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Abstract. A rational Diophantine m-tuple is a set of m nonzero rationals such that the

product of any two of them increased by 1 is a perfect square. The �rst rational Diophantine

quadruple was found by Diophantus, while Euler proved that there are in�nitely many rational

Diophantine quintuples. In 1999, Gibbs found the �rst example of a rational Diophantine

sextuple. In this paper, we prove that there exist in�nitely many rational Diophantine sextuples.

1. Introduction

A set of m nonzero rationals {a1, a2, . . . , am} is called a rational Diophantine m-tuple if aiaj +1

is a perfect square for all 1 ≤ i < j ≤ m. An open question is how large a rational Diophantine

tuple can be. In the case of integer Diophantine tuples, the corresponding question has been

almost completely answered. That is to say, it is well-known and easy to prove that there exist

in�nitely many integer Diophantine quadruples (e.g. {k − 1, k + 1, 4k, 16k3 − 4k} for k ≥ 2),

while it was proved in [8] that an integer Diophantine sextuple does not exist and that there are

only �nitely many such quintuples (for additional information and references see e.g. [11], [19,

Section D29]). However, concerning rational Diophantine tuples, no absolute upper bound for

the size of such sets is known. The �rst example of a rational Diophantine quadruple was the

set {
1

16
,
33

16
,
17

4
,
105

16

}
found by Diophantus (see [4]). Euler found in�nitely many rational Diophantine quintuples (see

[20]), e.g. he was able to extend the integer Diophantine quadruple

{1, 3, 8, 120}

found by Fermat, to the rational quintuple{
1, 3, 8, 120,

777480

8288641

}
.

Let us note that Baker and Davenport [2] proved that Fermat's set cannot be extended to an

integer Diophantine quintuple, while Dujella and Peth® [15] showed that there is no integer

Diophantine quintuple which contains the pair {1, 3}. For results on the existence of in�nitely

many rational D(q)-quintuples, i.e. sets in which xy + q is always a square, for q ̸= 1 see [12].
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Since 1999, several examples of rational Diophantine sextuples were found by Gibbs [17, 18]

and Dujella [10]. The �rst example, found by Gibbs, was{
11

192
,
35

192
,
155

27
,
512

27
,
1235

48
,
180873

16

}
.

No example of a rational Diophantine septuple is known. On the other hand, assuming the Lang

conjecture on varieties of general type the number of elements of a rational Diophantine tuple

can be bound. Indeed, if {a1, a2, ..., am} is a rational Diophantine m-tuple with m ≥ 5, then we

may consider the hyperelliptic curve

y2 = (a1x+ 1)(a2x+ 1)(a3x+ 1)(a4x+ 1)(a5x+ 1)

of genus g = 2. Provided that the above mentioned conjecture holds, Caporaso, Harris and

Mazur [3] proved that for g ≥ 2 the number B(g,K) = maxC |C(K)| is �nite, where C runs over

all curves of genus g over a number �eld K. Therefore, we get that, under the Lang conjecture,

m ≤ 5 +B(2,Q) (and also m ≤ 4 +B(4,Q), see [21]).

In this paper, we will use properties of the elliptic curve induced by a rational Diophantine

triple to prove that in�nitely many rational Diophantine sextuples exist. The following theorem

is our main result.

Theorem 1. There are in�nitely many rational Diophantine sextuples. Moreover, there are in�n-

itely many rational Diophantine sextuples with positive elements, and also with any combination

of signs.

Since by multiplying all elements of a Diophantine m-tuple by −1 we obtain a Diophantine

m-tuple again, it su�ces to consider sextuples with zero, one, two and three negative elements.

In brief, this is the way we construct Diophantine sextuples. For a rational number t /∈
{−1, 0, 1} let

(1) E : y2 = x3 + 3(t2 − 3t+ 1)(t2 + 3t+ 1)x2 + 3(t2 + 1)4x+ (t2 + 1)6

be an elliptic curve with a rational point R = [0, (t2 + 1)3] of in�nite order. Rational points

on this curve parametrize a certain class of elliptic curves over rational numbers with a square

discriminant and prescribed rational point of order 3. More precisely, to any multiple [m]R =

(x, y) of the point R (with m > 1), we associate an elliptic curve

E′ : Y 2 = X3 + σ2X
2 + σ1σ3X + σ2

3,

where σ1, σ2 and σ3 are certain explicit rational functions in x and t (e.g. σ3 = t2−1
2t ). This

correspondence is explained in detail in Sections 2 and 3.

In Sections 4 and 5, we study the primes (and their type) of bad reduction of E′ and we show

that the curve has rational 2-torsion for every integer t for which t2 + 1 is squarefree. Using

an e�ective version of Hilbert's Irreducibility Theorem, we extend this result to any rational

t /∈ {−1, 0, 1}.



