TN − FP · FN√

(TP + FP) · (TP + FN) · (TN + EP) · (TN + FN)
,

where TP, FN, TN, FP denote, respectively, the number of true positives, false nega-
tives, true negatives, and false positives. Note that MCC lies in the segment [−1, 1]
and MCC = 1 only in the case of perfect classification.

For a comparison of the Mathews correlation coefficients of the CNN and S5 classifiers
for the uniform test set, see Table 1.

In all the tests performed on the LMFDB dataset, the CNN outperformed the Mestre-
Nagao sums (this is especially true in the classification of all ranks). For example, in
the all ranks classification with p < 10, 000 in the uniform range, the MCC of the CNN
is 0.9958 (in particular, the CNN misclassified only 0.25% of the curves) while the best
Mestre-Nagao sum S2 has MCC = 0.8697 (it misclassified 8.1% of the curves). For
more details see Table 6. Similarly, in the all ranks classification with p < 10, 000 and
top conductor range, the MCC of the CNN is 0.9289 (see confusion matrix in Figure
2) while the best Mestre-Nagao sum S0 has MCC = 0.5057 (see Figure 4), which is
remarkable!

We also trained a fully connected neural network Ω whose inputs were all Mestre-
Nagao sums {S0, . . . , S6} (together with the conductor), and interestingly on the LMFDB
dataset this network performed much better than any sum individually. For example,
in the uniform range case above it attained MCC = 0.9602, and in the top range case
MCC = 0.7013.

A binary classification on the LMFDB dataset (which tries to identify curves of rank
4) ended up being an easy task for both the CNN and the majority of the Mestre-
Nagao sums - in a uniform mode they demonstrated the perfect classification even in
p < 1, 000 range (see Table 6 and 10).

Additionally, we evaluated trained models only on curves with prime conductors
and curves with conductors lower than 500, 000, see Tables 7, 8, 9. Interestingly, we
observed that curves with prime conductors are more challenging to classify.

RANKS OF ELLIPTIC CURVES AND DEEP NEURAL NETWORKS 5

The classification on the custom dataset was much more challenging for both the
CNN and the Mestre-Nagao sums. For example, in all ranks classification with p <
10, 000 and the uniform range, while the CNN with MCC = 0.7218 (it misclassified
23% of curves, while, for 3% of the curves prediction missed true rank for more than 1)
still outperformed the best Mestre-Nagao sum S1 with MCC = 0.6890 (it misclassified
26% of curves), it performed just a little bit better than the network Ω for which
MCC = 0.7069 (see Table 11).

In the top conductor range (for all ranks classification on the custom dataset) all
heuristics were much less efficient. This is expected, at least for the Mestre-Nagao
sums, since the curves in this test set have large conductors (at least 1029) and thus
we need more ap’s to determine their L-function. The Mestre-Nagao sums slightly
outperformed the CNN in this setting. For example, in p < 10, 000 mode the MCC
of the CNN was 0.3019 (it misclassified 61% of curves, while, for 12% of the curves
prediction missed true rank for more than 1), while the best Mestre-Nagao sum S2 had
MCC = 0.3291. For complete information see Table 12.

In binary classification on the custom dataset (which tries to identify curves of rank
8, 9 or 10), the CNN outperformed each Mestre-Nagao sum individually, but it was
a little bit worse than the neural network trained on all Mestre-Nagao sums. For
example, in the top conductor range for p < 10, 000 the MCC of the CNN was 0.6774
while the MCC of all sums was 0.7091.

Next, we explore how the relationship between conductor N and the range of ap
used in the algorithm (we restrict to the set of ap with p < B) influence the quality
of classification. Understanding this relationship is important to properly assess the
bound B required, for example, to successfully classify elliptic curves with conductors
larger than those in our dataset (or to improve the classification of the curves in the
current dataset).

We note that for any particular choice of ap values with p < B, there is an infinite
family of elliptic curves that realize them (as soon as there is one such curve). Since
ap depends only on the residue classes of the Weierstrass coefficients modulo p, the
Weierstrass coefficients of the curves in this family can be easily described using the
Chinese remainder theorem. However, one expects that the average rank (when curves
are ordered by height) in this family, since it is determined by congruence constraints,
will be 1/2 (with 50% of curves having rank 0 and 50% having rank 1). Thus, the
values of ap in the range p < B for a random curve from this family provide no useful
information about its rank. In other words, if the conductor N is much larger than B,
we do not expect classification to work.

As a toy model for detecting rank-0 curves, we can numerically evaluate LE(1) using
the approximate functional equation (see Section 6 in [Coh15]) given by

LE(1) = 2
∞∑
n=1

an
n
e−2πn/

√
N ,

6 MATIJA KAZALICKI AND DOMAGOJ VLAH

where an are the coefficients of the Dirichlet series LE(s) =
∑∞

n=1
an
ns . To ensure a

small error of the approximation, we require B =
√
N at a minimum. Likewise, the

numerical tests for the modularity of L-functions [Boo05] and the numerical methods
for computing bad Euler factors of genus-two curves [BSS+16] necessitate at least

B =
√
N for proper functioning. Therefore, we investigate the dependence of the

quality of classification of various models, as measured by the MCC, on the quantity
B/
√
N .

Figure 7 illustrates that the quality of classification of the CNN, as a function of
B/
√
N , is similar, although not identical, for all three trained models, where B =

10k for k = 3, 4, 5. This observation suggests that to maintain the quality of the
classification when increasing the conductor N , the bound B should be increased to
maintain a constant B/

√
N value. Since the conductors in the custom dataset reach up

to 1030, it is not surprising that the model’s predictions are worse on the custom dataset
than they are on the LMFDB. This is because the ratio of B/

√
N is much smaller in the

custom dataset than it is in the LMFDB, where the curves have conductors less than
3 · 108. Figure 8 further demonstrates that the CNN outperforms the other classifiers
consistently in all the considered ranges of B/

√
N .

