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Abstract. For an odd integer N , we study the action of Atkin’s U(2)-operator on
the modular function x(τ) associated to the Fermat curve: XN +Y N = 1. The func-
tion x(τ) is modular for the Fermat group Φ(N), generically a noncongruence sub-
group. If x(τ) = q−1+

∑∞
i=1 a(iN−1)qiN−1, we essentially prove that limn→0 a(n) = 0

in the 2-adic topology.

1. Introduction and statement of results

While the arithmetic of Fourier coefficient of modular forms for congruence sub-
groups of SL2(Z) has been one of the central topics in number theory, little is known
for modular forms on noncongruence subgroups. One of the reasons for this is that
the Hecke operators, which are the main tool for studying coefficients in the classical
situation, are not useful in studying modular forms for noncongruence subgroups [14].

Atkin and Swinnerton-Dyer [4] pioneered the research in this area by making a
remarkable observation on the congruence properties of Fourier coefficients of certain
cusp forms for noncongruence subgroups. These congruences have been further studied
by A.J. Scholl in [11, 12, 13], and by A.O.L. Atkin, W.-C. L. Li, L. Long, and Z. Yang
in the series of papers [5, 7, 8, 9].

For a power series
∑

n≥n0
c(n)qn and prime p, Atkin’s U(p)-operator is given by(∑

n≥n0

c(n)qn

)
|U(p) =

∑
n≥n0

c(pn)qn.

For prime p, we denote by vp(r) the p-adic valuation of a rational number r. In this
paper, we study the action of U(2) on the spaces of modular functions (for noncongru-
ence subgroups) associated to Fermat curves. We prove that the Fourier coefficients
a(m) of these functions converge 2-adically to 0 as v2(m) goes to infinity.

Remark. D. Rohrlich [10] and T. Yang [15] have studied modular functions associated
to Fermat curves.

We follow the notation of [15].
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Let ∆ be the free subgroup of SL2(Z) generated by the matrices A := ( 1 2
0 1 ) and

B := ( 1 0
2 1 ). One has that Γ(2) = {±I}∆. Given a positive integer N , the Fermat group

Φ(N) is defined to be the subgroup of ∆ generated by AN , BN , and the commutator
[∆,∆]. It is known that the modular curve X(Φ(N)) is isomorphic to the Fermat curve
XN + Y N = ZN . The group Φ(N) is a congruence group only for N = 1, 2, 4 and 8
[15].

Denote by H the complex upper half-plane. If τ ∈ H and q = e2πiτ , then Rohrlich [10]
showed, using the theory of Dedekind η-functions, that

(1.1) λ(τ) = − 1

16
q−1/2

∞∏
n=1

(
1− qn−1/2

1 + qn

)8

,

(1.2) 1− λ(τ) =
1

16
q−1/2

∞∏
n=1

(
1 + qn−1/2

1 + qn

)8

are modular functions for Γ(2). Moreover, they are holomorphic on H, and λ(τ) 6= 0, 1
for all τ ∈ H. It follows that there exist holomorphic functions x̃(τ) and ỹ(τ) on H,
such that x̃(τ)N = λ(τ) and ỹ(τ)N = 1− λ(τ), so we have that

x̃(τ)N + ỹ(τ)N = 1.

It turns out that both x̃(τ) and ỹ(τ) are modular functions for Φ(N). We normalize
x̃(τ) and ỹ(τ) by setting

x(τ) := (−1)
1
N 16

1
N x̃(τ) and y(τ) := 16

1
N ỹ(τ).

Now, x(τ) and y(τ) have rational Fourier coefficients, and we have that

(1.3) x(τ)N − y(τ)N = −16.

Here we prove the following result for x(τ).

Theorem 1.1. Let N ≥ 1 be an odd integer, and let

x(τ) = q−1 +
∞∑
i=1

a(iN − 1)qiN−1,

where q = e
2πiτ
2N . We define N ′m ∈ {1, 2, . . . , 2m − 1} such that NN ′m ≡ 1 (mod 2m).

For positive integers m and n, we have that

v2(a(n2m)) ≥ 3km,

where km is the number of 1’s in the binary expansion of N ′m.

Remark. We can also define km to be the number of 1’s among the first m digits in
the expansion of 1

N
in the ring of 2-adic integers Z2. For example, if N = 3, then

km = bm
2
c + 1. A periodicity of the expansion implies that km ≈

l1
l2
m, where l1 is the

number of 1’s in the initial period and l2 the length of the initial period.
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Example. When N = 3, we have that

x(τ) = q−1 − 8/3q2 − 4/9q5 + 320/81q8 + 818/243q11 + . . . , and

x(τ)|U(32) = 419737088/315q + 1441740150785943883014512241725440/362q4 + . . . ,

where q = e
2πiτ
6 . It follows that N ′4 = 11, k4 = 3, and the theorem implies that

v2(a(32n)) ≥ 9. We can check that v2(a(32)) = v2(419737088/315) = 9, and so the
inequality is sharp.

Remark. The Fourier coefficients of even index of x(τ) and y(τ) differ by the sign, so
the same result holds for y(τ).

J. Lehner [6] and A. O. L. Atkin [3], using the fact that U(p)-operators are Hecke
operators on modular functions for Γ0(p), obtained similar results for the coefficients
of the modular j-invariant. More precisely, if j(τ) = q−1 +

∑∞
k=0 c(k)qk, and if m and

n are positive integers, they proved that

vp(c(np
m)) ≥

 m+ 1 if p = 5
m if p = 7
m if p = 11.