THERE ARE INFINITELY MANY RATIONAL DIOPHANTINE SEXTUPLES 3

Now we can rewrite E′ as

Y 2 = (X + ab)(X + ac)(X + bc)

for a, b, c ∈ Q, where σ1 = a+ b+ c, σ2 = ab+ac+ bc and σ3 = abc. One has that P ′ = [0, abc] is

a point of in�nite order, while S′ = [1,
√

(ab+ 1)(ac+ 1)(bc+ 1)] is (prescribed by construction)

a rational point of order 3. Finally, any odd multiple [2n + 1]P ′ of point P ′ gives a rational

Diophantine sextuple{
a, b, c,

x([2n+ 1]P ′)

abc
,
x([2n+ 1]P ′ + S′)

abc
,
x([2n+ 1]P ′ − S′)

abc

}
,

as explained in Section 2. The elements of the sextuple obtained with the construction, which

is brie�y explained here, are in fact rational functions of a rational parameter t (for explicit

formulas see the end of Section 3).

2. Induced elliptic curves

Let {a, b, c} be a rational Diophantine triple. In order to extend this triple to a quadruple, we

have to solve the system

(2) ax+ 1 = �, bx+ 1 = �, cx+ 1 = �.

It is natural to assign the elliptic curve

(3) E : y2 = (ax+ 1)(bx+ 1)(cx+ 1)

to the system (2). We say the E is induced by the triple {a, b, c}. There are three rational points
on the E of order 2, namely

A =

[
−1

a
, 0

]
, B =

[
−1

b
, 0

]
, C =

[
−1

c
, 0

]
and also other obvious rational points

P = [0, 1], S = [1/abc,
√

(ab+ 1)(ac+ 1)(bc+ 1)/abc].

The x-coordinate of a point T ∈ E(Q) satis�es (2) if and only if T − P ∈ 2E(Q) (see [7]). It can

be veri�ed that S ∈ 2E(Q). Indeed, if ab+1 = r2, ac+1 = s2, bc+1 = t2, then S = [2]R, where

R =

[
rs+ rt+ st+ 1

abc
,
(r + s)(r + t)(s+ t)

abc

]
.

This implies that if x(T ) satis�es system (2), then also the numbers x(T ±S) satisfy the system.

It was proved in [6, Proposition 2] (with slightly di�erent notation and by direct manipulation

with algebraic expressions) that x(T )x(T ± S) + 1 is always a perfect square. The following

statement extends this result and provides the basis for the proof of Theorem 1.

Proposition 1. Let Q, T and [0, α] be three rational points on an elliptic curve E over Q
given by the equation y2 = f(x), where f is a monic polynomial of degree 3. Assume that

O ̸∈ {Q,T,Q+ T}. Then
x(Q)x(T )x(Q+ T ) + α2
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is a perfect square.

Proof. Consider the curve

y2 = f(x)− (x− x(Q))(x− x(T ))(x− x(Q+ T )).

It is a conic which contains three collinear points: Q, T , −(Q + T ) (if the points are distinct)

or has a tangent line that intersects the conic in another point (if two of the points are equal).

Thus, it is the union of two rational lines, e.g. we have

(4) y2 = (βx+ γ)2.

Inserting x = 0 in (4), we get

x(Q)x(T )x(Q+ T ) + α2 = γ2.

�

The coordinate transformation x 7→ x/abc, y 7→ y/abc, applied to the curve E leads to the

elliptic curve

E′ : y2 = (x+ ab)(x+ ac)(x+ bc)

with a monic cubic polynomial on the right hand side. The points P and S become P ′ = [0, abc]

and S′ = [1, rst], respectively.

If we apply Proposition 1 with Q = ±S′, since the �rst coordinate of S′ is 1, we get an elegant

proof of the fact that x(T )x(T±S)+1 is a perfect square (after dividing x(T ′)x(T ′±S′)+a2b2c2 =

� by a2b2c2). Now we have a general construction which produces two rational Diophantine

quintuples with four joint elements. So, the union of these two quintuples,

{a, b, c, x(T − S), x(T ), x(T + S)},

is �almost� a rational Diophantine sextuple. Assuming that T, T±S ̸∈ {O,±P}, the only missing

condition is x(T − S)x(T + S) + 1 = �. To construct examples satisfying this last condition,

we will use Proposition 1 with Q = [2]S′. To get the desired conclusion, we need the condition

x([2]S′) = 1 to be satis�ed. This leads to [2]S′ = −S′, i.e. [3]S′ = O. The next lemma

characterizes triples {a, b, c} satisfying this condition.

Lemma 1. For the point S′ = [1, rst] on E′ it holds [3]S′ = O if and only if

−a4b2c2 + 2a3b3c2 + 2a3b2c3 − a2b4c2 + 2a2b3c3 − a2b2c4 + 12a2b2c2

+6a2bc+ 6ab2c+ 6abc2 + 4ab+ 4ac+ 4bc+ 3 = 0.(5)

Proof. The statement of lemma follows directly from the condition x(S′) = x([2]S′). �
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3. Constructions of sextuples and proof of Theorem 1

The polynomial in a, b, c on the left hand side of (5) is symmetric. Thus, by taking σ1 = a+b+c,

σ2 = ab+ ac+ bc, σ3 = abc, we get from (5) that

(6) σ2 = (σ2
1σ

2
3 − 12σ2

3 − 6σ1σ3 − 3)/(4 + 4σ2
3).