Finally, we evaluated the performance of the CNN model with B = 105 on a dataset
of 808 elliptic curves with conductors less than 1029. These curves were sampled from
the K3 elliptic surface with discriminant −163 given by equation (4.1), which was used
by Elkies [Elk07] to obtain the rank 12 elliptic curve with Z/4Z torsion subgroup. This
family has Mordell-Weil rank 4 and Z/4Z torsion subgroup. Despite not being trained
on curves with nontrivial torsion subgroups, the CNN model successfully classified
curves of rank 6 and 7, as shown in the confusion matrix in Figure 9. The MCC of the
CNN model was 0.2492.

3. Mestre-Nagao sums

In this section, we define and motivate the Mestre-Nagao sums that we are going to
use for rank classification.

Let

Λ(n) =

{
log p if n = pm,

0 otherwise,

be the von Mangoldt function, and for elliptic curve E defined over Q with conductor
NE let

cn =

αmp + βmp , if n = pm and p - NE,

amp , if n = pm and p|NE,

0, otherwise,

RANKS OF ELLIPTIC CURVES AND DEEP NEURAL NETWORKS 7

where αp and βp, for p - NE, are eigenvalues of the Frobenius morphism at p (thus
ap = αp + βp and αpβp = p). Note that for m > 1 we have

αmp + βmp = (αm−1
p + βm−1

p)ap − p(αm−2
p + βm−2

p),

hence for p - NE it follows cpm = cpm−1ap−pcpm−1 . These number are related to analytic
rank ran of elliptic curve E/Q by a Laurent expansion of the logarithmic derivative of
LE(s) around the point s = 1

−L
′
E(s)

LE(s)
=
∞∑
n=1

cnΛ(n)

ns
=

ran
s− 1

+O(1).

We consider the following Mestre - Nagao sums.

S0(B) =
1

logB

∑
p<B,

good reduction

ap(E) log p

p
,

S1(B) = S0(B)− 1

B logB

∑
n≤B

cnΛ(n),

S2(B) =
1

logB

∑
n≤B

cnΛ(n)

n
− 1

B logB

∑
n≤B

cnΛ(n),

S3(B) =
∑
p<B,

good reduction

−ap(E) + 2

p+ 1− ap(E)
log p,

S4(B) =
1

B

∑
p<B,

good reduction

−ap(E) log p,

S5(B) =
∑
p<B,

good reduction

log

(
p+ 1− ap(E)

p

)
+

∑
p<B,

split mult. reduction

log

(
3/2 · p− 1

p

)
,

S6(D) =
logNE

2Dπ
− log 2π

Dπ
+
−1

Dπ

∑
p≤exp(2πD)

log p

b2πD/ log pc∑
k=1

cpk

pk/2

(
1− k log p

2πD

)

+
1

π
<

{∫ ∞
−∞

Γ′

Γ
(1 + it)

(
sin(Dπt)

Dπt

)2

dt

}
.

The sum S0 was analyzed in detail in [KM22], where it was shown that if the Riemann
hypothesis for LE(s) is true, and if the limit limB→∞ S0(B) exists, then the limit is
−ran + 1/2 where ran is the analytic rank of E/Q. The relation between S0 and the

8 MATIJA KAZALICKI AND DOMAGOJ VLAH

analytic rank comes from Perron’s formula applied to

1

2πi

∫
−L

′
E(s)

LE(s)

xs

s(s− 1)
ds, x > 1, d > 3/2, a ∈ R.

From the proof of Theorem 6. in [KM22], by modifying the error term of S0(B) one
obtains sums S1 and S2 (equations (3.11) and (3.12)) that have essentially the same
limit as S0, but faster convergence.

Sums S3 and S4 were considered by Nagao [Nag92]. Note that S3(B) is the loga-
rithmic derivative of the partial Euler product (2.1) evaluated at s = 1 (ignoring the

primes of bad reduction). Since
L′E(s)

LE(s)
= ran

s−1
+O(1), it is reasonable to assume that for

elliptic curve with large analytic rank ran, the corresponding S3 sum will be large (see
Section 1.3.3 in [Cam99]). Sum S5 is the modification of S̃5 (from the introduction) at
primes of split multiplicative reduction (see Section 7. in [EK20]).

Sum S6 is described in [Bob13]. It is based on the explicit formula for LE(s) relating
S6(D) to the sum over nontrivial zeros (with multiplicities) 1

2
+ iγ of LE(s),

∑
γ f(γ),

where f(z) = f(z;D) =
(

sin(Dπz)
Dπz

)2

. Note that f(0) = 1 and f(x) ≥ 0 for all real x,

thus,
∑

γ f(γ) gives an upper bound for ran. Assuming Riemann Hypothesis for LE(s),

one has limD→∞ S6(D) = ran, but computing S6(D) becomes infeasible once D gets
a little larger than 4.4. For example, already to compute S6(2) one needs ap’s for all
p < 286, 751.

For computing S6(D) we used C version [KS08] of PSAGE [S+11] rankbound algo-
rithm by Bober.

4. Datasets

We trained our models on two datasets, namely the LMFDB and the custom dataset.
Furthermore, we evaluated the performance of the models on the dataset of elliptic
curves sampled from the K3 elliptic surface given by equation (4.1).

4.1. LMFDB. The LMFDB database [LMF22] contains 3, 824, 372 elliptic curves de-
fined over Q, distributed in 2, 917, 287 isogeny classes. The LMFDB database is a
union of three distinct datasets: all curves of conductor less than 500, 000, all curves
whose conductor is 7-smooth, and all curves of prime conductor p ≤ 200, 000, 000. We
selected one representative per isogeny class, as curves in the same isogeny class have
the same L-functions and hence the same analytic rank (but not necessarily the same
torsion subgroup). Since there are only 19 curves with a rank equal to 5, we didn’t take
any of them into consideration. See Table 2 for rank distribution. Moreover, 63.71%
of curves have trivial torsion, while 31.18% have Z/2Z torsion.

