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1. Introduction

My research interests are in number theory. In particular, I am interested in modular forms and related
functions. Modular forms have fundamental roles in many branches of mathematics and number theory, they
are central to the proof of Fermat's last theorem, and the Langlands program, have arithmetic applications
and geometric interpretations, are related to L-functions and elliptic curves, the Birch and Swinnerton-Dyer
conjecture, and yield applications in string theory, combinatorics, cryptography and mathematical physics.
A usual way to de�ne modular form is as a holomorphic function f : H→ C satisfying a growth condition,
as well as a certain symmetry under the action of Γ := SL2(Z) or some other subgroup. That is, f(aτ+bcτ+d ) =

(cτ + d)kf(τ) for all γ =
(
a b
c d

)
∈ Γ. A modular form f(τ) has a Fourier expansion f(τ) =

∑∞
n=0 af (n)qn,

where q = e2πiτ . Fourier coe�cients an, often have an important arithmetic, geometric or combinatorial
interpretation.

2. My work

2.1. Linear relations between Fourier coe�cients. As mentioned in introduction, modular forms for
SL2(Z) have a Fourier expansion f(τ) =

∑∞
n=0 af (n)qn. It is natural to ask whether there are universal

linear relations between the initial coe�cients of all modular forms of weight k, i.e. one wants to describe a
structure of

(1) Lk,N := {(c0, . . . , cN+d(k) ∈ Cd(k)+N+1) :

N+d(k)∑
ν=0

cνaf (ν) = 0, for every f ∈Mk}.

Here d(k) is a dimension of the space Mk of modular forms of weight k. This question was answered by
Choie, Kohnen and Ono [9].

In the light of the well known analogy between number �elds and function �elds, it is natural to ask
whether similar result should hold for Drinfeld modular forms.

De�ne σ(k) ∈ {0, q− 1, 2(q− 1), . . . , q(q− 1)} by the relation k ≡ σ(k)(mod q2 − 1). Denote my M l
k the

space of Drinfeld modular forms of weight k and type l. For each G ∈Mq2−1N
0, de�ne numbers b(k,N,G; ν)

by

(2)
Ggqh

E(σ(k))∆N+d(k)
=

N+d(k)∑
ν=0

b(k,N,G; ν)t−ν(q−1)+1 +

∞∑
ν=1

c(k,N,G; ν)tν(q−1)+1.

Here g, h, E(k), and ∆ are certain Drinfeld modular forms, and the function t is a Drinfeld modular form
analogue of function q = e2πiτ . Generalizing the work of Choie, Kohnen and Ono [9], we have the following
description of the Lk,N .

Theorem 1 (K. [17]). The map φk,N : M 0
(q2−1)N → Lk,N de�ned by

φk,N (G(z)) = (b(k,N,G; ν) : ν = 0, 1, . . . , d(k) +N)

de�nes a linear isomorphism between M 0
(q2−1)N and Lk,N .

1
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2.2. Zeros of certain Drinfeld modular functions. �Monstrous moonshine� is one of the most interesting
results connecting modular forms and Lie algebras. Ultimately proved by Borcherds [7] in 1992, monstrous
moonshine relates the Fourier coe�cients of the modular j(τ) invariant to dimensions of irreducible repre-
sentations of the Monster group.

Related to this, we consider the sequence of modular functions jm(z) de�ned by

j1(z) := j(z)− 744 and jm(z) := j1(z)|T0(m),

where T0(m) is normalized mth weight zero Hecke operator. Also, we de�ne integer coe�cients polynomials
Pn(x) satisfying Pn(j(z)) = jm(z).

These functions satisfy the beautiful identity

j(τ)− j(z) = p−1 exp

(
−
∞∑
n=1

jn(z) · p
n

n

)
,

which is equivalent to the famous denominator formula for the Monster Lie algebra

j(τ)− j(z) = p−1
∏

m>0 and n∈Z
(1− pmqn)c(mn).

Here q = e2πiz, p = e2πiτ , and the exponents c(n) are de�ned as the coe�cients of j1(z) =
∑∞
n=−1 c(n)qn.

K. Ono has conjectured that all the polynomials Pm(x) are irreducible, and recently P. Guerzhoy proved
a partial result toward this conjecture by presenting in�nite families of these polynomials which are provably
irreducible [13]. In addition, it is known that the zeros of each jm(z) in the fundamental domain for SL2(Z)
are located on the unit circle |z| = 1 [1].

It is natural to ask does the similar result hold for Drinfeld modular functions. We establish the following
theorem [18].

Theorem 2 (K. [18]). The roots of the polynomials Pm(x) have absolute value qq. The zeros of jm(z) in
the fundamental domain F = {z ∈ Ω : |z| = inf{|z − a| : a ∈ A} ≥ 1} are on the unit circle |z| = 1. If q is
odd, they are transcendental over K.

2.3. The class numbers of quadratic imaginary �elds. Let d be prime or the product of two primes,
K = Q(

√
−d) an imaginary quadratic �eld, and Cl(Q(

√
−d)) its ideal class group. These groups are subject

of many interesting theorems and conjectures, like for example, the Gauss class number problem and the
Cohen-Lenstra heuristics.