Inserting (6) in (ab + 1)(ac + 1)(bc + 1) = (rst)2, we get (2σ2
3 + σ1σ3 − 1)2/(4 + 4σ2

3) = (rst)2,

i.e. 1 + σ2
3 = �.

The polynomial X3 − σ1X
2 + σ2X − σ3 should have rational roots, so its discriminant has to

be a perfect square. Inserting (6) in the expression for the discriminant, we get

(7) (σ3
1σ3 − 9σ2

1 − 27σ1σ3 − 54σ2
3 − 27)(1 + σ2

3)(σ1σ3 + 2σ2
3 − 1) = �.

For a �xed σ3, we may consider (7) as a quartic in σ1. Since 1+σ2
3 has to be a perfect square, from

(7) we get a quartic with a rational point (point at in�nity), which therefore can be transformed

into an elliptic curve.

Let us take σ3 = t2−1
2t . Then we get the quartic over Q(t) which is birationally equivalent to

the following elliptic curve over Q(t)

y2 = x3 + (3t4 − 21t2 + 3)x2 + (3t8 + 12t6 + 18t4 + 12t2 + 3)x+ (t2 + 1)6.(8)

This elliptic curve has positive rank, since the point R = [0, (t2 + 1)3] is of in�nite order. By

taking multiples of the point R, transforming these coordinates back to the quartic and comput-

ing corresponding triples {a, b, c}, we may expect to get in�nitely many parametric families of

rational triples for which the corresponding point S′ on E′ satis�es [3]S′ = O (we will provide

detailed proof of this claim in Sections 4 and 5). Since the condition 1+σ2
3 = � implies rst ∈ Q,

and S′ = −[2]S′ ∈ 2E′(Q), an explicit 2-descent on E′ implies that ab+ 1, ac+ 1, bc+ 1 are all

perfect squares, thus the triple {a, b, c} obtained with this construction is indeed a Diophantine

triple. In particular, if we take the point [2]R, we get the following family of rational Diophantine

triples

a =
18t(t− 1)(t+ 1)

(t2 − 6t+ 1)(t2 + 6t+ 1)
,

b =
(t− 1)(t2 + 6t+ 1)2

6t(t+ 1)(t2 − 6t+ 1)
,

c =
(t+ 1)(t2 − 6t+ 1)2

6t(t− 1)(t2 + 6t+ 1)
.

Consider now the elliptic curve over Q(t) induced by the triple {a, b, c}. It has positive rank

since the point P = [0, 1] is of in�nite order. Thus, the above described construction produces

in�nitely many rational Diophantine sextuples containing the triple {a, b, c}. One such sextuple

{a, b, c, d, e, f} is obtained by taking x-coordinates of points [3]P , [3]P + S, [3]P − S. We get

d = d1/d2, e = e1/e2, f = f1/f2, where
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d1 = 6(t+ 1)(t− 1)(t2 + 6t+ 1)(t2 − 6t+ 1)(8t6 + 27t5 + 24t4 − 54t3 + 24t2 + 27t+ 8)

× (8t6 − 27t5 + 24t4 + 54t3 + 24t2 − 27t+ 8)(t8 + 22t6 − 174t4 + 22t2 + 1),

d2 = t(37t12 − 885t10 + 9735t8 − 13678t6 + 9735t4 − 885t2 + 37)2,

e1 = −2t(4t6 − 111t4 + 18t2 + 25)(3t7 + 14t6 − 42t5 + 30t4 + 51t3 + 18t2 − 12t+ 2)

× (3t7 − 14t6 − 42t5 − 30t4 + 51t3 − 18t2 − 12t− 2)(t2 + 3t− 2)(t2 − 3t− 2)

× (2t2 + 3t− 1)(2t2 − 3t− 1)(t2 + 7)(7t2 + 1),

e2 = 3(t+ 1)(t2 − 6t+ 1)(t− 1)(t2 + 6t+ 1)

× (16t14 + 141t12 − 1500t10 + 7586t8 − 2724t6 + 165t4 + 424t2 − 12)2,

f1 = 2t(25t6 + 18t4 − 111t2 + 4)(2t7 − 12t6 + 18t5 + 51t4 + 30t3 − 42t2 + 14t+ 3)

× (2t7 + 12t6 + 18t5 − 51t4 + 30t3 + 42t2 + 14t− 3)(2t2 + 3t− 1)(2t2 − 3t− 1)

× (t2 − 3t− 2)(t2 + 3t− 2)(t2 + 7)(7t2 + 1),

f2 = 3(t+ 1)(t2 − 6t+ 1)(t− 1)(t2 + 6t+ 1)

× (12t14 − 424t12 − 165t10 + 2724t8 − 7586t6 + 1500t4 − 141t2 − 16)2.

