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Abstract

Determining the rank of an elliptic curve E/Q remains a central challenge in number theory. Heuris-
tics such as Mestre–Nagao sums are widely used to estimate ranks, but there is considerable room for
improving their predictive power. This paper introduces two novel methods for enhancing rank clas-
sification using Mestre–Nagao sums. First, we propose a “multi-value” approach that simultaneously
uses two distinct sums, S0 and S5, evaluated over multiple ranges. This multi-sum perspective signifi-
cantly improves classification accuracy over traditional single-sum heuristics. Second, we employ machine
learning—specifically deep neural networks—to learn optimal, potentially conductor-dependent weight-
ings for Mestre–Nagao sums directly from data. Our results indicate that adaptively weighted sums offer
a slight edge in rank classification over traditional methods.

1 Introduction
The rank r of the Mordell-Weil group of an elliptic curve E over the rational numbers Q is a fundamental
invariant that quantifies the size of the group of rational points E(Q). Determining this rank is a central
challenge in number theory. While algorithms exist for computing the rank, they often entail significant
computational complexity and may not terminate for all curves. The Birch and Swinnerton-Dyer (BSD)
conjecture connects the rank to the analytic properties of the curve’s L-function, inspiring the development
of analytic heuristics for rank estimation.

One such heuristic is the Mestre-Nagao sum S0(B), defined as a sum over the primes p ≤ B not dividing
the conductor N of the curve:

S0(B) =
1

logB

∑
p≤B
p∤N

ap log p

p
,

where ap = p+1−#E(Fp) is the trace of Frobenius. Under the original BSD conjecture, it is expected that
limB→∞ S0(B) = −ran + 1

2 , where ran denotes the analytic rank of E, conjecturally equal to the algebraic
rank r(see [KM23]).

In practice, S0(B) is computed for a large bound B, and its value is used to predict the rank. However,
the effectiveness of this sum can be limited. Its convergence can be slow (see [KM23, Appendix]), and
recent work [BKN24, Poz24] has highlighted an oscillatory behavior linked to the phenomenon known as
murmurations of elliptic curves [HLOP24, LOP25, Zub23]. This phenomenon surprisingly reveals that
increasing the summation bound B does not always lead to better rank classification accuracy; in some
cases, smaller bounds yield superior results. This observation underscores the subtleties in applying these
sums naively. Furthermore, the standard Mestre-Nagao sum treats all primes equally (up to the weighting)
and does not adapt to curve-specific properties like the conductor N .

Recent studies have applied machine learning, notably linear regression [HLO23] and Convolutional
Neural Networks (CNNs) [KV23], to the problem of rank classification using ap sequences. In a similar
spirit, several new works [BCCHLNP25, BCDLLOQV25, BBFHHS24] have explored predicting other deep
invariants of elliptic curves—such as Euler factors, orders of vanishing of L-functions, and properties of the
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Shafarevich–Tate group—using machine learning approaches. Pursuing related goals, this paper proposes
two novel techniques specifically designed to enhance Mestre–Nagao sum heuristics.

First, we propose a multi-value Mestre–Nagao sum approach. Instead of relying on a single sum S(B)
computed at a fixed bound B, we consider multiple sums, such as S0(Bi) and S5(Bj)(for definition see
Section 2), evaluated at various bounds Bi and Bj . This collection of sum values serves as input features
for a classification model in a neural network, resulting in improved discrimination between different ranks
compared to using any single sum value alone (see Table 1).

Second, we propose a machine learning approach for constructing an optimal Mestre-Nagao sum, a
weighted combination of Frobenius traces, where the weights may depend on the conductor, depending
on whether it is included as an input feature. Specifically, we study expressions of the form∑

p≤B

wpap(E)/
√
p

where the weights wp are learned from data to maximize the accuracy of rank classification. This approach
allows the model to adaptively emphasize the contributions of different primes.

We evaluate these approaches using LMFDB [LMFDB] and Balakrishnan et al. [BHKSSW16] database
of elliptic curves, comparing their performance against traditional Mestre-Nagao heuristics implemented by
machine learning models. For implementing our models we use PyTorch [PGMLBC19]. Our results indicate
that both the multi-value approach and the learned sums offer tangible improvements in rank classification
accuracy.