Starting with Gauss, who developed genus theory, many people have investigated the structure of the 2-
Sylow subgroup of Cl(Q(

√
−d)). In the case when d = p is prime, Cohn and Barrucand [5] in 1961 discovered

the beautiful fact that the class number h(−p) := h(Q(
√
−p)) is divisible by 8 if and only if p = x2 + 32y2,

where x and y are integers. In the early 1980s [45], Williams showed that if ε = T + U
√
p is a fundamental

unit of the real quadratic �eld Q(
√
p), then

h(−p) ≡ T + (p− 1) (mod 16),

where 8|h(−p).
If p1 and p2 are primes above 2 and 3 in Q(

√
d) (we assume that 2 and 3 split), we denote by Gm,n the

ray class group of Q(
√
d) of modulus m = pm1 pn2 , where m,n > Cd, for some explicit constant Cd. Denote

by rk(Q(
√
d)) the k-rank of any such Gm,n. The following theorem and the other similar �re�ection� results

are proved in [19].

Theorem 3 (K.[19]). Suppose that p ≡ 1 (mod 16) is prime. Then we have

4||h(−p) ⇐⇒ r4(Q(
√
p)) = 1

8||h(−p) ⇐⇒ r4(Q(
√
p)) = 2 and r8(Q(

√
p)) = 1

16|h(−p) ⇐⇒ r8(Q(
√
p)) = 2.

As a consequence of these theorems, we recover Williams' s result and prove the following generalization.
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Theorem 4 (K.[19]). If p and q are primes for which p, q ≡ 5 (mod 8), then we have

16|h(−pq) ⇐⇒

{
T ≡ 9 (mod 16) if

(
p
q

)
= 1 and

(
p
q

)
4

(
q
p

)
4

= −1,

T ≡ 4 (mod 8) if
(
p
q

)
= −1,

where ε = T + U
√
pq is a fundamental unit of Q(

√
pq). When Norm(ε) = −1, we choose the fundamental

unit such that T ≡ 1 (mod 4).

2.4. The central values of L-functions. The central values of L-functions are of great importance in
number theory since they encode deep relationship between invariants of the corresponding algebraic object.
For example, for the Dedekind zeta function, the class number formula relates the class number and the
regulator of an algebraic number �eld. For the L-function associated to the elliptic curve E, the Birch and
Swinnerton-Dyer conjecture predicts the rank of Mordell-Weil group, and relates various invariants of E
including the order of the Tate-Shafarevich group, the regulator, and the product of Tamagawa numbers.

We consider the L-functions associated to Ramanujan's Delta-function,

∆(z) =

∞∑
n=0

τ(n)zn := q

∞∏
n=1

(1− qn)24,

the unique weight 12 normalized cusp form for the full modular group. Also, denote by σk(n) =
∑
d|n d

k the

sum of kth powers of divisors of n. Ramanujan observed that modulo the powers of certain small primes,
there are congruences relating τ(n) and σk(n). For example, for the powers of two the following congruences
are due to Kolberg[24]:

τ(n) ≡ σ11(n) (mod 211) if n ≡ 1 (mod 8)
τ(n) ≡ 1217σ11(n) (mod 213) if n ≡ 3 (mod 8)
τ(n) ≡ 1537σ11(n) (mod 212) if n ≡ 5 (mod 8)
τ(n) ≡ 705σ11(n) (mod 214) if n ≡ 7 (mod 8).

By the work of Eichler, Shimura, Deligne and Serre, for every prime l there is a 2-dimensional l-adic Galois
representation ρl : Gal(Q̄/Q)→ GL2(Zl) with the property that Tr(ρ(Frobp)) = τ(p) for every prime p 6= l
(Frobp ∈ Gal(Q̄/Q) is a Frobenius element for the prime p). Swinnerton-Dyer [41] showed that the image
of these representations is �small" for primes l = 2, 3, 5, 7 and 691. Moreover, he showed that Kolberg's
congruences determine the structure of ρ2. More precisely, up to conjugation by an element of GL2(Q2), the
image of ρ2 consists of matrices of the form

σ =

(
1 + 27A 24B

25C 1 + 2D

)
,

where A,B,C,D ∈ Z2. Since the representation ρ2 is reducible modulo 25, inspired by the Bloch-Kato
conjecture, one expects to �nd some congruences modulo the powers of two between the algebraic part of
the central value of the L-function associated to the Delta function and its quadratic twists, and a value of
the corresponding Dirichlet L-function.

For a positive fundamental discriminant d, we denote by ∆d the twist of ∆(z) by the quadratic character(
d
·
)
. Square roots of the algebraic parts

√
Lalg(∆d, 6) will be de�ned later in this section. We prove the

following theorem.

Theorem 5 (K. [19]). If d is a positive fundamental discriminant, then the following are true:√
Lalg(∆d, 6) ≡ 49 · 4L2(11, χd) (mod 29) for d ≡ 1 (mod 16)√
Lalg(∆d, 6) ≡ 71 · 4L2(11, χd) (mod 29) for d ≡ 5 (mod 16)√
Lalg(∆d, 6) ≡ 369 · 4L2(11, χd) (mod 29) for d ≡ 9 (mod 16)√
Lalg(∆d, 6) ≡ 7 · 4L2(11, χd) (mod 29) for d ≡ 13 (mod 16)√
Lalg(∆d, 6) ≡ d · 12L3(15, χd) (mod 34) for all d.
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The question of how congruences modulo a power of a prime between the coe�cients of Hecke eigenforms
give rise to congruences between the algebraic parts of the critical values of the associated L-functions was
initially studied by Mazur [32], [33]. Using modular symbols to study algebraic parts of L-values, Vatsal [43]
proved a general result for congruences between Eisenstein series and cuspidal newforms of weight 2. Vatsal
remarks that his result could be generalized to higher weights k, but only if p > k. Here, we consider small
primes p ∈ {2, 3}.