These formulas produce in�nitely many rational Diophantine sextuples {a, b, c, e, d, f}. More-

over, by choosing the rational parameter t from the appropriate interval, we get in�nitely many

sextuples for each combination of signs. Indeed, for 5.83 < t < 6.86 all elements are positive, for

t > 6.87 there is exactly one negative element, for 1 < t < 1.32 there are exactly two negative

elements, while for 1.33 < t < 2.46 there are exactly three negative elements in the sextuple. As

a speci�c example, let us take t = 6, for which we get a sextuple with all positive elements:{
3780

73
,
26645

252
,

7

13140
,
791361752602550684660

1827893092234556692801
,

95104852709815809228981184

351041911654651335633266955
,
3210891270762333567521084544

21712719223923581005355

}
.

4. More about the construction

The construction of parametric families of rational Diophantine sextuples in Section 3 relies on

the fact that the cubic polynomial corresponding to the point [2]R has rational roots. We will

show that the same is true for all multiples of R. Since the corresponding cubic polynomial has

square discriminant (hence it either splits completely over Q or generates Z/3Z Galois extension),

it su�ces to show that it has at least one rational root.

We will show that E′ has a semistable reduction for all odd bad primes, which implies that E′

has full rational 2-torsion (since otherwise the primes dividing the discriminant of Z/3Z extension

Q(E′[2])/Q would be the bad primes of additive reduction).

Let σ3 ∈ Q× be such that σ2
3+1 is a perfect square. Then there is t ∈ Q× such that σ3 =

t2−1
2t .

We assume throughout the paper that t /∈ {−1, 0, 1}. Let P = [x, y] with x ̸= 0 be a rational



THERE ARE INFINITELY MANY RATIONAL DIOPHANTINE SEXTUPLES 7

point on the elliptic curve (8). Assume that x ̸= 0. The corresponding σ1 is given by formula

(9) σ1 =
−t4 + 4t2 − 1− x−1(t2 + 1)4

(t2 − 1)t
.

Consider the curve (here X and Y are variables, not coordinates of the point P on (8))

Y 2 = X3 + σ2X
2 + σ1σ3X + σ2

3. The coordinate transformation (X,Y ) 7→ (X + 1, Y ) yields

Y 2 = X3 + (3 + σ2)X
2 + (3 + 2σ2 + σ1σ3)X + (1 + σ2 + σ1σ3 + σ2

3).

By using (9), a further change of variables (X,Y ) 7→ (( t
2+1
t )2X, ( t

2+1
t )3Y ) yields

(10) E′′ : Y 2 = X3 +
((t2 + 1)2x−1 + 1)2

4
X2 +

t2((t2 + 1)2x−2 + x−1)

2
X +

t4x−2

4
.

The discriminant ∆ and c4 invariant of E′′ are equal to

∆ =
t6y2

x6
,

c4 =
((t2 + 1)2x−1 + 1)(y2 + 3x2t2)

x3
.

We will frequently use the fact that if vp(∆) > 0, vp(c4) = 0 and E′′ is p-integral (i.e. the

coe�cients of the de�ning equation are in Zp), then E′′ has multiplicative reduction at p. We

denote by vp the standard p-adic valuation.

Proposition 2. Assume that t ∈ Z. Let p be an odd prime.

a) If p|t and x ̸≡ −1 (mod p), then E′′ has multiplicative reduction at p.

b) If p|t2 + 1 and vp(x) ≤ 0, then E′′ has good or multiplicative reduction at p.

c) If p||t2 + 1 and vp(x) ≥ 4, E′′ then has multiplicative reduction at p.

Proof. First assume that p|t.
Case 1. vp(x) < 0

Simple calculation shows that c4 ≡ y2

x3 ≡ 1 (mod p). Since the curve E′′ is p-integral with

vp(∆) > 0, E′′ has multiplicative reduction at p.

Case 2. vp(x) > 0

The coordinate transformation (X,Y ) 7→ (X/x2, Y/x3) yields p-integral curve with c4 = ((t2 +

1)2 + x)(y2 + 3x2t2) ≡ y2 ≡ 1 (mod p). Hence E′′ has multiplicative reduction at p.

Case 3. vp(x) = 0 and x ̸≡ −1 (mod p)

Since y2 ≡ (x + 1)3 (mod p), we have that c4 ≡ (x−1 + 1)y2/x3 ̸≡ 0 (mod p). Curve E′′ is

p-integral with vp(∆) > 0, hence E′′ has multiplicative reduction at p.

Now, assume that p|t2 + 1.

Case 1. vp(x) < 0

In this case c4 ≡ y2

x3 + 3 t2

x (mod p). Since y2/x3 ≡ 1 (mod p), it follows c4 ≡ 1 (mod p), hence

E′′ has multiplicative reduction at p (since E′′ is p-integral and vp(∆) > 0).

Case 2. vp(x) ≥ 4

The coordinate transformation (X,Y ) 7→ (X/x2, Y/x3) yields p-integral model with vp(∆) > 0

and c4 = ((t2 + 1)2 + x)(y2 + 3x2t2).
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If p||t2+1 and vp(x) ≥ 4, then vp(y) = 3, hence vp(c4) = 8 and vp(∆) ≥ 6+6vp(x). Therefore,

the change of coordinates (X,Y ) 7→ (p4X, p6Y ) yields a p-integral model with vp(c4) = 0, and

vp(∆) > 0, hence E′′ has multiplicative reduction at p.

