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1. Abstract

This paper investigates the detection of the rank of elliptic curves with ranks 0 and
1, employing a heuristic known as the Mestre-Nagao sum

S(B) =
1

logB

∑
p<B

good reduction

ap(E) log p

p
,

where ap(E) is defined as p+1−#E(Fp) for an elliptic curve E/Q with good reduction
at prime p. This approach is inspired by the Birch and Swinnerton-Dyer conjecture.

Our observations reveal an oscillatory behavior in the sums, closely associated with
the recently discovered phenomena of murmurations of elliptic curves [HLOP22]. Sur-
prisingly, this suggests that in some cases, opting for a smaller value of B yields a more
accurate classification than choosing a larger one. For instance, when considering
elliptic curves with conductors within the range of [40 000, 45 000], the rank classifi-
cation based on ap’s with p < B = 3 200 produces better results compared to using
B = 50 000. This phenomenon finds partial explanation in the recent work of Zubrilina
[Zub23].

2. Introduction

Let E be an elliptic curve over Q with conductor N . Mordell’s theorem states that
the group of rational points E(Q) is a finitely generated abelian group, E(Q)tors × Zr,
where E(Q)tors is the torsion subgroup and r is its (algebraic) rank. While the torsion
subgroups have been well understood following Mazur’s work, determining the rank
remains an enigma. Its possible values are unknown, a question initially posed by
Poincaré [Poi01]. Moreover, there’s no consensus on whether the rank is unbounded.
Traditionally, it was thought to be unbounded until studies by Watkins and Park et
al. [WDE+14, Wat15, PPVW19] proposed, using heuristic models, that only a finite
number of curves has a rank exceeding 21. Elkies holds the current record with a rank
of 28.

Finding high-rank curves poses challenges, partly due to the computational complex-
ity of determining an elliptic curve’s rank. No universally applicable algorithm exists
for this task, primarily because finding rational points on elliptic curves is complex.
Descent algorithms, commonly used, often reduce to a basic point search on auxiliary
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curves. To tackle this, researchers employ rank heuristics inspired by the Birch and
Swinnerton-Dyer conjecture. These heuristics help identify potential high-rank elliptic
curves, easing the computational burden.

For each prime of good reduction p, we define ap = p + 1 − #E(Fp). For p|N , we
set ap = 0,−1, or 1 if, respectively, E has additive, split multiplicative or non-split
multiplicative reduction at p. The L-function attached to E/Q is then defined as an
Euler product

LE(s) =
∏
p|∆

(
1− ap

ps

)−1∏
p-∆

(
1− ap

ps
+

p

p2s

)−1

,

which converges absolutely for <(s) > 3/2 and extends to an entire function by the
Modularity theorem [Wil95, BCDT01]. The Birch and Swinnerton-Dyer (BSD) con-
jecture states that the order of vanishing of LE(s) at s = 1 (the quantity known as
analytic rank) is equal to the rank of E(Q).

Mestre [Mes82] and Nagao [Nag92], and later others [EK20, Bob13], motivated by
BSD conjecture, introduced certain sums (see Section 2 in [KV23] for one list of sums)
which are aimed at detecting curves with high analytic rank. In an abuse of terminol-
ogy, we refer to all such sums as the Mestre-Nagao sums.

In this paper we will study the following sum

S(B) =
1

logB

∑
p<B,

good reduction

ap(E) log p

p
.

The sum was thoroughly analyzed in [KM22], demonstrating that if the limit limB→∞ S(B)
exists, it converges to −ran + 1/2, where ran represents the analytic rank of E/Q.

The classification of the rank of elliptic curves based on ap coefficients and conduc-
tor was explored in [KV23] (see also [HLO23]), wherein the authors trained a deep
convolutional neural network (CNN) for this purpose. As a benchmark for the CNN’s
performance, they also trained simple fully connected neural networks using the value
of one of the six Mestre-Nagao sums (one of which was S(B)) at fixed B = 1 000, 10 000
or 100 000 along with the conductor. Remarkably, the models encountered the most
difficulty when classifying curves of rank zero and one, although this task is easily
distinguishable for humans due to the Parity conjecture.

Therefore, our focus in this paper lies on the following classification problem.

Problem. For a fixed B > 0, consider an elliptic curve E/Q with conductor N and
rank equal to 0 or 1. Our objective is to estimate the rank of E based on the values of
S(B) and N .