Another approach to these questions, introduced by Maeda in [30], is to use Kohnen-Waldspurger theorem
to translate congruences between L-values to congruences between half-integral weight modular forms that
correspond to integral weight modular forms via Shimura Correspondence. More precisely, one can show
([34], p.154) that the Kohnen newform in S new

6+ 1
2

(Γ0(4)) associated to ∆(z) is

(3) g(z) =

∞∑
n=1

b(n)qn =
E4(4z)Θ(θ0(z))

2
− Θ(E4(4z))θ0(z)

16
,

where for integer k, E2k(z) is the normalized Eisenstein series of weight 2k on SL2(Z), and Θ is Ramanujan's
Theta-operator de�ned by

Θ

( ∞∑
n=0

a(n)qn

)
=

∞∑
n=0

na(n)qn.

Now the Waldspurger-Kohnen theorem for positive fundamental discriminants d implies that

L(∆d, 6) =
〈∆,∆〉π6

120d
11
2 〈g, g〉

· b(d)2

(〈·, ·〉 is the standard Petersson inner product). We de�ne the algebraic part of L(∆d, 6) to be Lalg(∆d, 6) :=

b(d)2, and we de�ne the square root of the algebraic part to be
√
Lalg(∆d, 6) := b(d). Koblitz [22] showed

that the Shimura lifting on cusp forms, as modi�ed by Kohnen, extends to Eisenstein series. The 6 + 1
2

weight modular form that corresponds to E12(z) is the Cohen-Eisenstein series H6+ 1
2
(z) ∈M6+ 1

2
(Γ0(4)). In

general, for r ≥ 1 we have Cohen-Eisenstein series of weight r + 1
2 [10]

Hr+ 1
2
(z) =

∑
N≥0

H(r,N)qN ∈Mr+ 1
2
(Γ0(4)),

where H(r,N) is a certain explicit arithmetic function. For example, if D = (−1)rN is a discriminant of a
quadratic �eld, then H(r,N) = L(1− r, χD).

Koblitz proved that the congruence ∆(z) ≡ E12(z) (mod 691) descends to the congruence g(z) ≡
−252H6+ 1

2
(z) (mod 691), and Guerzhoy and Datskovsky [11] generalized this to other weights. We have an

analogous theorem for moduli which are powers of 2. The di�erence is that we prove congruences modulo a
theta series of weight 1

2 . More precisely we write

f(z) ≡′ g(z) (mod N) ⇐⇒ f(z)− g(z) ≡ h(z) (mod N),

for some p-adic modular form h(z), whose non-zero coe�cients are supported on squares.
For a modular form f(z) =

∑
a(n)qn, we denote by f(z)+ =

∑
n≡1 (mod 8)

a(n)qn and f(z)− =
∑

n≡5 (mod 8)

a(n)qn

modular forms obtained by �twisting".

Theorem 6 (K.[19]). With g(z) as in 3, we have

g(z)+ ≡′ 49 · 4H6+ 1
2
(z)+ (mod 29)

g(z)− ≡′ 39 · 4H6+ 1
2
(z)− (mod 29)

When we compare H6+ 1
2
(z) and θ0(z)3 modulo powers of two and three, we get the following corollary.

Corollary 7 (K.[19]). If d is a positive fundamental discriminant, then the following are true.
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a) If d ≡ 1 (mod 8), then we have 25|
√
Lalg(∆d, 6) + 12h(−d).

b) If d ≡ 1 (mod 8), then we have 33|
√
Lalg(∆d, 6)− 120d ·H(−3d).

Here, H(−N) denotes the Hurwitz class number.

Kohnen �rst proved results similar to part b) in [23], and he used it together with the result of Davenport
and Heilbronn on the 3-part of the class group to obtain nonvanishing of a positive proportion of central
L-values L(∆d, 6).

2.5. Modular forms associated to Fermat curves. While the arithmetic of Fourier coe�cient of modular
forms for congruence subgroups of SL2(Z) has been one of the central topics in number theory, little is known
for modular forms on noncongruence subgroups. One of the reasons for this is that the Hecke operators,
which are the main tool for studying coe�cients in the classical situation, are not useful in studying modular
forms for noncongruence subgroups [42].

Atkin and Swinnerton-Dyer [4] pioneered the research in this area by making a remarkable observation
on the congruence properties of Fourier coe�cients of certain cusp forms for noncongruence subgroups. These
congruences have been further studied by A.J. Scholl in [37, 38, 39], and by A.O.L. Atkin, W.-C. L. Li, L.
Long, and Z. Yang in the series of papers [3, 27, 28, 29].

We found another arithmetic phenomena that holds for some modular functions for noncongruence
subgroups.

Given a positive integer N , the Fermat group Φ(N) is the subgroup of Γ(2) with the property that the
modular curve X(Φ(N)) is isomorphic to the Fermat curve FN given by the equation XN +Y N = ZN . The
group Φ(N) is a congruence group only for N = 1, 2, 4 and 8 [36]. For every such Φ(N), we can associated
modular functions x(τ) and y(τ) with rational Fourier coe�cients, such that

x(τ)N − y(τ)N = −16.