Case 3. vp(x) = 0

In this case E′′ is p-integral and has bad reduction at p if and only if vp(y) > 0. In this case (i.e.

if x ≡ −27 (mod p)), vp(c4) = 0 since vp(3x
2t2) = 0, hence E′′ has multiplicative reduction at

p. �

Proposition 3. Assume that t ∈ Z and v3(y) ≤ 0. If E′′ has additive reduction at prime p, then

p = 2 or p|(t2 + 1)t.

Proof. Assume that p ̸= 2 and p - (t2 + 1)t.

If vp(x) > 0, then the change of variables (X,Y ) 7→ (X/x2, Y/x3) yields a p-integral curve

with vp(∆) = vp(t
6y2x6) > 0. We have that y2 ≡ (t2 + 1)6 (mod p), hence c4 = ((t2 + 1)2 +

x)(y2 + 3x2t2) ≡ (t2 + 1)2(t2 + 1)6 (mod p) ̸≡ 0 (mod p).

If vp(y) > 0 (and vp(x) ≤ 0) then vp(x) ≥ 0 (and p ̸= 3), so the previous model is p-integral,

and vp(∆) > 0. If vp(c4) > 0 then x ≡ −(t2 + 1)2 (mod p), hence

0 ≡ y2 ≡ −(t2 + 1)6 + 3(t2 − 3t+ 1)(t2 + 3t+ 1)(t2 + 1)4 − 3(t2 + 1)6 + (t2 + 1)6

≡ (t2 + 1)4(−27t2) (mod p)

which is a contradiction. If vp(x) < 0, then E′′ is p-integral and vp(∆) > 0. Since y2/x3 ≡ 1

(mod p), we have that c4 =
((t2 + 1)2x−1 + 1)(y2 + 3x2t2)

x3
≡ 1 (mod p).

If vp(y) < 0 then vp(x) < 0, so we already proved a multiplicative reduction in this case.

If vp(x) = 0 and vp(y) = 0, then E′′ is p-integral, and vp(∆) = 0, so E′′ has a good reduction

at p. �

Proposition 4. If E′′ has no rational 2-torsion, then E′′ has additive reduction for every odd

prime p| disc(Q(E′′[2])).

Proof. Since the discriminant of E′′ is a perfect square, if E′′ has no rational 2-torsion (i.e. if a, b

and c are not rational), then the �eld generated by the coordinates of E′′[2] is Z/3Z extension of

Q. De�ne V2(E
′′) = T2(E

′′)⊗Q2, where T2(E
′′) is the 2-adic Tate module of E′′ (we can think

of E′′ as de�ned over Qp). Let I be the absolute inertia group of Qp, and V2(E
′′)I the subspace

of V2(E
′′) �xed by I. From the de�nition and the basic properties of the conductor of elliptic

curve (see [26], Chapter 4, �10), we know that if dimV2(E
′′)I = 0, then the reduction at p is

additive (since p ̸= 2). If p is rami�ed in Q(E′′[2]), then I acts non-trivially on E′′[2]. Since the

(Z/3Z) action cannot have �xed vectors, we conclude that the reduction at p is additive. �

Corollary 1. Let P = (x, y) and t ∈ Z be such that E′′ has good or multiplicative reduction for

all p|t(t2 + 1) and v3(y) ≤ 0. Then E′′ has full rational 2-torsion.

Proof. Assume that E′′ does not have rational 2-torsion. Then Proposition 3 and Proposition 4

imply that Q(E′′[2])/Q is a cubic Z/3Z extension unrami�ed outside 2. Such extension does not

exist (e.g. see John Jones' database of number �elds [22]). �
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5. Multiples of R

Let p be an odd prime and t ̸= 1 a positive integer such that p||t2 + 1 (in particular, p > 3).

Consider elliptic curve (8)

E : y2 = x3 + 3(t2 − 3t+ 1)(t2 + 3t+ 1)x2 + 3(t2 + 1)4x+ (t2 + 1)6,

and point R = [0, (t2 + 1)3] on it. In this section we will prove that the elliptic curve E′′ that

corresponds to the multiples of R has full rational 2-torsion (i.e. a, b and c are rational). We

begin by describing p-adic valuation of the coordinates of the multiples [n]R.

Denote by P 7→ P̃ , the reduction mod p map, E(Qp) → Ẽ(Fp), and by Ẽns(Fp) the set of

nonsingular points in Ẽ(Fp) (which form a group). Let E0(Qp) = {P ∈ E(Qp) : P̃ ∈ Ẽns(Fp)}
and E1(Qp) = {P ∈ E(Qp) : P̃ = Õ}. We know (see e.g. [25, Chapter 7]) that E1(Qp) ≃ Ê(pZp),

where Ê/Zp is the formal group associated to E. More precisely, this isomorphism is given by

Ê(pZp) → E1(Qp)

z 7→
(

z

w(z)
,− 1

w(z)

)
,

where w(z) = z3(1 + . . .) ∈ Zp[[z]] is the formal power series that (formally) relates functions

z = −x
y and y = − 1

y on E (see [25, Chapter 4]). Moreover, the multiplication by [p] map on

Ê(Zp) is an isomorphism, and satis�es the following identity (since a1 = 0):

[p]z = pz +O(z3).