Essentially, given a specific B and a conductor N (or in practice, a conductor range

such as [N,N + 10
√
N ]), the task is to identify the optimal cutoff value C(N). This
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Figure 1. Average values of S(B) and their corresponding 90% confi-
dence intervals are computed for 1026 curves of rank 0 and 1485 curves
of 1, within the conductor range [40 000, 45 000].

value distinguishes between curves with S(B) > C(N), classified as rank 0, and those
with S(B) ≤ C(N), classified as rank 1. Given the conjectural convergence of S(B),
one would anticipate that increasing B would consistently enhance the classification
quality. After all, having more coefficients ap should lead to a better approximation of
the L-function.

Surprisingly, this assumption appears not to hold true. We observe this in the Figure
1, which shows the averages of S(B) (along with 90% confidence intervals) separately
for curves of rank 0 and 1 in the conductor range [40 000, 45 000]. In all our experiments,
we are using Balakrishnan et al. [BHK+16] database of elliptic curves.

The figure suggests that we can expect better classification quality if we choose B
corresponding to the first local maximum, which occurs at around B = 0.08×40 000 =
3 200, rather than opting for a much larger B value such as B = 50 000. Indeed, for
the first choice of B, the optimal cutoff is C = 0.1368, with which we can correctly
classify 98.73% of curves in the given conductor range, while for the second choice of
B, the optimal cutoff is C = 0.0694, resulting in 97.85% correct classification!
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Figure 2. Distribution of averages of ap’s of elliptic curves of rank 0
(blue) and 1 (red) with conductors in [7 500, 10 000]. The figure is sourced
from [HLOP22].

Interestingly, the locations of the first few local maxima can be fairly precisely pre-
dicted. In the conductor range [N,N + 10

√
N ], the first local maximum is at around

B = 0.08N , the second one is at B = 0.65N , and the third one is at B = 1.7N . For
an illustrative demonstration of this phenomena, please refer to the animation [BK24]
that presents the supplementary material for this manuscript.

We can partially explain these findings by linking it to the recent work on the
murmurations of elliptic curves.

In their study, He, Lee, Oliver, and Pozdnyakov [HLOP22] discovered a striking
oscillation pattern in the averages of the ap coefficients of elliptic curves with fixed
rank (zero or one) and conductor within a specified range. See Figure 2 taken from
their paper for an illustration.

Subsequently, Sutherland observed similar phenomena in more general families of
L-functions, including cusp forms with fixed root numbers. Zubrilina [Zub23] provided
an explanation for these phenomena within the context of families of cusp forms.

By applying the Eichler-Selberg formula to the composition of Hecke and Atkin-
Lehner operators, Zubrilina derived an asymptotic formula for the average of ap(f)ε(f),
where f ranges over newforms in the spaces of cusp forms S2(Γ0(N)) for N squarefree
in the interval [X,X + Y ]. Here, ε(f) represents the root number, and ap(f) denotes
the p-th Fourier coefficient of f . Please refer to Theorem 1 in [Zub23] for the precise
formulation of this result.

The main term of the average is a function of y = p
X

and is equal to

M(y) = C1
√
y + C2

∑
1≤r≤2

√
y

c(r)
√

4y − r2 − C3y,

where Ci are explicit positive constants and c(r) denotes an explicit positive function
(see Section 3), while the error term depends on Y .



MURMURATIONS OF MESTRE-NAGAO SUMS 5

Figure 3. Graph of f(x) for N = 100, 000.

We can use the formula for M(y) as a heuristics, disregarding all the error terms, to
approximate the averages of S(B) over the families of rank 0 and 1, or more precisely, to

approximate the average of 1
logB

∑
p<B

ap(E)ε(E) log p

p
for E in a conductor range [X,X +

Y ] with the expression 1
logB

∑
p<B

M(p/X) log p
p

. For a fixed X = N , by setting B = xN ,

we can define the function

f(x) =
1

log xN

∑
p<xN

M(p/N) log p

p
.

Figure 3 shows the graph of f(x) for N = 100 000.
The first two local maxima, located approximately at 0.11 and 0.71 respectively,

closely correspond to our earlier observations from the data, which were approximately
0.08 and 0.65 respectively. However, the anticipated third maximum at 1.7 is not
discernible in the graph, likely due to the neglected error terms. For a detailed analysis
of function f(x), please refer to Section 3. In particular, Proposition 3.2 implies that

as N tends to infinity, the first maximum of f(x) converges to
C2

1

C2
3
≈ 0.14261, while the

second converges to λ ≈ 0.75085.