These functions have been studied by D. Rohrlich [36] and T. Yang [46].
As a result of combinatorial manipulation, we proved the following theorem in [20].

Theorem 8 (K.[20]). Let N ≥ 1 be an odd integer, and let

x(τ) = q−1 +

∞∑
i=1

a(iN − 1)qiN−1,

where q = e
2πiτ
2N . We de�ne N ′m ∈ {1, 2, . . . , 2m− 1} such that NN ′m ≡ 1 (mod 2m). For positive integers m

and n, we have that

v2(a(n2m)) ≥ 3km,

where km is the number of 1's in the binary expansion of N ′m.

J. Lehner [26] and A. O. L. Atkin [2], using the theory of Hecke operators, obtained similar results for
the coe�cients of the modular j-invariant. More precisely, if j(τ) = q−1 +

∑∞
k=0 c(k)qk, and if m and n are

positive integers, they proved that

vp(c(np
m)) ≥

 m+ 1 if p = 5
m if p = 7
m if p = 11.

Surprisingly, we have a Hecke type of phenomena in the absence of Hecke operators.

2.6. Congruent numbers and congruences between half-integral weight modular forms, preprint.
A positive integer d is called a congruent if it is the area of a right triangle with rational side lengths. The
congruent number problem asks for the classi�cation of positive integers which are congruent. It is well
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known that d is congruent if and only if the elliptic curve Ed : y2 = x3 − d2x has a positive rank over Q.
Tunnell constructed weight 3/2 Hecke eigenform

f(τ) = η(8z)η(16z)θ0(z) =

∞∑
n=1

a(n)qn ∈ S 3
2
(Γ0(128)),

whose image under Shimura correspondence g(z) has property that L(E1, s) = L(g, s). Using Waldspurger's
result (note that the curves Ed are quadratic twist of E1), he proved that if d is a positive, odd and square-free
integer, then

L(Ed, 1) = a(d)2
Ω

4
√
d
,

where Ω :=
∫∞
1

dx√
x3−x . We de�ne the square root of the algebraic part of L(Ed, 1) to be

√
Lalg(Ed, 1) := a(d).

If we assume Birch and Swinnerton-Dyer (BSD) conjecture, we have that d is a congruent number if
and only if a(d) 6= 0. On the other hand, known results on BSD conjecture imply unconditionally that if
a(d) 6= 0, then d is a noncongruent number.

Starting with Gauss, who developed genus theory, many people studied the structure of 2-Sylow subgroup
of the class group of the imaginary quadratic �elds. For a prime p, denote by h(−p) the class number of
quadratic imaginary �eld Q(

√
−p). Cohn and Barrucand discovered that 8|h(−p) if and only if p = x2+32y2,

for some integers x and y. Williams showed that if ε = T +U
√
p is a fundamental unit of the real quadratic

�eld Q(
√
p) then h(−p) ≡ T + p − 1 (mod 16), where 8|h(−p). It is not known are there in�nitely many

primes p for which 16|h(−p).
In the light of the well known analogy between the class group and Tate-Shafarevich group of the elliptic

curve, one can ask the similar questions about X(Ep), the Tate-Shafarevich group of the elliptic curve Ep.
Bruin and Hemenway [8] proved, under the assumption that the primes p for which Ep(Q) has rank 2 have
asymptotic density 0 in the set of primes, that at least one of the following is true.

a) There are in�nitely many primes p such that Z/8Z ↪→X(Ep).
b) There are in�nitely many primes p such that 16|h(−p).

We prove the �L-function� analog of this result.

Theorem 9 (K. [16]). If d is a positive square free integer, then

3H(−4d) ≡
√
Lalg(Ed, 1) + 8b(d) (mod 16),

where b(d) is dth Fourier coe�cient of the certain Eisenstein series (see Proposition 3.1. ??), and H(−4d)
is the Hurwitz class number. In particular, if p is a prime, then

3h(−4p) ≡
{ √

Lalg(Ep, 1) (mod 16) if p ≡ 1 (mod 16),√
Lalg(Ep, 1) + 8 (mod 16) if p ≡ 9 (mod 16)

Remark 1. The author [19] proved a similar congruence relation between h(−4p) and algebraic part of the
central value of L-function associated to Ramanujan ∆-function and its quadratic twists.

Assuming the full BSD conjecture Tunell showed that #X(Ep) = 1
4a(p)2, hence we have the following

corollary.

Corollary 10 (K. [16]). Let p be a prime. If we assume the full BSD conjecture for the curve Ep, then the
following are true:

a) If p ≡ 1 (mod 16) then

16|h(−4p) ⇐⇒ (Z/8Z)2 ↪→X(Ep) or p is congruent.

b) If p ≡ 9 (mod 16), then

8||h(−4p) ⇐⇒ (Z/8Z)2 ↪→X(Ep) or p is congruent.
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Chebotarev's density theorem implies that the set S of primes p ≡ 9 (mod 16) with property that
8|h(−4p) has a positive density in the set of primes. For p ∈ S, the sign of functional equation of L(Ep, s)
is 1, hence BSD conjecture implies that the rank of Ep is even. If we assume that the set of primes p for
which Ep has rank at least 2 have density 0 in the set of primes, we conclude that there are in�nitely many
primes p ∈ S for which p is noncongruent. Corollary 10 b) now implies that for p ∈ S either 16|h(−4p) or
(Z/8Z)2 ↪→X(Ep).