Note that R̃ is a singular point, hence R ̸∈ E0(Qp), but in general we have that E(Qp)/E0(Qp)

is a �nite group. Next we will show that R has order two in this group.

Lemma 2. The following is valid:

a) vp(x([2]R)) = 0,

b) vp(x([3]R)) = 4,

c) vp(x([4]R)) = −2 and vp(y([4]R)) = −3.

In particular, [2]R ∈ E0(Qp) and [4]R ∈ E1(Qp).

Proof. Explicit calculation shows

x([2]R) = −3

4
(t2 − 6t+ 1)(t2 + 6t+ 1)

x([3]R) = −8

9
(t2 + 1)4(t2 − 18t+ 1)(t2 + 18t+ 1)(t2 − 6t+ 1)−2(t2 + 6t+ 1)−2

x([4]R) =
15

16
(t2 + 1)−2(t2 − 18t+ 1)−2(t2 + 18t+ 1)−2(t2 − 6t+ 1)(t2 + 6t+ 1)

× (t4 − 36t3 − 106t2 − 36t+ 1)(t4 +
118

5
t2 + 1)(t4 + 36t3 − 106t2 + 36t+ 1).

Parts a) and b) follow immediately. For c) note that

(t2 + 1)2x([4]R) ≡ 3

16
(−18 · 18)−2(−6 · 6)(108)(−108)(108) ̸≡ 0 (mod p).

The second claim in c) follows from the cubic equation y2 = x3 + . . .. �
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Lemma 3. Let n,m ∈ N. If p - m then

vp(x([m · pn]([4]R))) = −2n− 2.

Proof. Since [4]R ∈ E1(Qp), then z = −x(4R)
y(4R) ∈ Ê(pZp) with vp(z) = 1. It follows from the

multiplication by [k] formula that if z ∈ pZp, then vp([m]z) = vp(z) and vp([p]z) = vp(z) + 1,

hence vp([p
n][m]z) = n + 1. Since x([pn][m](4R)) = [m·pn]z

w([m·pn]z) = 1
([m·pn]z)2(1+··· ) , the claim

follows. �

Lemma 4. For m ∈ N the following applies:

a) vp(x(R+ [m]([4]R))) = 4 + vp(m)

b) vp(x([2]R+ [m]([4]R))) = 0,

c) vp(x([3]R+ [m]([4]R))) = 4 + vp(m+ 1).

d) v3(x([m]([3]R))) < 0,

e) v3(x(R+ [m]([3]R))) > 0,

f) v3(x([2]R+ [m]([3]R))) > 0.

Proof. Let [x1, y1] and [x2, y2] be two di�erent points on E, and set [x3, y3] = [x1, y1] + [x2, y2].

Then

x3 = λ2 − a2 − x1 − x2,

where λ = y2−y1
x2−x1

, and a2 = 3(t2 − 3t+ 1)(t2 + 3t+ 1).

a) If [x1, y1] = R = [0, (t2 + 1)3] and [x2, y2] = [m]([4]R), then

x3 = λ2 − a2 − x2 =
(y2 − (t2 + 1)3)2 − a2x

2
2 − x32

x22

=
(t2 + 1)4x2 + 2(t2 + 1)6 − 2y2(t

2 + 1)3

x22
.

Since vp(x2) = −2(vp(m) + 1), it follows vp(
(t2+1)4

x2
) = 6 + 2vp(m), vp(

2(t2+1)6

x2
2

) = 10 + 4vp(m)

and vp(
−2y2(t2+1)3

x2
2

) = 7 + 4vp(m)− 3(vp(m) + 1) = 4 + vp(m), hence vp(x3) = 4 + vp(m).

b) Since [4]R reduces to Õ ∈ Ẽns(Fp), it follows that ˜([2]R+ [4]R) = [̃2]R (note that [2]R ∈
E0(Qp)), the claim follows from Lemma 2.

c) Since [3]R+ [m][4]R = −R+ [m+1][4]R and −R = [0,−(t2+1)3], the claim follows from the

same argument as in a).

d), e) and f) Notice that R̃ is a non-singular point (with x(R̃) = 0) in the order 3 cyclic group

Ẽns(F3) (the other two points are Õ and (−R̃)). It follows ˜[m][3]R = Õ, ˜R+ [m][3]R = R̃

and ˜[2]R+ [m][3]R = −R̃, hence v3(x([m][3]R) < 0, v3(x(R + [m][3]R)) > 0, and v3(x([2]R +

[m][3]R)) > 0. �

Lemma 5. Let q|t be a prime and m a positive integer. Then x([m]R) ̸≡ −1 (mod q).