4.2. Custom dataset. Our custom dataset contains 2, 074, 863 elliptic curves defined
over Q with trivial torsion and conductor less than 1030. See Table 3 for the number

RANKS OF ELLIPTIC CURVES AND DEEP NEURAL NETWORKS 9

rank 0 1 2 3 4 5
count 1,404,510 1,887,132 493,291 37,334 2,086 19
proportion 36.73% 49.34% 12.90% 0.98% 0.05% 0.00%

Table 2. Distribution of ranks in the LMFDB dataset.

range [1, 105] [105, 1010] [1010, 1015] [1015, 1020] [1020, 1025] [1025, 1029] [1029, 1030]
proportion 0.94% 21.60% 26.97% 21.27% 17.02% 10.19% 1.97%

Table 3. Distribution of conductors in the custom dataset.

rank 0 1 2 3 4 5
count 78, 755 121, 966 179, 593 435, 195 543, 713 405, 129
proportion 3.79% 5.87% 8.65% 20.97% 26.20% 19.52%

rank 6 7 8 9 10
count 210, 439 77, 923 19, 272 2, 670 201
proportion 10.14% 3.75% 0.92% 0.12% 0.01%

Table 4. Distribution of ranks in the custom dataset.

of curves in a specific conductor range. Our curves have rank between 0 and 10. See
Table 4 for the distribution of curves by rank.

We used two methods for generating the dataset. First, we produced curves with
random Weierstrass coefficients. These were primarily curves of rank 0 and 1.

The curves of higher rank were obtained as random specializations of pencils of
cubics through randomly selected k rational points in the plane, for k = 2, 3, . . . , 8.
Every such cubic (if nonsingular) was transformed to Weierstrass form by the change of
variables described in Chapter 8 of [Cas91]. We removed curves with nontrivial torsion
subgroups.

Next, using PARI/GP [Par19] function ellrank we tried to compute ranks of all
previously generated curves (assuming the Parity conjecture). Ultimately, we discarded
those for which PARI/GP couldn’t find the rank. Note that ellrank in computing the
upper bound for the rank of the elliptic curve E approximates the rank of X(E/Q)[2]
from below with the rank of X(E/Q)[2]/2X(E/Q)[4] (which it computes via Cassels
pairing), thus it can not determine the rank of E if X(E)[4] is nontrivial. Consequently,
such curves are missing from our dataset.

It is important to note that this dataset suffers from bias as it is constructed by
sampling the rational points of small height in the pencil of cubics. Consequently, it
contains many elliptic curves with small canonical height generators and hence small
regulators. This presents a problem, particularly for curves of small rank and large con-
ductor, since the regulator is typically expected to be large under standard conjectures.

10 MATIJA KAZALICKI AND DOMAGOJ VLAH

range [1, 105] [105, 1010] [1010, 1015] [1015, 1020] [1020, 1025] [1025, 1029]
proportion 0.12% 0.49% 1.61% 7.30% 26.86% 63.61%

Table 5. Distribution of conductors in the K3 elliptic surface dataset.

The size of the regulator is significant since the Mestre-Nagao sums ultimately approx-
imate a term whose size depends on both the rank and the regulator. For instance,
from the original Birch and Swinnerton-Dyer conjecture,∏

p<B,
good reduction

p+ 1− ap
p

≈ A log(B)r,

it follows (by taking logarithms) that S̃5(B) = logA+ r log logB + o(1), where A is a
constant that conjecturally depends on the regulator of E (e.g. see [Gol82]).

While this dataset does not represent typical elliptic curves of a given rank and
conductor range, it is still helpful for comparing different classification methods.

4.3. K3 elliptic surface. Consider the K3 elliptic surface with discriminant −163
(see [Elk07, DP21])

y2 = x3 + (65536t4 − 17472t3 − 10176t2 + 18672t− 3535)x2

+ 1024(t+ 1)2(15t− 8)2(31t− 7)2x,
(4.1)

of Mordell-Weil rank 4 (over Q(t)) with Z/4Z torsion subgroup. Generators of the
infinite part of the Mordell-Weil group are points with x-coordinates

x1 = −361(t+ 1)(31t− 7),

x2 = −4(t+ 1)(15t− 8)(16t− 7)2,

x3 = −16(t+ 1)(8t+ 7)2(15t− 8),

x4 = 4(15t− 8)(16t+ 1)2(31t− 7),

while the point of order 4 has x-coordinate equal to 32(t+ 1)(15t− 8)(31t− 7).
To generate a sample of curves from this family, we substituted t with an integer

between −2000 and 2000, resulting in 808 curves with conductors less than 1029. How-
ever, we had to discard 37 curves because we were unable to compute their rank. The
distribution of conductors in the dataset is given in Table 5.

5. Neural network architectures and training procedure

The models we employ are convolutional neural networks (CNN) [GBC16, II.9]. The
CNN could be regarded as the composition of functions, so-called layers. Each layer
is in principle composition of a fittable affine mapping and an element-wise nonlinear
function. To detect and utilize any correlations in ap sequence inherent to our data, for
the affine mapping we use 1D matrix convolutional operations, inspired by the success

RANKS OF ELLIPTIC CURVES AND DEEP NEURAL NETWORKS 11

of 2D matrix convolutions in image classification task [KSH12]. A very similar CNN
architecture is used in [VvP23], where it is explained in more detail. The point is
that all Mestre-Nagao sums inherently employ the same computation “rule” for each
ap, which we expect could be efficiently modeled by a matrix convolution operation.
Thus, we can regard the training of a CNN as an optimization in the highly dimensional
parameterized space of Mestre-Nagao-like heuristics.

Additionally, we use smaller fully connected neural networks (FCNN) for the clas-
sification of curves using only precomputed values of the selected Mestre-Nagao sums
and conductors.

All described models are implemented in Python using the PyTorch library [PGM+19].
Our models’ training and evaluation code is available online [KV22]. Models were
trained using a server with dual Xeon 5218R CPUs (40 cores) equipped with 6 Nvidia
Quadro RTX 5000 GPUs, each with 16 GB of RAM.