The following theorem relates the structure of X(Ep) to the arithmetic of real quadratic �eld Q(
√
p).

Theorem 11 (K. [16]). Let p ≡ 1 (mod 8) be a prime. If we assume the full BSD conjecture for the curve
Ep, then we have

(Z/8Z)2 ↪→X(Ep) or p is congruent ⇐⇒ 16|R2,

where R2 := log2(ε) is 2-adic regulator and ε is a fundamental unit of the real quadratic �eld Q(
√
p).

2.7. Modular forms, de Rham cohomology and congruences (joint with A.J. Scholl), in prepara-
tion. In [4], Atkin and Swinnerton-Dyer described a remarkable family of congruences they had discovered,
involving the Fourier coe�cients of modular forms on noncongruence subgroups. Their data suggested
(see [27] for a precise conjecture) that the spaces of cusp forms of weight k for noncongurence subgroup, for
all but �nitely many primes p, should posses a p-adic Hecke eigenbasis in the sense that Fourier coe�cients
a(n) of each basis element satisfy

a(pn)−Apa(n) + χ(p)pk−1a(n/p) ≡ 0 (mod p(k−1)(1+ordp(n))),

where Ap is an algebraic integer and χ is a Dirichlet character (they depend on basis element, but not on
n). This congruence relation is reminiscent of the relation between Fourier coe�cients of Hecke eigenforms
for congruence subgroups (which is surprising since there is no usefull Hecke theory for modular forms on
noncongruence subgroups).

In this paper [21] we show that congruences like those discovered by Atkin and Swinnerton-Dyer hold
for weakly holomorphic modular forms (that is, modular forms which are permitted to have poles at cusps).
Unlike the case of Atkin�Swinnerton-Dyer's original congruences for cusp forms, these congruences are
nontrivial even for congruence subgroups. The simplest case is the weakly modular form of level 1 and
weight 12

E4(z)6/∆(z)− 1464E4(z)3 = q−1 +

∞∑
n=1

a(n)qn

= q−1 − 142236q + 51123200q2 + 39826861650q3 + · · ·

For every prime p ≥ 11 and integer n with ps|n, its coe�cients satisfy the congruence

a(np)− τ(p)a(n) + p11a(n/p) ≡ 0 (mod p11s).

where τ(n) is Ramanujan's function.
As a further example, for odd integer N > 1, we consider a space of weight 3 cuspforms on a certain

genus 0 quotient of Fermat curve XN + Y N = ZN (we denote by Φ0(N) the corresponding noncongruence
modular group). We prove that these cusp forms are �CM forms� in the sense that the Galois representation
associated to them is a Grossencharacter of a cyclotomic �eld Q(ζN ). Also, we show that when N = 5,
for primes p ≡ 2, 3 (mod 5) (non-ordinary primes), the space of cuspforms does not admit a p-adic basis
consisting of forms satisfying Atkin and Swinnerton-Dyer congruence relation. This gives a counterexample
to the conjecture of Atkin and Swinnerton-Dyer as stated in [27] (there is another counterexample in weight
2 found by J. Kibelbeck).

To �repair� the problem, for odd N , we construct certain weakly holomorphic modular forms and prove
ASD like congruences between them and certain holomorphic modular forms that form a basis for the space
of cuspforms. As for illustration, consider the following (weakly holomorphic) modular forms of weight 3 for
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noncongurence subgroup Φ0(3)

f1(τ) = η(τ/2)
4
3 η(τ)−2η(2τ)

20
3

=
∑

c1(n)q
n
2 = q

1
2 − 4

3
q

2
2 +

8

9
q

3
2 − 176

81
q

4
2 + · · · ∈ S3(Φ0(3)),

f2(τ) = η(τ/2)
20
3 η(τ)−10η(2τ)

28
3

=
∑

c2(n)q
n
2 = q

1
2 − 20

3
q

2
2 +

200

9
q

3
2 − 4720

81
q

4
2 + · · · ∈ Sweak3 (Φ0(3)).

We prove that for a prime p ≡ 2 mod 3, there exist αp, βp ∈ Zp such that if ps|n then

c1(pn) ≡ αpc2(n) mod p2(s+1),

c2(pn) ≡ βpc1(n) mod p2(s+1).

Moreover αpβp = p2, and ordp(αp) = 2.

2.8. Modular forms, hypergeometric functions and congruences, submitted. Consider the family
of elliptic curves given by the Legendre equation

y2 = x(x− 1)(x− t), t ∈ C,

whose period integrals

Ω1(t) =

∫ 1

t

dx√
x(x− 1)(x− t)

, Ω2(t) =

∫ ∞
1

dx√
x(x− 1)(x− t)

,

are solutions of the di�erential equation of Picard-Fuch type

t(t− 1)Ω′′(t) + (2t− 1)Ω′(t) +
1

4
Ω(t) = 0.

One �nds that Ω2(t) = π 2F1

(
1
2 ,

1
2 ; 1, t

)
, where

2F1 (a, b; c, t) =

∞∑
n=0

(a)n(b)n
(c)nn!

tn

is the Gauss hypergeometric function. This further gives identity

(4) θ(τ) = 2F1

(
1

2
,

1

2
; 1, 16l(τ)

)
=

∞∑
n=0

(
2n

n

)2

l(τ)n.