3. Local maxima of f(x)

In this section we will approximate the first two points of local maxima of the function

f(x) =
1

log xN

∑
p<xN

M(p/N) log p

p
.
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where M2(y) is the weight 2 murmuration density defined as

M2(y) = C1
√
y + C2

∑
1≤r≤2

√
y

c(r)
√

4y − r2 − C3y,

where C1 = D2A, C2 = D2B, C3 = D2π are constants and

c(r) =
∏
p|r

(
1 +

p2

p4 − 2p2 − p+ 1

)
,

A =
∏
p

(
1 +

p

(p+ 1)2(p− 1)

)
,

B =
∏
p

p4 − 2p2 − p+ 1

(p2 − 1)2
,

D2 =
12

π
∏

p

(
1− 1

p2+p

) .
3.1. Estimations for f(x). We start by observing that the sum

∑
1≤r≤2

√
p/N

c(r)
√

4p/N − r2

in the function M(p/N) vanishes for 0 < x < 1/4 (i.e. for primes p < N/4) and for
1/4 ≤ x < 1 (i.e. for primes N/4 ≤ p < N) it only evaluates in r = 1. Thus, we will
observe the function f(x) on the intervals

〈
0, 1

4

〉
and

[
1
4
, 1
〉
.

Assume that 0 < x < 1/4. By plugging in the formula for M(p/N) we have that

f(x) =
1

log xN

∑
p≤xN

(
C

log p
√
p
−D log p

)
.

where C = C1√
N

and D = C3

N
.

Observe that
∑

p≤xN log p = ϑ(xN) where ϑ(x) is the first Chebyshev function.
Using Abel’s summation formula we get∑

p≤xN

log p
√
p

=
ϑ(xN)√
xN

+

∫ xN

2

ϑ(t)

2t
3
2

dt.

By assuming the Riemann hypothesis (RH), we have that ϑ(x) = x + Oε

(
x

1
2

+ε
)

.

Thus, we get the following estimates:∑
p≤xN

log p = xN +Oε

(
(xN)

1
2

+ε
)
,

∑
p≤xN

log p
√
p

=
√
xN +Oε ((xN)ε) +

∫ xN

2

1

2
√
t
dt+Oε

(∫ xN

2

1

2t1−ε
dt

)
= 2
√
xN −

√
2 +Oε ((xN)ε) .
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From here we finally have

f(x) =
1

log xN

(
2C1

√
x− C3x−

C1

√
2√

N

)
+Oε

(
xεN ε− 1

2

)
+Oε

(
x

1
2

+εN ε− 1
2

)
=

1

log xN

(
2C1

√
x− C3x−

C1

√
2√

N

)
+Oε

(
xεN ε− 1

2

)
.

Note that in the last equation we used x
1
2

+εN ε− 1
2 ≤ xεN ε− 1

2 since x < 1.
For 1/4 ≤ x < 1 we have that

f(x) =
1

log xN

∑
p≤xN

(
C

log p
√
p
−D log p

)
+

E

log xN

∑
N/4<p≤xN

√
4p−N
p

log p.

where C = C1√
N

, D = C3

N
and E = C2√

N
.

Again by using Abel’s summation formula and ϑ(x) = x+Oε

(
x

1
2

+ε
)

we get

∑
N/4<p≤xN

√
4p−N
p

log p =

√
4xN −N
xN

ϑ(xN)−
∫ xN

N/4

ϑ(t)
N − 2t

t2
√

4t−N
dt

=
√
N(4x− 1) +Oε ((xN)ε)−

∫ xN

N/4

N − 2t

t
√

4t−N
dt+Oε

(∫ xN

N/4

N − 2t

t3/2−ε
√

4t−N

)
dt

= 2
√
N(4x− 1)− 2

√
N arctan (

√
4x− 1) +Oε ((xN)ε) .

Finally, by plugging this back into the above equation for f(x) and using the previous
estimates for the sums

∑
p≤xN log p and

∑
p≤xN

log p√
p

, we obtain

f(x) =
1

log xN

(
2C1

√
x+ 2C2

√
4x− 1− 2C2 arctan (

√
4x− 1)− C3x−

C1

√
2√

N

)
+Oε

(
xεN ε− 1

2

)
.

We summarize this results in the next proposition.

Proposition 3.1. With the notation as above, the following holds (under RH):

i) If 0 < x < 1/4, then

f(x) =
1

log xN

(
2C1

√
x− C3x−

C1

√
2√

N

)
+Oε

(
xεN ε− 1

2

)
.
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ii) If 1/4 ≤ x < 1, then

f(x) =
1

log xN

(
2C1

√
x+ 2C2

√
4x− 1− 2C2 arctan (

√
4x− 1)− C3x−

C1

√
2√

N

)
+Oε

(
xεN ε− 1

2

)
.

3.2. Estimations of the local maxima. By disregarding the error terms and calcu-
lating the local maxima of the main terms obtain for f(x) in Proposition 3.1 we get
good estimates for the first and the second local maxima of f(x). This estimates are
shown in the Table 1 below.