5.1. Architecture of CNNs. For each elliptic curve E, the CNN takes as an input
a matrix M(E) of shape 3 × π(B), where B = 103, 104, 105 and the columns are
indexed with primes less than B. The first row consist of ap-s divided by

√
p (by Hasse

theorem ap/
√
p ∈ [−2, 2]). The second row contains a constant sequence of normalized

conductors, logNE/ logNmax, where Nmax is the maximal conductor present in the
dataset. The third row consists of a sequence of values rn = −1 + 2n

π(N)
(a linear sweep

from −1 to 1). Each rn represents the relative position of the n-th prime pn in a
sequence of primes less than B.

Each CNN consists of the following sequence of convolutional layers:

(1) Preparatory layer: increasing the number of channels (rows in the input matrix)
from 3 to 64.

(2) Several input layers I1, . . . , IL1 : preserving the number of channels and the
length of the input sequence.

(3) Several reducing layers R1, . . . , RL2 : preserving the number of channels and
reducing the length of the input sequence by a factor of 2 (convolution kernel
stride is equal to 2).

(4) Several output layers O1, . . . , OL3 : preserving the number of channels and the
length of the input sequence.

Each convolution layer is followed by an activation function and a batch normalization
layer, improving the convergence of the network training and network generalization
properties [IS15]. For the activation function, we decided to use ReLU. Kernel size KS
is the same in each layer. The number of reducing layers L2 is chosen such that the
length of the output of the final reducing layer RL2 (and consequently the length of
the output of every output layer) is equal to 1.

Following convolutional layers, we have one final fully connected layer reducing di-
mensionality from 64 to the number of classification labels (ranks). Thus, our CNN
architecture is fully determined with hyperparameters L1, L2, L3, and KS. In con-
trast to model parameters, which are learned in the training process (see Section 5.3),

12 MATIJA KAZALICKI AND DOMAGOJ VLAH

hyperparameters are the parameters that determine the model architecture and the
model optimization process.

For instance, in the case of uniform range for the LMFDB model with p < 10, 000 we
used the following values of hyperparameters: L1 = 0, L2 = 11, L3 = 3, KS = 17. To
find optimal values of hyperparameters we conducted Bayesian optimization [Moč75] in
the space of hyperparameters by training altogether 500 different variants of networks.
Similar hyperparameters were acquired for LMFDB in the case of p < 1, 000 and for
p < 100, 000, due to lengthy computations, we just reused the hyperparameters for
p < 10, 000, by setting L2 = 14. For each custom dataset CNN model, we took the
same values of hyperparameters as for the corresponding LMFDB model.

5.2. Architecture of FCNNs. Here the input to the network for each curve E con-
sists of one or more precomputed values of the Mestre-Nagao sums for ap in a certain
range and the normalized conductor NE, as in the case of CNNs. In every case, our
FCNN consists of an input linear layer having the size of the number of input features
(the Mestre-Nagao sums and the normalized conductor), four hidden linear layers of
size 128, and an output linear layer of the size of the number of classification labels
(ranks). In between each of the linear layers, we use dropout [NHK+14], which reduces
overfitting during training, and the ReLU activation function. In our experience, the
capacity of this network is more than enough to learn the dependency of rank on the
input.

5.3. Training procedure. Training a neural network means optimizing network pa-
rameters (weights in convolutional and linear layers) to minimize a chosen loss function
over a given dataset.

Dataset. For neural network training, as customary the whole dataset is divided into
three disjoint subsets called training, validation, and test dataset. Only the training
and validation datasets are used in network training. The training set is used directly by
the gradient descent-based optimizer for the gradient backpropagation. The validation
set is only used to avoid model overfitting or underfitting during training. The test
dataset is not ”seen“ by the network during the training and is only used at the end
to test the performance of already trained models. We used the 4 : 1 ratio between the
training and validation datasets.

Loss function. As we are training classifier networks, we decided to use the cross en-
tropy loss function as implemented in PyTorch library [PGM+19]. Additionally, we
supply weights for the loss function to reflect on disproportional sizes of classes, which
is considered standard practice.

Optimizer hyperparameters. Our models are trained using the fast.ai library [H+18].
For the optimizer, we use the usual choice of Adam algorithm [KB17]. For governing
learning rate and momentum scheduling we used a one-cycle policy with cosine anneal-
ing [ST18], which ensures better convergence of model parameters to a broad optimum

RANKS OF ELLIPTIC CURVES AND DEEP NEURAL NETWORKS 13

and allows for better generalization of the trained model [Smi18]. For the optimizer
hyperparameters, we used different ranges of the maximum learning rate for CNNs and
FCNNs.

For CNNs the range was between 3.5 ·10−4 and 1.5 ·10−3. Number of training epochs
was equal to 40, and batch size equal to 1024 (p < 105) or 2048 (p < 103 and p < 104).
For Adam-specific hyperparameters, we have used: β2 = 0.99, ε = 10−5, and weight
decay of 10−3.

For FCNNs, we employed Bayesian optimization for three hyperparameters: dropout,
maximum learning rate, and weight decay, by training 200 different models (networks)
for each of the 7 Mestre-Nagao sums {S0, . . . , S6} and also for Ω, in each of the 24 test
variants. Finally, in each of these 192 tests performed, we took the model having the
best MCC on the test set. The number of training epochs for every model was equal
to 10 and the rest of the Adam-specific hyperparameters were the same as in the CNN
training.

6. Results

We present rank classification results using the Mathews correlation coefficient in
each of the 216 tests. We use two different datasets (LMFDB and custom, see Section
4), three ap-s ranges (p < 103, 104, 105), two modes for selecting test curves (20%
uniformly selected or top conductor range), and two types of classification (binary or
all ranks).