This paper is structured as follows: Section 2 details the multi-value Mestre-Nagao sum approach and
presents classification results. Section 3 describes the methodology for learning optimal sum coefficients
using neural networks and analyzes the learned weights and resulting performance. Section 4 concludes with
a summary of findings and potential directions for future research.

2 Rank Classification via Multi-Value Mestre-Nagao Sums
In this section, we focus on the Mestre-Nagao sums S0(B) and S5(B), defined as:

S0(B) =
1

logB

∑
p≤B
p∤N

ap(E) log p

p
, (1)

S5(B) =
∑
p≤B
p∤N

log

(
p+ 1− ap(E)

p

)
+

∑
p≤B
p|N

log

(
1.5

p− 1

p

)
. (2)

A variant of S5 was employed in [EK20] to find elliptic curves with record ranks.
We investigate the use of multiple Mestre–Nagao sums, specifically S0(B) and S5(B), computed at various

bounds B ∈ {1000, 5000, 10000, 20000, 30000, 40000, 50000, 100000}, as input features for rank classification
models (together with conductor N). These sums are combined in different configurations to capture a
richer set of information about the curve’s behavior. Fully connected neural networks are employed as the
classification models.

More precisely, consider B ⊆ {1000, 5000, 10000, 20000, 30000, 40000, 50000, 100000}, and a neural net-
work that takes as input the logarithm of the conductor N and the Mestre-Nagao sums S0(B) and S5(B) for
all B ∈ B. Several fully connected layers with ReLU activations are used as the hidden layers of the network,
where the optimal number of layers and the number of neurons in each hidden layer were determined by
hyperparameter search. We used ranges of 3 to 6 hidden layers and 8 to 512 neurons in each hidden layer
(using only powers of 2). Best results are achieved by using 4 hidden layers and 64 or 128 hidden neurons
per layer for experiments in subsection 2.1 or 256 hidden neurons per layer for experiments in subsection
2.2. The output layer computes the classification probabilities for each of the possible ranks. A weighted
cross-entropy loss function is used in the optimization of this neural network, where weights are computed
to be proportional to the inverse of the relative frequency of each rank in the used elliptic curve dataset.
The AdamW optimizer [LH19] was used to train the network, with a hyperparameter search to find the best
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learning rate and weight decay. We also consider the case where only the S0 sums are used as input, and the
case where only the S5 sums are used as input (together with the logarithm of the conductor in all cases).

Two primary experimental setups were used, as described in the following subsections.

2.1 Top Range Test
In the first setup, models were trained on elliptic curves from the Balakrishnan et al. [BHKSSW16] database
with conductors in the range N ∈ [1, 108] (4,875,676 curves). These trained models were then tested on
curves with conductors in the higher range N ∈ (108, 109] (12,512,753 curves).

The performance, measured by the Matthews Correlation Coefficient (MCC), for different combinations
of input sums and bounds B is presented in Table 1. The results suggest that using combinations of
sums, particularly S0 and S5 together, generally yields better performance than using either sum alone.
Notably, using all available bounds for both S0 and S5 achieved the highest MCC (0.795), although using
just B ∈ {103, 105} still provided strong results (MCC=0.784). Using only S0(10

5) gave an MCC of 0.686.

Table 1: MCC for neural networks trained with different combinations of sums (Top Range Test). Tested
with curves in the conductor range N ∈ (108, 109].

B S0 and S5 S0 S5

All 0.795 0.737 0.608
103, 104, 105 0.786 0.726 0.609
103, 105 0.784 0.709 0.595
104, 105 0.740 0.705 0.562

5 · 104, 105 0.710 0.685 0.537
105 0.699 0.686 0.527
104 0.553 0.537 0.384
103 0.330 0.309 0.277

Confusion matrices provide further insight into the classification performance for specific rank predictions.
Table 2 shows the confusion matrix (in percentages) for the best performing model using S0, S5, and all
values of B. Table 3 shows the matrix for a baseline model using only S0(1000).