Throughout, τ ∈ H, q = eπiτ , θ(τ) =
(∑

n∈Z q
n2
)2

is the classical weight 1 theta series, and l(τ) =

q−8q2 + 44q3−192q4 + · · · is the normalized elliptic modular lambda function (hauptmoduln for Γ(2)). For
more details see [25].

In this paper, we identify certain (weakly holomorphic) modular forms

f(τ) = P (l(τ))θk(τ)
dl(τ)

dτ
,

for some P (t) ∈ Z[t], and k ∈ F, whose Fourier coe�cients are easily understood in terms of elementary
arithmetic (e.g. a spliting behavior of primes in the quadratic extensions). Using identity (4), we exploit the
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relation (via formal group theory) between the coe�cients of the power series P (t)2F1

(
1
2 ,

1
2 ; 1, 16t

)k
, and

Fourier coe�cients of f(τ) to prove some elementary congruences for the numbers

Ak(n) =
∑

i1,i2...ik≥0
i1+i2+···ik=n

(
2i1
i1

)2(
2i2
i2

)2

· · ·
(

2ik
ik

)2

, for k, n ∈ F.

Beukers and Stienstra [40] invented this approach to study congruence properties of Apery numbers

B(n) =

∞∑
k=0

(
n+ k

k

)(
n

k

)2

.

Using the formal Brauer group of some elliptic K3-surface, they proved that for all primes p, and m, r ∈ F
with m odd

B

(
mpr − 1

2

)
− a(p)B

(
mpr−1 − 1

2

)
+ (−1)

p−1
2 p2B

(
mpr−2 − 1

2

)
≡ 0 (mod pr),

where η6(4τ) =
∑∞
n=1 a(n)q2n.

Many authors have subsequently studied arithmetic properties of B(n)′s and discovered similar three
term congruence relations for other Apery like numbers. For related work see [6, 14, 35, 44, 47].

In contrast to these result, the novelity of this paper is that we use families of modular forms, as well as
the weakly holomorphic modular form to extract information about congruence properties of numbers Ak(n).
In particular, even though Foureier coe�cients of weakly holomorphic modular forms do not satisfy three
term relation satis�ed by coe�cients of Hecke eigenforms, they sometimes satisfy three term congruence
relation of Atkin and Swinnerton-Dyer type (see [21]), which then give rise to the three term congruence
relations satis�ed by corresponding Apery like numbers.

Let ∆ be the free subgroup of SL2(Z) generated by the matrices A = ( 1 2
0 1 ) and B = ( 1 0

2 1 ). Note that

Γ(2) = {±I}∆, and that Γ1(4) =
(
1/2 0
0 1

)
∆
(
1/2 0
0 1

)−1
. Divisors of θ(τ), l(τ), and 1− 16l(τ) are suported at

cusps. For an integer k, we denote by Mk(∆) and Sk(∆) the spaces of modular forms and cusp forms of
weight k for group ∆.

First we identify some (weakly holomorphic) modular forms for ∆ that have �simple� Fourier coe�cients.

Theorem 12.
For n ∈ F, let

hn(τ) = θ(τ)6n+1(1− 16l(τ))b
n+1
2 cl(τ)2n =

∞∑
m=1

an(m)qm.

Then hn(τ) ∈ S6n+1(∆), and for a prime p ≡ (−1)n+1 (mod 4), we have that an(p) = 0.

Theorem 13.

a) The modular form

f1(τ) = l(τ)(1− 16l(τ))θ(τ)5 =

∞∑
n=1

b1(n)qn ∈M5(∆)

is the cusp form with complex multiplication by Q(i). In particular, for a prime p > 2 we have

b1(p) =

{
2x4 − 12x2y2 + 2y4 if p ≡ 1 (mod 4), and p = x2 + y2,
0 if p ≡ 3 (mod 4).

b) For an integer n > 2, the Fourier coe�cients c1(n) of the weakly holomorphic modular form g1(τ) =
l(τ)2(1− 16l(τ))2θ(τ)5 =

∑∞
n=2 c1(n)qn satisfy the following congruence relation

b1(n) ≡ 108c1(n) (mod n3).
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c) For integer n > 1, let

fn(τ) = θ(τ)6n−6(1− 16l(τ))b
n−1
2 cl(τ)2n−2f1(τ) =

∞∑
m=1

bn(m)qm.

Then for a prime p ≡ (−1)n (mod 4), we have that bn(p) = 0.

Corollary 14. Let p > 3 be a prime, and r ∈ F. If p ≡ 1 (mod 4), let x and y be integers such that
p = x2 + y2. Denote by D3(n) = A3(n− 1)− 16A3(n− 2). Then the following congruences hold

(5) A3(mpr − 1)− b1(p)A3(mpr−1 − 1) +

(
−1

p

)
p4A3(mpr−2 − 1) ≡ 0 (mod pr),

(6) D3(mpr − 1)− b1(p)D3(mpr−1 − 1) +

(
−1

p

)
p4D3(mpr−2 − 1) ≡ 0 (mod pr−

(−1
p )+1

2 ).

In particular, we have

(7) A3(p− 1) ≡
{

16x4 (mod p) if p ≡ 1 (mod 4),
0 (mod p) if p ≡ 3 (mod 4).

(8) D3(p− 1) ≡
{

4
27x

4 (mod p) if p ≡ 1 (mod 4),
0 (mod p) if p ≡ 3 (mod 4).