Proof. Note that mod q reduction of point R is a non-singular point, i.e. R ∈ E0(Qq). Hence

[m]R ∈ E0(Qq) also has a non-singular reduction mod q. Since the only singular point in Ẽ(Fq)

is the point [−1, 0], we conclude that x([m]R) ̸≡ −1 (mod q). �
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Corollary 2. Let t ̸= 1 be a positive integer such that the number t2 + 1 is squarefree. The

elliptic curve E′′ that corresponds to any multiple [m]R, where m > 1, has full rational 2-torsion

(i.e. the corresponding a, b and c are rational).

Proof. Let p be an odd prime divisor of t2 + 1. Then p||t2 + 1. Lemma 4 together with the

Proposition 2 implies that E′′ has good or multiplicative reduction at p. If p|t then by Lemma 5

we have x([m]R) ̸≡ −1 (mod p), and part a) of Proposition 2 implies that E′′ has multiplicative

reduction at p. Since Lemma 4 implies v3(y([m]R)) ≤ 0 (note that 3 - t2 + 1), it follows from

Corollary 1 that E′′ has rational 2-torsion. �

To prove a rationality of 2-torsion of E′′ that corresponds to the multiple of R for arbitrary

rational t, we will need an e�ective version of Hilbert's Irreducibility Theorem. The following

theorem was proved by Dörge [5].

Theorem 2. If f(X, t) is an irreducible polynomial with integral coe�cients and if R(N) is the

number of integers τ such that |τ | < N and f(x, τ) is reducible, then R(N) ≤ CN1−α where α

and C are certain positive constants.

We can now prove the main theorem of this section.

Theorem 3. Let t /∈ {−1, 0, 1} be a rational number. Then the elliptic curve E′′ that corresponds

to any multiple [m]R, for m > 1, has full rational 2-torsion.

Proof. Let

g(X, t) = X3 +
((t2 + 1)2x−1 + 1)2

4
X2 +

t2((t2 + 1)2x−2 + x−1)

2
X +

t4x−2

4
∈ Q(t)[X],

where x = x([m]R) ∈ Q(t) (i.e. E′′ is given by the equation y2 = g(X, t)).

Let f(X, t) ∈ Z[X, t] be a polynomial that one gets by multiplying out denominators in g(X, t).

It is enough to prove that that f(X, t) is reducible. Suppose that f(X, t) is irreducible. Then

Theorem 2 implies that limN
R(N)
N = 0. On the other hand, Corollary 2 implies that f(X, t), for

t ∈ Z, is reducible whenever t2 + 1 is squarefree. It is well known that t2 + 1 is squarefree for a

positive proportion of integers t (see [16]), hence limN
R(N)
N ̸= 0, and f(X, t) is reducible. It is

easy to see that f(X, t) splits as a product of three linear polynomials in X, which implies that

E′′ has full rational 2-torsion for every t ∈ Q. �

Remark 1. Note that in order to rule out a rami�cation at 3 of the �eld extension Q(E′′[2])/Q in

Corollary 1 we needed to know that v3(y([m]R)) ≤ 0. This was needed for the proof of Corollary

1 since there is Z/3Z extension Q(α) unrami�ed outside 3, where α3 − 3α + 1 = 0. Also, for

example, for t = 17 and point P = [35000, 40986000] (note that 3|40986000), one gets an elliptic

curve E′′ with additive reduction at 3.

One could avoid mod 3 analysis altogether and obtain the Theorem 3 by restricting in Corollary

2 on t's divisible by 3 (then multiplicative reduction at 3 immediately follows) and by using in

the proof of Theorem 3 the fact that 9t2 + 1 is squarefree for positive proportion of t's.
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Remark 2. Not all triples {a, b, c} obtained using this construction are rational. For example

for t = 31 (when the rank of E is 2) and point (x, y) = [−150072, 682327360] (which is not a

multiple of R) the curve E′′ has no rational 2-torsion. It has additive reduction at 13, 31 and 37.

Note that 312 + 1 = 2 · 13 · 37, and v13(x) = 2, v37(x) = 1 and x ≡ −1 (mod 31).

6. Explicit formulas

In the previous section we proved indirectly (using Hilbert's Irreducibility Therem) that Dio-

phantine triples {a, b, c} associated to the multiplesmR, form > 1, of point R = [0, (t2+1)3] ∈ E

are rational. In this section, following referee's suggestion, we provide explicit formulas for these

triples.

The two torsion subgroup E′′[2] (see (10)) de�nes the plane curve C over Q(t) given by the

equation

C : X3 +
((t2 + 1)2u+ 1)2

4
X2 +

t2((t2 + 1)2u2 + u)

2
X +

t4u2

4
= 0.

By resolving singularity at the point (X,u) = (0, 0) we obtain a rational parametrization of

this genus 0 curve

X(w) = − w2

4(t2 + 1)2
, u(w) =

w − t2 − 1

(t2 + 1)(−w2/4 + t2)
X, where w ∈ Q(t).