For binary classification we always trained our networks for all ranks classification
and to obtain binary classification we merged all rank labels into two categories, ”low“
and ”high“ ranks - effectively only reinterpreting all ranks classification, but rerunning
Bayesian optimization for hyperparameters. For the LMFDB low ranks are 0, 1, 2, 3
and high ranks are 4, and for the custom dataset low ranks are 0, . . . , 7 and high ranks
are 8, 9, 10. Interestingly, this procedure produced much better binary classification
results than training directly a binary classifier model.

Regarding the CNN models, for each out of 12 test variants (varying two datasets,
three ranges, and two modes for selecting test curves) we trained only 10 different
networks due to high computational expense. For each of these 12 test variants, we
computed the best MCC out of 10 different trained models, separately for all ranges
classification and binary classification. For instance training of models in the worst case
of p < 105 took over 14 hours per model on a single GPU. On the other hand, training
of FCNNs for the Mestre-Nagao sums was much less computationally demanding, so
for each of the 192 test cases, we trained at least 200 models (which took several
minutes per model on a single GPU), using Bayesian optimization in the space of
hyperparameters, as described in Section 5.3. For each of the test cases, we selected
the best-performing model out of all trained models.

At the end of the section, we present the performance of the CNN model with
B = 105 on a K3 elliptic surface dataset (see Section 4).

14 MATIJA KAZALICKI AND DOMAGOJ VLAH

Number of ap-s used
Type of
classifier

classify all ranks binary classification
p < 103 p < 104 p < 105 p < 103 p < 104 p < 105

CNN 0.9507 0.9958 0.9992 1 1 1
S0 0.6823 0.8435 0.9068 0.9877 0.9758 0.9729
S1 0.6848 0.8507 0.9301 0.9968 1 1
S2 0.7277 0.8697 0.9359 0.9938 1 1
S3 0.6933 0.8499 0.9142 0.9420 0.9842 0.9726
S4 0.2678 0.3015 0.1525 0.2188 0.1103 0.0744
S5 0.6132 0.7774 0.8463 0.9968 0.9968 1
S6 0.6969 0.8647 0.9381 1 1 1
Ω 0.8685 0.9602 0.9826 1 1 1

Table 6. LMFDB with the uniform test dataset.

Number of ap-s used
Type of
classifier

classify all ranks
p < 103 p < 104 p < 105

CNN 0.7564 0.9802 0.9961
S1 0.3498 0.6017 0.7552
Ω 0.5920 0.8203 0.9130

Table 7. LMFDB with the uniform test dataset and only prime conductors.

6.1. LMFDB. Test results for the complete LMFDB dataset are presented in Tables 6
and 10. As the LMFDB dataset is heterogeneous, we also separately present in Tables
7, 8, and 9 partial test results for all curves of prime conductor, all curves of conductor
less than 500, 000, and all curves of prime conductor less than 500, 000, respectively.

In Table 6 are maximal values of the MCC obtained for different classifiers. Classifiers
are trained using 80% of randomly selected curves from the LMFDB dataset, having a
conductor less than 108. The MCC is computed on the other 20% of the dataset, not
seen during the training. Classifiers (the CNN, Ω, and the Mestre-Nagao sums from
Section 3) are trained using values of ap-s for primes p less than 103, 104 or 105, and
the value of the elliptic curve conductor.

For Tables 7, 8, and 9 we did not train additional classifiers. We evaluated already
trained classifiers from Table 6 on the test dataset restricted to appropriate subsets.

In Table 10 classifiers are trained using all curves from the LMFDB dataset having a
conductor less than 108. The MCC is computed on all curves from the LMFDB dataset
having a conductor between 108 and 109, not seen during the training.

6.2. Custom dataset. Test results are presented in Tables 11 and 12.

RANKS OF ELLIPTIC CURVES AND DEEP NEURAL NETWORKS 15

Figure 1. Confusion matrix of the CNN for the LMFDB and p < 105

with the uniform test dataset.

Number of ap-s used
Type of
classifier

classify all ranks
p < 103 p < 104 p < 105

CNN 0.9838 0.9987 0.9998
S1 0.7413 0.8934 0.9602
Ω 0.9172 0.9831 0.9936

Table 8. LMFDB with the uniform test dataset and conductors less
than 500, 000.

In Table 11 are maximal values of the MCC obtained for different classifiers. Classi-
fiers are trained using 80% of randomly selected curves from the custom dataset with
a conductor less than 1029. As in the previous section, the MCC is computed on the
other 20% of the dataset, not seen during the training.

In Table 12 classifiers are trained using all curves from the custom dataset with
conductor less than 1029. The MCC is computed on all curves from the custom dataset
with conductor between 1029 and 1030, not seen during the training.

16 MATIJA KAZALICKI AND DOMAGOJ VLAH

Number of ap-s used
Type of
classifier

classify all ranks
p < 103 p < 104 p < 105

CNN 0.9459 0.9985 1
S1 0.6535 0.8455 0.9392
Ω 0.9241 0.9633 0.9664

Table 9. LMFDB with the uniform test dataset and prime conductors
less than 500, 000.

Number of ap-s used
Type of
classifier

classify all ranks binary classification
p < 103 p < 104 p < 105 p < 103 p < 104 p < 105

CNN 0.5631 0.9289 0.9846 0.9811 0.9996 1
S0 0.2880 0.5057 0.6545 0.9470 0.9750 0.9756
S1 0.2791 0.4883 0.6658 0.9669 0.9996 1
S2 0.2790 0.4968 0.6730 0.9609 0.9996 1
S3 0.2897 0.5030 0.6574 0.9151 0.9716 0.9676
S4 0.1352 0.1424 0.1850 0.2438 0.1411 0.0647
S5 0.2960 0.3913 0.5261 0.9538 0.9917 0.9968
S6 0.2632 0.4542 0.6416 0.9644 0.9996 1
Ω 0.4433 0.7013 0.8530 0.9796 1 1

Table 10. LMFDB with the top conductor range.