Table 2: Confusion matrix (%) for neural network predictions with S0, S5, and all values of B (Top Range
Test).

True Rank Pred 0 Pred 1 Pred 2 Pred 3 Pred 4

0 23.674 6.497 0.336 0.000 0.000
1 3.854 41.410 1.578 0.003 0.003
2 0.474 0.521 18.352 0.003 0.000
3 0.000 0.001 0.005 3.134 0.000
4 0.000 0.000 0.000 0.000 0.153

Table 3: Confusion matrix (%) for neural network predictions with S0 only, B = 1000 (Top Range Test).

True Rank Pred 0 Pred 1 Pred 2 Pred 3 Pred 4

0 6.607 17.907 5.977 0.016 0.000
1 4.403 27.587 14.301 0.558 0.000
2 0.000 2.602 15.764 0.984 0.000
3 0.000 0.000 0.462 2.677 0.000
4 0.000 0.000 0.000 0.043 0.110
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2.2 Uniform Test Range
In the second setup, models were trained, validated, and tested on elliptic curves with conductors across
the entire range N ∈ [1, 109]. The full dataset of 17,388,429 curves was split into 60% for training, 20% for
validation, and 20% for testing.

The MCC results for this uniform range setup are shown in Table 4. Similar trends are observed, with the
combination of S0 and S5 using all bounds achieving the highest MCC (0.856). Using only S0(10

5) yielded
an MCC of 0.712.

Table 4: MCC for neural networks trained with different combinations of sums (Uniform Test Range).

B S0 and S5 S0 S5

All 0.856 0.787 0.681
103, 104, 105 0.855 0.769 0.661
103, 105 0.835 0.747 0.637
104, 105 0.787 0.739 0.601

5 · 104, 105 0.752 0.729 0.578
105 0.733 0.712 0.573
104 0.596 0.573 0.422
103 0.371 0.359 0.295

Corresponding confusion matrices for the uniform range test are shown in Table 5 (for S0, S5, all B) and
Table 6 (for S0 only, B = 1000).

Table 5: Confusion matrix (%) for neural network predictions with S0, S5, and all values of B (Uniform Test
Range).

True Rank Pred 0 Pred 1 Pred 2 Pred 3 Pred 4

0 26.035 4.104 0.345 0.000 0.000
1 3.443 42.346 1.237 0.002 0.000
2 0.061 0.147 19.148 0.002 0.000
3 0.000 0.000 0.000 2.998 0.000
4 0.000 0.000 0.000 0.000 0.131

Table 6: Confusion matrix (%) for neural network predictions with S0 only and B = 1000 (Uniform Test
Range).

True Rank Pred 0 Pred 1 Pred 2 Pred 3 Pred 4

0 7.329 17.556 5.559 0.040 0.000
1 3.463 30.043 12.592 0.931 0.000
2 0.000 2.054 15.894 1.404 0.007
3 0.000 0.000 0.126 2.846 0.027
4 0.000 0.000 0.000 0.001 0.130

Overall, our findings demonstrate that combining S0(B) and S5(B) across various bounds B enhances
rank classification performance compared to using single sum values.

Tables 1 and 4 show a notable improvement in classification accuracy when transitioning from a model
that uses only S5(10

5) as input (MCC scores of 0.527 and 0.573) to one that uses both S5(10
3) and S5(10

5)
(MCC scores of 0.595 and 0.637). This can be heuristically explained by recalling the original Birch and
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Swinnerton-Dyer conjecture, which states that∏
p≤B
p∤N

p+ 1− ap
p

∼ CE(logB)r as B → ∞,

for some constant CE depending on the curve. This suggests the approximation

S5(B) ≈ logCE + r log logB.

Thus, providing the network with two values of S5 at different bounds may allow it to implicitly estimate
the constant CE , thereby reducing misclassification errors.

2.3 Rank Prediction via Rectangular Regions in Sum Space
The benefit of using multiple bounds for the same type of sum, such as the pair (S0(10

3), S0(10
5)), can be

further analyzed. One can attempt to define classification rules based directly on these two values. Simple
rules, like defining rectangular regions in the (S0(10

3), S0(10
5)) plane for each rank, can already outperform

using only S0(10
5) in certain conductor ranges.