From the construction of E′′, we know that u−1(w) de�nes the x-coordinate of a Q(t)-rational

point on E. By substituting u−1(w) in (1), we obtain a curve which is birationally equivalent to

the curve

y2 = (w − (t2 + 1))(w3 − 3t2w − t2(t2 + 1)),

which again is birationally equivalent to the elliptic curve E∗

(11) E∗ : y
2 = x3+3(t2−3t+1)(t2+3t+1)x2+3(t2+1)2(t4−178t2+1)x+(t2+1)2(t4+110t2+1)2.

The curve E∗ is 3-isogenous to the curve E (the kernel of the isogeny ϕ : E∗ → E is the subgroup

of E∗(Q(t)) of order 3 generated by the point T = [−(t2−6t+1)(t2+6t+1), 27t(t−1)2(t+1)2]).

Moreover, we have that ϕ(P ) = R, where P = [−(t2 + 1)(t2 + 18t + 1), 27t(t + 1)2(t2 + 1)] ∈
E∗(Q(t)). We can express X and u using coordinates (x, y) on E∗. We have that X = X(x, y) =

X(w) and u = u(w) where

w = w(x, y) =
27y + 9rx+ s

2(9x+ v)
,

with (v, r, s) =
(
5
4 t

4 + 59
2 t

2 + 5
4 ,−

3
2(t

2 + 1),−27
8 (t− 1)2(t+ 1)2(t2 + 1)

)
. One can check that for

any pointQ ∈ E∗, we have that u(w(Q))−1 is equal to the x-coordinate of the point ϕ(Q)+R ∈ E,

where w(Q) = w (x(Q), y(Q)).

In particular, the triple {a, b, c} associated to the multiple mR, with m > 1, can be written in

the following way. Let X1 = −
(
t2+1
t

)2
X((m− 1)P )− 1, X2 = −

(
t2+1
t

)2
X((m− 1)P + T )− 1
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and X3 = −
(
t2+1
t

)2
X((m− 1)P + 2T )− 1, i.e. X1 = ab, X2 = ac and X3 = bc. Then

{a, b, c} =

{√
X1X2

X3
,

√
X1X3

X2
,

√
X2X3

X1

}
.

7. Some concluding remarks

Remark 3. Note that for rational Diophantine triples {a, b, c} satisfying condition (5), the induced
elliptic curve has torsion group Z/2Z× Z/6Z, since it contains the point S of order three. It is

an open problem whether this torsion group is possible for elliptic curves induced by an integer

Diophantine triple (see e.g. [13, 24]). On the other hand, examples of elliptic curves, induced by

rational Diophantine triples, with torsion group Z/2Z×Z/6Z and rank equal to 1, 2, 3 and 4 can

be found in [9] (for examples of elliptic curves with torsion groups Z/2Z×Z/4Z and Z/2Z×Z/8Z
and high rank see [14, 9]). These examples were obtained from the condition 3P = O. The �rst

example of a rational Diophantine triple with positive elements satisfying the condition 3S = O
was given in [23]. This triple was

(12)

{
36534805866201747

2323780774755404
,
1065197767305747

13609226201091404
,
3802080647508196

6238332600753747

}
,

and it can be obtained by taking σ3 = 3/4 in (7). As before, we can transform the quartic

to the elliptic curve Y 2 = X3 + 1512X + 33588. This curve has rank 1 with the generator

U = [−11, 125], and the point 6U is the smallest multiple of U which produces the triple with

all positive elements, which is exactly the triple (12). By applying the construction described

above, we can extend this triple to in�nitely many rational Diophantine sextuples. One such

extension is by the following three elements

143947705777192337861060209232361164451

159554724645105598216911731751641945996
,

27566706033755538837165550223247346480484

28811406145997336392588207503703089363
,

5959833363761715860447368794188813530156

3132578990197106752312648160330628526617
.

Remark 4. Our parametric formula for the rational Diophantine sextuples {a, b, c, d, e, f} from

Section 3 can be used to obtain an elliptic curve over Q(t) with reasonably high rank. Indeed,

consider the curve

C : y2 = (dx+ 1)(ex+ 1)(fx+ 1).

It has three obvious points of order two, but also points with x-coordinates

0,
1

def
, a, b, c.

We claim that these �ve points are independent points of in�nite order on the curve C over Q(t).

Since the specialization map is a homomorphism, it su�ces to �nd one parameter t for which

these �ve points become independent points of in�nite order on the specialized curve Ct over Q.
It is easy to check that t = 2 is one such specialization (by checking that the discriminant of
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the corresponding height matrix is nonzero). Therefore, we proved that the rank of C over Q(t)

is ≥ 5, which ties the published record from [1] for the generic rank of elliptic curves over Q(t)

induced by Diophantine triples.

Remark 5. The question whether there exist any rational Diophantne septuple remains open.

It seems unlikely that a construction based on the application of Proposition 1 could be used

to obtain a rational Diophantine septuple. The point S′ = [1, rst] must be of order 3 (see the

discussion after Proposition 1), which makes it unsuitable for extending the given triplet to the

septuple (at least with our approach), since the natural choice for extending the set, the number

x(T + 2S′), is already in the set (it is equal to x(T − S′)).
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