For integers n ≥ 1 and m ≥ 0, de�ne the sequences Bn(m) and Cn(m) by the following identities

(1− 16t)b
n−1
2 ct2n−12F1

(
1

2
,

1

2
; 1, 16t

)6n−1

=

∞∑
m=0

Bn(m)tm,

(1− 16t)b
n−1
2 ct2n−22F1

(
1

2
,

1

2
; 1, 16t

)6n−3

=

∞∑
m=0

Cn(m)tm.

Corollary 15. For n ∈ F and a prime p > 2, we have that Bn(p−1) ≡ 0 (mod p), if p ≡ (−1)n+1 (mod 4).
Moreover, Cn(p− 1) ≡ 0 (mod p) if p ≡ (−1)n (mod 4).

Example 1. Let p > 2 be a prime. Consider the coe�cients of 2F1

(
1
2 ,

1
2 ; 1, 16t

)2
. The corresponding

modular form

l(τ)(1− 16l(τ))2F1

(
1

2
,

1

2
; 1, 16l(τ)

)4

=

∞∑
k=1

(−1)k (σ3(k/2)− σ3(k)) qk

is an Eisenstein series whose pth Fourier coe�cient is ≡ 1 mod p (if k is odd, we de�ne σ3(k/2) to be 0).
Hence Lemma ?? implies

p−1∑
k=0

(
2k

k

)2(
2(p− 1− k)

p− 1− k

)2

≡ 1 (mod p),

or equivalently

(
p− 1
p−1
2

)4

≡ 1 (mod p).
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2.9. Modular parametrizations of certain elliptic curves (joint with Y.Sakai, K. Tasaka), sub-
mitted. In this paper, we study some general properties of modular parametrizations, and as a consequences
we explain and generalize the results of Kaneko and Sakai from [15].

Kaneko and Sakai (inspired by the paper of Guerzhoy [12]) observed that certain elliptic curves whose
associated newforms (by the modularity theorem) are given by the eta-quotients from the list of Martin and
Ono [31] can be characterized by a particular di�erential equation involving holomorphic modular forms.

To give an example of this phenomena, let f20(τ) = η(τ)4η(5τ)4 be a unique newform of weight 2 on
Γ0(20), where η(τ) is the Dedekind eta function η(τ) = q1/24

∏
n>0(1 − qn), q = e2πiτ , and put ∆5,4(τ) =

f20(τ/2)2. Then an Eisenstein series Q5(τ) on M4(Γ0(5)) associated either to cusp i∞ or to cusp 0 is a
solution of the following di�erential equation

∂5,4(Q5)2 = Q3
5 −

89

13
Q2

5∆5,4 −
3500

169
Q5∆2

5,4 −
125000

2197
∆3

5,4,(9)

where ∂5,4(Q5(τ)) = 1
2πiQ5(τ)′ − 1

2πiQ5(τ)∆5,4(τ)′/∆5,4(τ) is a Ramanujan-Serre di�erential operator.

Throughout the paper, we use symbol ′ to denote d
dτ . This di�erential equation de�nes a parametriza-

tion of an elliptic curve E : y2 = x3 − 89
13x

2 − 3500
169 x−

125000
2197 by modular functions

x =
Q5(τ)

∆5,4(τ)
, y =

∂5,4(Q5)(τ)

∆5,4(τ)3/2
,

and f20(τ) is the newform associated to E. One �nds that ∆5,4(τ) ∈ S4(Γ0(5)), so curiously the modular
forms ∆5,4, Q5 and ∂(Q5) appearing in this parametrization are modular for Γ0(5), although the conductor
of E is 20.

Using the Eichler-Shimura theory, we generalize (9) to the arbitrary elliptic curve E of conductor 4N ,
E : y2 = x3 + ax2 + bx+ c, where a, b, c ∈ Q, which admits a modular parametrization Φ : X → E satisfying

Φ∗
(
dx

2y

)
= πif4N (τ/2)dτ.

Here X is the modular curve H/
(

1
2 0
0 1

)−1
Γ0(4N)

(
1
2 0
0 1

)
, and f4N (τ) ∈ S2(Γ0(4N)) is a newform with rational

Fourier coe�cients associated to E. It follows from the modularity theorem that in any Q-isomorphism class
of elliptic curves there is an elliptic curve E admitting such parametrization (note that for u ∈ Q× the
change of variables x = u2X and y = u3Y implies dX

Y = udxy ).

To such Φ we associate a solution Q(τ) = x(Φ(τ))f4N (τ/2)2 of a di�erential equation

∂N,4(Q)2 = Q3 + aQ2∆N,4 + bQ∆2
N,4 + c∆3

N,4,(10)

where ∆N,4(τ) = f4N (τ/2)2, and ∂N,4(Q(τ)) = 1
2πiQ(τ)′ − 1

2πiQ(τ)∆N,4(τ)′/∆N,4(τ).

We show that f4N (τ/2)2 is modular for Γ0(N). In general the solution Q(τ) will not be holomorphic

and will be modular only for
(

1
2 0
0 1

)−1
Γ0(4N)

(
1
2 0
0 1

)
, but if the preimage of the point at in�nity of E under

Φ is contained in cusps of X and is invariant under the action of ( 1 0
N 1 ) and ( 1 1

0 1 ) (acting on X by Möbius
transformations), Q(τ) will be both holomorphic and modular for Γ0(N). Moreover, we show that there are
only �nitely many (up to isomorphism) elliptic curves E admitting Φ with these two properties.