Number of ap-s used
Type of
classifier

classify all ranks binary classification
p < 103 p < 104 p < 105 p < 103 p < 104 p < 105

CNN 0.6129 0.7218 0.7958 0.6695 0.8335 0.9425
S0 0.5738 0.6782 0.7462 0.6761 0.8275 0.9175
S1 0.5780 0.6890 0.7592 0.6484 0.8317 0.9309
S2 0.5649 0.6761 0.7521 0.6407 0.8252 0.9206
S3 0.5551 0.6616 0.7361 0.6515 0.8118 0.9074
S4 0.2893 0.2472 0.2251 0.4271 0.4179 0.3874
S5 0.4987 0.5990 0.6696 0.5230 0.6919 0.7956
S6 0.5230 0.6509 0.7361 0.5179 0.7554 0.8961
Ω 0.5999 0.7069 0.7807 0.6821 0.8527 0.9412

Table 11. Custom dataset with the uniform test set

RANKS OF ELLIPTIC CURVES AND DEEP NEURAL NETWORKS 17

Figure 2. Confusion matrix of the CNN for the LMFDB and p < 104

with the top conductor range.

Number of ap-s used
Type of
classifier

classify all ranks binary classification
p < 103 p < 104 p < 105 p < 103 p < 104 p < 105

CNN 0.2147 0.3019 0.3655 0.5449 0.6774 0.8082
S0 0.2533 0.3233 0.3719 0.5866 0.6978 0.7900
S1 0.2573 0.3291 0.3834 0.5649 0.6925 0.7946
S2 0.2340 0.3118 0.3688 0.5472 0.6814 0.7856
S3 0.2556 0.3189 0.3645 0.5688 0.6830 0.7807
S4 0.1234 0.1228 0.1024 0.3966 0.3935 0.3842
S5 0.2081 0.2858 0.3380 0.4860 0.6071 0.6880
S6 0.1803 0.2757 0.3527 0.4321 0.6217 0.7326
Ω 0.2622 0.3246 0.3905 0.5931 0.7091 0.8118
Table 12. Custom dataset with the top conductor range.

18 MATIJA KAZALICKI AND DOMAGOJ VLAH

Figure 3. Rank cutoffs of the classifier S5 as a function of a conductor,
trained on the LMFDB with the uniform test set and p < 104. On the
x-axis are log10 values of conductors and on the y-axis are values of the
sum S5. The unexpected shape of the cutoff between ranks 3 and 4 is the
consequence of a small number of rank 4 curves with a small conductor,
which are present in the dataset.

Figures 7 and 8 depict the relationship between the MCC and log10(B
√
N) for 82

subsets of curves corresponding to conductor intervals of (1, 50000), (50000 · 2k, 50000 ·
2k+1) for k = 0, . . . , 80. In Figure 7, we present the results of the same CNN classifier
for three different values of B (103, 104, and 105), while in Figure 8, we compare the
performance of three different classifiers (the CNN, Ω, and S1) for B = 105.

6.3. K3 elliptic surface. The confusion matrix of the CNN with p < 105 for this
dataset can be found in Figure 9. The MCC of the CNN is equal to 0.2492.

6.4. Discussion. As expected, classifiers based on S0, S1, and S2 have very similar
performance across all tested regimes (improved convergence of sums S1 and S2 does
not seem to improve the quality of the classification). They have the best performance
of all considered Mestre-Nagao sums. Classifiers based on S3 have an overall slightly

RANKS OF ELLIPTIC CURVES AND DEEP NEURAL NETWORKS 19

Figure 4. Confusion matrix of S0 for the LMFDB and p < 104 with
the top conductor range.

Figure 5. Confusion matrix of the CNN for the custom dataset and
p < 104 with the uniform test set.

20 MATIJA KAZALICKI AND DOMAGOJ VLAH

Figure 6. Confusion matrix of Ω for the custom dataset and p < 104

with the uniform test set.

worse performance than the first three sums. Peculiarly, S4 underperforms in all tests,
and its performance, in contrast to every other sum, decreases as the number of used
ap-s increases. Classifier S5 performs well but compared to the first four sums is in most
cases significantly lesser. While classifier S6 is among the best on the curves having
small conductors, its performance fades on larger conductors. Classifier Ω, which is
based on all Mestre-Nagao sums simultaneously, is practically always better than any
other sum-based classifier, especially on curves of a small conductor.

Finally, CNN-based classifiers on the LMFDB dataset were significantly better than
Ω (and consequently any other sum-based classifier). On custom datasets with a uni-
form test set, they were slightly better than Ω and other classifiers, but on the custom
dataset with top range conductor, they performed worse. Notice that every CNN-
based classifier was selected as the best one out of only a 10 trained model, while each
Mestre-Nagao sum-based classifier was selected out of at least 200 trained models,
whose hyperparameters were additionally optimized using the Bayesian optimization
technique. We expect that the quality of a CNN-based classification would increase
with more trained models and possibly surpass other models. As the CNN model train-
ing is much more computationally expensive, more training was unfeasible for us. It is
fascinating how the CNN almost perfectly classifies LMDFB with a uniform test data-
base (see Figure 1) - it misclassified only 0.045% of all curves! On the other hand for
the custom dataset, both the CNN and Ω classifiers perform similarly - their confusion
matrices look almost identical (see Figures 5 and 6).

We noticed that all classifiers had the highest error rates when classifying curves
of rank 0 and 1 (see Figure 5). Through the process of training Mestre-Nagao sum

RANKS OF ELLIPTIC CURVES AND DEEP NEURAL NETWORKS 21

−12 −10 −8 −6 −4 −2 0 2

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 7. MCC of the CNN as a function of log10(B/
√
N), for B =

103, 104, 105 in red, green, and blue, respectively.

models, we were able to learn the optimal cutoffs for rank classification (see Figure 3).
This information is particularly useful in searching for curves of high rank (as discussed
in Section 7 of [EK20]).

Regarding the results presented in Tables 8 and 9, we noticed that classifying curves
with prime conductors is more challenging than classifying all curves. This finding is
surprising given our observation from the previous paragraph since the proportion of
curves of rank 0 and 1 with prime conductors is lower than the proportion of curves
of rank 0 and 1 in the entire LMFDB dataset. Notably, MCC values in Table 7 are
significantly lower than the corresponding values for the entire LMFDB dataset, as the
average conductor in the family of curves with a prime conductor is much higher than
that in the LMFDB database.