This is demonstrated in Figures 1 (left), and 2 (left). In these figures, we collected all elliptic curves with
conductor N ∈ [100 000, 150 000] (Figure 1) and N ∈ [100 000 000, 100 750 000] (Figure 2), and plotted the
values of S0(10

3) and S0(10
5) for each curve. The color of each point indicates the actual rank of the curve.

We then defined rectangular regions in the (S0(10
3), S0(10

5)) plane for each rank such that the MCC of the
classification based on these regions is maximized. The resulting classification regions are shown in the left
panels of Figures 1 and 2. Compared to using only S0(10

5), this approach improves the MCC from 0.9826
to 0.9921 for the first example (Figure 1) and from 0.7530 to 0.7649 for the second example (Figure 2). Note
that the rectangles have to be recomputed for each conductor range.

On the other hand, the neural network trained on the logarithm of the conductor together with S0(10
3)

and S0(10
5) can learn more complex decision boundaries than simple rectangles, as shown in the right panels

of Figures 1 and 2. The model reported in Table 4 is used for both figures, and the MCC for the elliptic
curves from the stated conductor ranges has now improved to 0.9962 for the first example (Figure 1) and to
0.7745 for the second example (Figure 2). Note the intricate zone of rank 0 curves appearing in between the
rank 1 and rank 2 zones in the second example which is captured by the neural network model. However,
there are many rank 0 curves inside the rank 1 zone, which the neural network model does not detect. This
is a known issue with the Mestre-Nagao sums, as they do not always distinguish well between rank 0 and
rank 1 curves.

3 Learning Optimal Mestre-Nagao Sums
While the multi-value approach exploits existing sum definitions more effectively, it does not alter the
underlying structure of the Mestre-Nagao sums themselves (e.g., the log p/p weighting). An alternative
approach is to learn optimal weights directly from data.

Consider a generalized weighted sum related to the Mestre-Nagao sum:

Sopt(E) =
∑
p≤B

wp
ap(E)
√
p

(3)

where the weights wp are parameters learned by the network. The goal is to find weights wp such that
Sopt(E) is maximally correlated with, or predictive of, the rank of E.

We propose using neural networks to learn these optimal weights implicitly. The network takes as input
the sequence of normalized Frobenius traces (ap(E)/

√
p)p<105 for an elliptic curve E, potentially along with

the logarithm of the conductor log10(N), and is trained to predict the rank r ∈ {0, 1, 2, 3, 4, 5}.
We consider two main architectures:

1. Conductor-Independent Network: Takes only the sequence (ap(E)/
√
p)p<105 as input.
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Figure 1: Rank cutoff areas for elliptic curves of conductor 100 000 using the values of S0(1 000) and
S0(100 000). Left: Classification based on optimal rectangular regions. Right: Classification by the neural
network model. Each point in the point cloud represents a single elliptic curve whose actual rank is color-
coded.

Figure 2: Rank cutoff areas for elliptic curves of conductor 100 000 000 using the values of S0(1 000) and
S0(100 000). Left: Classification based on optimal rectangular regions. Right: Classification by the neural
network model. Each point in the point cloud represents a single elliptic curve whose actual rank is color-
coded.
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2. Conductor-Dependent Network: Takes both (ap(E)/
√
p)p<105 and log10(N) as input. This allows

the network to potentially learn weights wp that implicitly depend on N .