Table 1. Estimates for the local maxima of f(x)

N First local maxima Second local maxima

104 0.10023 0.69381
105 0.11077 0.70510
106 0.11724 0.71294
107 0.12156 0.71856
108 0.12334 0.72276

Although we are not able to give explicit formulas for the local maxima of the main
terms, we have an upper bound for them and we can describe their limit as N →∞.

Proposition 3.2. Let x1(N) denote the local maximum of the main term in Proposi-
tion 3.1 i), and let x2(N) denote the local maximum of the main term in Proposition 3.1
ii). Additionally, let m1(N) and m2(N) represent the first and second local maxima of
f(x), respectively. With the above notation, the following statement holds

i) m1(N) ≤ A2

π2
= 0.14261 . . . .

ii) m2(N) ≤
A2 + 4B2 +

√
(A2 + 4B2)2 − 2π2B2

π2
= 0.76881 . . . .

iii) limN→∞m1(N) = limN→∞ x1(N) =
A2

π2
.

iv) limN→∞m2(N) = limN→∞ x2(N) = λ where λ ≥ 1/4 satisfies the equation

A
√

(4λ− 1)λ+ 4Bλ− πλ
√

4λ− 1 = B.

Proof.

i) The inequality follows directly by observing when the main term of the sum
in f(x) (for 0 < x < 1/4) changes the sign from plus to minus. This happens

exactly at x = A2

π2 . Hence, m1(N) ≤ A2

π2 .
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ii) Similar as in i) we observe where the main term of the sum in f(x) (for
1/4 ≤ x < 1) changes the sign. This yields the inequality

A
√
x− πx+B

√
4x− 1 < 0.

Since A
√
x + B

√
4x− 1 ≤

√
2(A2 + 4B2)x− 2B2 by AM-QM inequality we

can instead look at the weaker inequality√
2(A2 + 4B2)x− 2B2 − πx < 0.

The above inequality leads to a quadratic inequality with solution

x ∈

〈
A2 + 4B2 −

√
(A2 + 4B2)2 − 2π2B2

π2
,
A2 + 4B2 +

√
(A2 + 4B2)2 − 2π2B2

π2

〉
.

Hence, m2(N) ≤
A2 + 4B2 +

√
(A2 + 4B2)2 − 2π2B2

π2
.

iii) As x1(N) is the local maxima of the function 1
log xN

(
2C1

√
x− C3x− C1

√
2√

N

)
, after

calculating the derivative we get that x1(N) satisfies

A
√
x1(N)− πx1(N) =

2A
√
x1(N)− πx1(N)− A

√
2√
N

logN + log x1(N)
.

Since we are only interested in the local maxima, instead of analyzing the function
1

log xN

(
2C1

√
x− C3x− C1

√
2√

N

)
on 〈0, 1/4〉 we can analyze it on [δ, 1/4〉 for a fixed small

number δ > 0. This gives us the bounds δ ≤ x1(N) < 1/4. By using these bounds
in the above equation, it follows that the limit limN→∞ x1(N) exists. Denote α =
limN→∞ x1(N).

Finally, by letting N → ∞ in the above equation we get that the right-hand side
converges to 0 and therefore we have A

√
α− πα = 0. From here we have that α = A2

π2

(since α > 0).
Note that limN→∞m1(N) = limN→∞ x1(N) follows directly from Proposition 3.1

since the error term goes to 0.
iv) Similar as in iii) we get that the local maxima x2(N) satisfies the equation

A
√
x2(N) +

4Bx2(N)√
4x2(N)− 1

− B√
4x2(N)− 1

− πx2(N) =

=
πx2(N) + A

√
2√
N
− 2A

√
x2(N)− 2B

√
4x2(N)− 1 + 2B arctan

√
4x2(N)− 1

logN + log x2(N)
.

Since 1/4 ≤ x2(N) < 1, from the above equation follows that the limit limN→∞ x2(N)
exists. Denote λ = limN→∞ x2(N).

By proceeding the same way as in iii) we get limN→∞m2(N) = limN→∞ x2(N).
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By letting N →∞ in the above equation we get that the right-hand side converges
to 0 and this implies that λ satisfies

A
√

(4λ− 1)λ+ 4Bλ− πλ
√

4λ− 1 = B.

�

4. Future work

The analysis of the main term of the averages of ap(f)ε(f) from [Zub23] offered a
qualitative heuristic explanation for the first two observed local maxima in our data
on elliptic curves. It would be interesting to investigate whether the analysis of the
error terms could shed light on the presence of the third local maximum. Moreover,
exploring this phenomenon in the context of cusp forms could lead to formulating and
proving precise theorems.
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