As shown in Figure 8, the CNN outperforms the other two classifiers (S1 and Ω)

across the entire range of B/
√
N . For instance, to achieve an MCC level of 0.7, the

CNN requires a B value that is approximately 6.5 times smaller than that required by
the S1 classifier for curves in the same conductor range.

22 MATIJA KAZALICKI AND DOMAGOJ VLAH

−10 −8 −6 −4 −2 0 2

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 8. MCC as a function of log10(B/
√
N), for B = 105 and three

different models: the CNN, Ω, and S1 in red, green, and blue, respec-
tively.

Figure 9. Confusion matrix of the CNN for the K3 elliptic family and
p < 105.

RANKS OF ELLIPTIC CURVES AND DEEP NEURAL NETWORKS 23

7. Future research

This paper left us with some open questions which may be addressed in future
projects:

(1) The CNN and Ω models could be used as a substitution for the current use of
the Mestre-Nagao sums in the search for elliptic curves of high rank. Also, these
models could be trained on other elliptic curves datasets, such as curves with
non-trivial torsion, and with additional input of the root number (to employ
the Parity conjecture).

(2) It is unclear why the CNN works much better than all of the other Mestre-
Nagao sum-based models on the curves from the LMFDB (or in general on
curves of a small conductor). Did the CNN discover some new mathematics?

(3) Suboptimal choices in the CNN model architecture and optimizer hyperparame-
ters (see Section 5) may lead to underperforming classifiers. One could perform
more extensive optimization of hyperparameters, especially in the case of the
custom dataset.

(4) Using some of the more advanced neural network architectures, originally devel-
oped for natural language processing tasks (see [VSP+17]) may lead to better-
performing models. The idea is that such architectures can more easily extract
distant correlations in the ap-s sequence.

Availability of data and materials

The data that support the findings of this study are available on request from the
corresponding author M.K. The data are not publicly available due to the large size.
The computer code that supports the findings of this study have been deposited at
https://github.com/domagojvlah/deepellrank.

Conflict of interest

The authors declare that they have no conflict of interest.

Acknowledgments

We would like to express our sincere gratitude to the anonymous referees whose
insightful comments and suggestions greatly improved the quality of the paper.

The first author was supported by the Croatian Science Foundation under the project
no. IP-2018-01-1313, and by the QuantiXLie Center of Excellence, a project co-financed
by the Croatian Government and European Union through the European Regional De-
velopment Fund - the Competitiveness and Cohesion Operational Programme (Grant
KK.01.1.1.01.0004). The second author was supported by Croatian Science Foundation
(HRZZ) grant PZS-2019-02-3055 from the “Research Cooperability” program funded
by the European Social Fund.

24 MATIJA KAZALICKI AND DOMAGOJ VLAH

References

[BCDT01] Christophe Breuil, Brian Conrad, Fred Diamond, and Richard Taylor. On the modularity
of elliptic curves over Q: wild 3-adic exercises. J. Am. Math. Soc., 14(4):843–939, 2001.

[BJEA17] Sabri Boughorbel, Fethi Jarray, and Mohammed El-Anbari. Optimal classifier for im-
balanced data using matthews correlation coefficient metric. PLOS ONE, 12(6):1–17, 06
2017.

[Bob13] Jonathan W. Bober. Conditionally bounding analytic ranks of elliptic curves. In ANTS
X—Proceedings of the Tenth Algorithmic Number Theory Symposium, volume 1 of Open
Book Ser., pages 135–144. Math. Sci. Publ., Berkeley, CA, 2013.

[Boo05] Andrew R. Booker. Numerical tests of modularity. J. Ramanujan Math. Soc., 20(4):283–
339, 2005.

[BSS+16] Andrew R. Booker, Jeroen Sijsling, Andrew V. Sutherland, John Voight, and Dan Yasaki.
A database of genus-2 curves over the rational numbers. LMS J. Comput. Math., 19(suppl.
A):235–254, 2016.

[Cam99] Garikai Campbell. Finding Elliptic Curves and Families of Elliptic Curves over Q of Large
Rank. PhD thesis, Rutgers University, 1999.

[Cas91] J. W. S. Cassels. Lectures on elliptic curves, volume 24 of London Mathematical Society
Student Texts. Cambridge University Press, Cambridge, 1991.

[Coh15] Henri Cohen. Computing L-functions: a survey. J. Théor. Nombres Bordeaux, 27(3):699–
726, 2015.

[DP21] Andrej Dujella and Juan Carlos Peral. Construction of high rank elliptic curves. J. Geom.
Anal., 31(7):6698–6724, 2021.

[Duj] Andrej Dujella. Infinite families of elliptic curves with high rank and prescribed torsion.
https://web.math.pmf.unizg.hr/~duje/tors/generic.html.

[DVB+21] A. Davis, P. Veličković, L. Buesing, et al. Advancing mathematics by guiding human
intuition with ai. Nature, 600:70–74, 2021.

[EK20] Noam D. Elkies and Zev Klagsbrun. New rank records for elliptic curves having rational
torsion. In ANTS XIV. Proceedings of the fourteenth algorithmic number theory sympo-
sium, Auckland, New Zealand, virtual event, June 29 – July 4, 2020, pages 233–250.
Berkeley, CA: Mathematical Sciences Publishers (MSP), 2020.

[Elk06] Noam D. Elkies. Z28 in E(Q). Number Theory Listserver, 2006.
[Elk07] Noam D. Elkies. Three lectures on elliptic surfaces and curves of high rank.

arXiv:0709.2908, 2007.
[GBC16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.

http://www.deeplearningbook.org.
[Gol82] Dorian Goldfeld. Sur les produits partiels eulériens attachés aux courbes elliptiques. C.