The core of the architecture involves a module that computes the weights wp. This module uses a fixed
positional encoding representing the primes p < 105. Each positional encoding is a real number from [−1, 1]
computed as −1 + 2(π(p)/π(B)), where π(x) := |{p ≤ x : p is prime}| is the prime-counting function.
In the conductor-dependent case, log10(N) (repeated for each prime) is concatenated with the positional
encoding. This combined input (or just the positional encoding in the conductor-independent case) is
processed through a series of five 1D convolutional neural network layers (with kernel size 1, acting as per-
position linear transformations) and ReLU activation functions in between layers to produce the weights wp.
The first convolutional layer increases the number of channels from 1 (or 2 in the conductor-dependent case)
to 128, subsequent convolutional layers keep 128 channels, and the last convolutional layer decreases the
number of channels to 1, which is the value wp. The generalized sum Sopt(E) =

∑
p<105 wp(ap(E)/

√
p) is

then computed. Finally, the pair (log10(N), Sopt(E)) is passed through the second module that is composed
of four fully connected (Dense) layers with ReLU activations in between layers and 128 neurons in each of
the hidden layers to produce the final classification probabilities for each of the possible ranks. A weighted
cross-entropy loss function is used in the optimization of this neural network, where weights are computed
to be proportional to the inverse of the relative frequency of each rank in the used elliptic curve dataset.
Again, the AdamW optimizer [LH19] was used to train the network, with a learning rate equal to 10−4 and
training for 5 epochs using One Cycle Policy [ST18] for learning rate scheduling.

A key advantage of the conductor-dependent approach is that it allows us to observe how the implicitly
learned optimal weights wp vary depending on the conductor range (as illustrated in Figure 4), providing
insight into the model’s learned strategy.

The performance of these learned sum networks was evaluated on the full dataset (N ∈ [1, 109] split
60/20/20), using a uniformly chosen test set. The conductor-independent network achieved an MCC of
0.7283, which is the small improvement over the MCC of 0.712 obtained from classification based on the
S0 sum. For the learned coefficients wp see Figure 3 The conductor-dependent network achieved a slightly
higher MCC of 0.7322.

Figure 3: Conceptual visualization of learned optimal coefficients wp showing dependence on conductor range
N .

The detailed confusion matrix for the conductor-dependent network is shown in Table 7.
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Table 7: Confusion matrix (%) for the rank classification task using the learned optimal sums (conductor-
dependent network). Ranks 0-5.

True Rank Pred 0 Pred 1 Pred 2 Pred 3 Pred 4 Pred 5

0 29.2371 0.9427 0.0000 0.0000 0.0000 0.0000
1 4.9485 39.8230 2.1971 0.0029 0.0000 0.0000
2 0.1512 0.0007 19.1919 0.0089 0.0000 0.0000
3 0.0000 0.0000 0.0001 3.0194 0.0000 0.0000
4 0.0000 0.0000 0.0000 0.0000 0.1299 0.0000
5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0009

Figure 4: Conceptual visualization of learned optimal coefficients wp showing dependence on conductor range
N .
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While identifying explicit analytical formulas for these optimal, conductor-dependent coefficients remains
challenging, the neural network approach effectively discovers and utilizes them. The model’s performance
on higher ranks (3, 4, 5), as seen in the confusion matrix, is limited by the scarcity of such curves in the
training data but demonstrates the potential applicability.

The experiments indicate that neural networks can successfully learn effective, adaptive weighting schemes
for ap(E) traces, leading to improved rank classification compared to both traditional Mestre-Nagao sums
and the multi-value approach.

4 Conclusion and Future Work
This paper presents two data-driven approaches for improving the rank classification of elliptic curves E/Q
based on information derived from Frobenius traces ap. Both methods extend the classical Mestre–Nagao
sum heuristic by integrating modern machine learning techniques to enhance predictive accuracy.

The first approach, based on combining multiple Mestre–Nagao sums computed at different bounds,
demonstrates that using multiple values—especially from both S0(B) and S5(B)—significantly improves
classification performance compared to using a single sum.

The second approach uses deep neural networks to learn optimal linear combinations of Frobenius traces
of the form

∑
wpap/

√
p, resulting in a data-driven refinement of the classical Mestre–Nagao sum. We trained

two versions of this model: one that includes the conductor N as an input feature, and one that does not.
Both variants outperformed the baseline model based solely on the S0 sum, though the improvement in
accuracy was modest.

In future work, we plan to investigate the efficacy of these models on elliptic curves of higher rank, as
the main challenge in the present study lies in distinguishing curves of rank zero from those of rank one.
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