We also obtain similar results generalizing the other examples from [15] that correspond to the elliptic
curves over Q with j-invariant 0 and 1728 (see the next section).

Throughout the paper, let N be a positive integer and k ∈ {4, 6, 8, 12}. Let Ek/Q be an elliptic curve
given by the short Weierstrass equation y2 = fk(x), where

f4(x) = x3 + a2x
2 + a4x+ a6,

f6(x) = x3 + b6,
f8(x) = x3 + c4x,
f12(x) = x3 + d6,
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and a2, a4, a6, b6, c4, d6 ∈ Q. Moreover, we assume j(E4) 6= 0, 1728.
Let

fN,k(τ) ∈ S2

(
Γ0

(
k2

4
N

))
be a newform with rational Fourier coe�cients, and let Γk :=

(
2
k 0
0 1

)−1
Γ0(k

2

4 N)
(

2
k 0
0 1

)
. De�ne

∆N,k(τ) := fN,k(2τ/k)k/2 ∈ Sk(Γk).

For f(τ) ∈Mmer
4 (Γk), we de�ne the (Ramanujan-Serre) di�erential operator by

∂N,k(f(τ)) =
k

8πi
f ′(τ)− 1

2πi
f(τ)

∆′N,k(τ)

∆N,k(τ)
∈Mmer

6 (Γk).

Finally, assume that there is a meromorphic modular form Qk(τ) ∈ Mmer
4 (Γk), such that the corre-

sponding di�erential equation holds

(11)

∂N,4(Q4(τ))2 = Q4(τ)3 + a2Q4(τ)2∆N,4(τ) + a4Q4(τ)∆N,4(τ)2 + a6∆N,4(τ)3

∂N,6(Q6(τ))2 = Q6(τ)3 + b6∆N,6(τ)2

∂N,8(Q8(τ))2 = Q8(τ)3 + c4Q8(τ)∆N,8(τ)
∂N,12(Q12(τ))2 = Q12(τ)3 + d6∆N,12(τ).

Each of these four identities de�nes a modular parametrization Ψk : Xk → Ek

Ψk(τ) =

(
Qk(τ)

∆N,k(τ)4/k
,
∂N,k(Qk)(τ)

∆N,k(τ)6/k

)
,

where Xk is the compacti�ed modular curve H/Γk.

Proposition 1. Let dx
2y be the Néron di�erential on Ek. Then

(12) Ψ∗k

(
dx

2y

)
=

4πi

k
fN,k(2τ/k)dτ.

In particular, the conductor of Ek is k2

4 N and fN,k(τ) is the cusp form associated to Ek by the modularity
theorem.

Remark 2. Note that when k = 6, 8 or 12, fN,k(τ) is a modular form with complex multiplication by the

ring of integers of Q(
√
−3), Q(

√
−1) and Q(

√
−3) respectively.

Conversely, given a modular parametrization Φk : Xk → Ek satisfying (12), we construct a di�erential
equation (11) and its solution Qk(τ) as follows.

Let x and y be functions on Ek satisfying Weierstrass equation y2 = fk(x). Functions x(τ) := x ◦Φk(τ)
and y(τ) := y ◦ Φk(τ) satisfy y(τ)2 = fk(x(τ)). Moreover (12) implies that

(13)

(
k

8πi
x′(τ)

)2

= fN,k(2τ/k)2y(τ)2 = ∆N,k(τ)4/kfk(x(τ)).

De�ne Qk(τ) := x(τ)∆N,k(τ)4/k.

Proposition 2. The following formula holds

∂N,k(Qk(τ))2 = ∆N,k(τ)12/kfk(x(τ)).

In particular, Qk(τ) is a solution of (11).

Now we investigate conditions under which Qk(τ) is holomorphic. The following lemma easily follows
from the formula above.
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Lemma 1. Assume that τ0 ∈ Xk is a pole of x(τ). Then

ordτ0(Qk(τ)) =

{
0, if τ0 is a cusp,

−2, if τ0 ∈ H.

As a consequence, we have the following characterization of the holomorphicity of Qk(τ) in terms of
modular parametrization Φk. Denote by C the set of cusps of Xk, and by O the point at in�nity of Ek.

Proposition 3. We have that Qk(τ) is holomorphic if and only if Φ−1k (O) ⊂ C.

We show that the degree of Φk (as a function of the conductor) grows faster than the total rami�cation
index at cusps hence the following theorem holds.

Theorem 16. There are �nitely many elliptic curves E/Q (up to a Q-isomorphism) that admit a modular
parametrization Φ : Xk → E with the property that Φ−1(O) ⊂ C.

In particular, there are �nitely many elliptic curves Ek (up to a Q-isomorphism) for which Qk(τ) (which
satisfy equation (11)) is holomorphic.

De�ne A = ( 1 0
N 1 ) and T = ( 1 1

0 1 ). It is easy to see that Γk is generated by Γ0(N) and A and T , hence
Qk(τ) is modular for Γ0(N) if and only if it is invariant under the action of slash operators |A and |T . The
following theorem describes the modularity in terms of parametrization Φk.

Theorem 17. If Φ−1k (O) is invariant under A and T , then Qk(τ) is modular for Γ0(N).
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