R. Acad. Sci. Paris Sér. I Math., 294(14):471–474, 1982.
[H+18] Jeremy Howard et al. fastai. https://github.com/fastai/fastai, 2018.
[HLO23] Yang-Hui He, Kyu-Hwan Lee, and Thomas Oliver. Machine learning invariants of arith-

metic curves. J. Symbolic Comput., 115:478–491, 2023.
[HLOP22] Yang-Hui He, Kyu-Hwan Lee, Thomas Oliver, and Alexey Pozdnyakov. Murmurations of

elliptic curves. arXiv:2204.10140, 2022.
[IS15] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network train-

ing by reducing internal covariate shift, 2015. cite arxiv:1502.03167.
[IV21] Tomislav Ivek and Domagoj Vlah. BlackBox: generalizable reconstruction of extremal

values from incomplete spatio-temporal data. Extremes, 24(1):145–162, 2021.
[IV23] Tomislav Ivek and Domagoj Vlah. Reconstruction of incomplete wildfire data using deep

generative models. Extremes, 2023.

RANKS OF ELLIPTIC CURVES AND DEEP NEURAL NETWORKS 25

[KB17] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017.
[KM22] Seoyoung Kim and M. Ram Murty. From the Birch and Swinnerton-Dyer conjecture to

Nagao’s conjecture. to appear in Math. Comp., 2022. With an appendix by Andrew V.
Sutherland.

[KS08] Kiran S. Kedlaya and Andrew V. Sutherland. Computing L-series of hyperelliptic curves.
In Algorithmic number theory, volume 5011 of Lecture Notes in Comput. Sci., pages 312–
326. Springer, Berlin, 2008.

[KSH12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with
deep convolutional neural networks. Advances in Neural Information Processing Systems,
25:1106–1114, 2012.

[KV22] Matija Kazalicki and Domagoj Vlah. deepellrank. https://github.com/domagojvlah/
deepellrank, 2022.

[LMF22] The LMFDB Collaboration. The L-functions and modular forms database. http://www.
lmfdb.org, 2022. [Online; accessed 4 July 2022].

[Maz77] B. Mazur. Modular curves and the Eisenstein ideal. Publ. Math., Inst. Hautes Étud. Sci.,
47:33–186, 1977.

[Mes82] Jean-François Mestre. Construction d’une courbe elliptique de rang ≥ 12. C. R. Acad.
Sci., Paris, Sér. I, 295:643–644, 1982.

[Moč75] J. Močkus. On Bayesian Methods for Seeking the Extremum, pages 400–404. Springer
Berlin Heidelberg, Berlin, Heidelberg, 1975.

[Nag92] Koh-ichi Nagao. Examples of elliptic curves over Q with rank ≥ 17. Proc. Japan Acad.,
Ser. A, 68(9):287–289, 1992.

[NHK+14] Srivastava Nitish, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhut-
dinov. Dropout: A simple way to prevent neural networks from overfitting. Journal of
Machine Learning Research, 15(56):1929–1958, 2014.

[Par19] PARI/GP, version 2.11.1. Bordeaux, 2019. http://pari.math.u-bordeaux.fr/.
[PGM+19] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory

Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,
Andreas Köpf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank
Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An
imperative style, high-performance deep learning library. In Hanna M. Wallach, Hugo
Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett,
editors, Advances in Neural Information Processing Systems 32: Annual Conference on
Neural Information Processing Systems 2019, NeurIPS 2019, 8-14 December 2019, Van-
couver, BC, Canada, pages 8024–8035, 2019.

[Poi01] H. Poincaré. Sur les propriétés arithmétiques des courbes algébriques. Journ. de Math.
(5), 7:161–233, 1901.

[PPVW19] Jennifer Park, Bjorn Poonen, John Voight, and Melanie Matchett Wood. A heuristic for
boundedness of ranks of elliptic curves. J. Eur. Math. Soc. (JEMS), 21(9):2859–2903,
2019.

[S+11] William A. Stein et al. Purple SAGE, 2011. http://purple.sagemath.org/.
[Smi18] Leslie N. Smith. A disciplined approach to neural network hyper-parameters: Part 1 –

learning rate, batch size, momentum, and weight decay, 2018.
[ST18] Leslie N. Smith and Nicholay Topin. Super-convergence: Very fast training of neural

networks using large learning rates, 2018.
[VSP+17] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N

Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors,

26 MATIJA KAZALICKI AND DOMAGOJ VLAH

Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017.

[VvP23] Domagoj Vlah, Karlo Šepetanc, and Hrvoje Pandžić. Solving bilevel optimal bidding
problems using deep convolutional neural networks. IEEE Systems Journal, pages 1–12,
2023.

[Wag21] Adam Z. Wagner. Constructions in combinatorics via neural networks. arXiv:2104.14516,
2021.

[Wat15] Mark Watkins. A discursus on 21 as a bound for ranks of elliptic curves over q, and sundry
related topics. http://magma.maths.usyd.edu.au/~watkins/papers/DISCURSUS.pdf,
2015.

[WDE+14] Mark Watkins, Stephen Donnelly, Noam D. Elkies, Tom Fisher, Andrew Granville, and
Nicholas F. Rogers. Ranks of quadratic twists of elliptic curves. In Numéro consacré
au trimestre “Méthodes arithmétiques et applications”, automne 2013, pages 63–98. Be-
sançon: Presses Universitaires de Franche-Comté, 2014.

[Wil95] Andrew Wiles. Modular forms, elliptic curves, and Fermat’s Last Theorem. In Proceedings
of the international congress of mathematicians, ICM ’94, August 3-11, 1994, Zürich,
Switzerland. Vol. I, pages 243–245. Basel: Birkhäuser, 1995.

Department of Mathematics, University of Zagreb, Bijenička cesta 30, 10000 Za-
greb, Croatia

Email address: matija.kazalicki@math.hr

Department of Applied Mathematics, Faculty of Electrical Engineering and Com-
puting, University of Zagreb, Unska 3, 10000 Zagreb, Croatia

Email address: domagoj.vlah@fer.hr