In our case, the U(2)-operator is not a Hecke operator. In contrast with the work of
Atkin and Lehner, and similarly to Akiyama [1], and Atkin and O’Brien [2] , we express
x(τ)|U(2m) as a formal power series in x(τ)−1. The 2-adic properties of the coefficients
of this power series are described by the following theorem. It implies Theorem 1.1.

Theorem 1.2. Let m be a positive integer, and let N ≥ 1 be an odd integer. We have
the following equality of formal q-series

(1.4) x(τ)|U(2m) =
∞∑
i=0

bm(jm + iN)x(τ)−(jm+iN),

where jm = NN ′m−1
2m

, and N ′m ∈ {1, 2, . . . , 2m − 1} such that NN ′m ≡ 1 (mod 2m).
Moreover, v2(bm(jm + iN)) ≥ 4i+ v2(bm(jm)), and v2(bm(jm)) = 3km, where km is the
number of 1’s in the binary expansion of N ′m.

Remark. It is interesting to ask whether (1.4) is an equality between the values of
functions evaluated at τ . For example, if τ ∈ H is such that λ(τ) is an element of
some finite extension K of Q2, and that v2(16λ(τ)) ≤ 0, where v2 is the normalized
valuation associated to the maximal ideal of the ring of integers of K, then the right
hand side of (1.4) converges in 2-adic topology. It is natural to ask how is that value
related to x(τ)|U(2m)?
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3. Preliminaries for the proofs of the theorems

Throughout this section, let N ≥ 1 be an odd integer. We express x(τ)−k|U(2) as a
power series in x(τ)−1 with rational coefficients, which 2-adically converge to 0. More
precisely, we prove the following theorem.

Theorem 3.1. Let k be a positive integer. We have that

x(τ)−k|U(2) =
∞∑
i=0

ck(j + iN)x(τ)−(j+iN),

where j = k/2 if k is even, and k+N
2

otherwise. Moreover, the coefficients ck(j + iN)’s
are rational, v2(ck(j + iN)) ≥ 4(i+ 1)− 1 and v2(ck(j)) = 3 if k is odd, and v2(ck(j +
iN)) ≥ 4i and v2(ck(j)) = 0 otherwise.

The following lemma is very useful for calculating the action of U(2) on the powers
of x(τ)−1.

Lemma 3.2. For a positive integer k, we have that

2x(τ)−k|U(2) = x(τ/2)−k + (−1)ky(τ/2)−k.

Proof. It follows from (1.1) and (1.2) that Fourier coefficients of odd index of x(τ) and
y(τ) are the same, while the Fourier coefficients of even index differ by sign. Now, the
lemma easily follows by induction. �

To prove Theorem 3.1, we first write (x(τ)−1 − y(τ)−1)|U(2) and 1
x(τ)y(τ)

|U(2) as

a power series in x(τ)−1, and then using Lemma 3.2, we express x(τ)−k|U(2) as a
polynomial in (x(τ)−1 − y(τ)−1)|U(2) and 1

x(τ)y(τ)
|U(2). As the first step, we have the

following proposition.

Proposition 3.3. The following identities hold.

a)
y(τ)

x(τ)
=
∞∑
i=0

(
1/N

i

)
16ix(τ)−iN ,

b)
y(2τ)

x2(2τ)
=

1

x(τ)y(τ)
.

Hence,
1

x(τ)y(τ)
|U(2) =

y(τ)

x(τ)2
.



2-ADIC PROPERTIES OF MODULAR FUNCTIONS 5

Proof. a) It follows from x(τ)N − y(τ)N = −16 that y
x

= N
√

1 + 16x(τ)−N . The Bino-
mial Theorem now implies the claim.

b) Set λ̃(τ) := x(τ)N (i.e. λ̃(τ) = −16λ(τ)). Let X = x(2τ) and Y = x(τ). From
[15], we know that λ(τ) has a pole only at the cusp ∞. Hence by checking that the
principal part of the q-expansion vanishes, we find that the modular equation between
λ̃(τ) and λ̃(2τ) can be written in the following form

X2N −XNY N(Y N + 16)− 16Y N(Y N + 16) = 0.

By rearranging this identity, one gets
yN(2τ)

x2N(2τ)
= x(τ)−Ny(τ)−N , and the claim follows

by taking the Nth root of both sides of equality. �

Let u := x(τ)−1 − y(τ)−1 and v := 1
x(τ)y(τ)

. For a positive integer k, we define

polynomials Pk(u, v) ∈ Z[u, v] in the following way. Set P1(u, v) := u and P2(u, v) :=
u2 + 2v. For an integer k ≥ 2, let Pk(u, v) := Pk−1(u, v) · u− Pk−2(u, v) · v. We record
some properties of the polynomials Pk(u, v).

Lemma 3.4. Let k be a positive integer. Define the degree of u to be 1, and the degree
of v to be 2. Then the following are true.

a) Pk(u, v) is homogeneous of weighted degree k.
b) Pk(u, v) = x(τ)−k + (−1)ky(τ)−k.

c) If k is odd, then the leading coefficient of the monomial uv
k−1
2 in Pk(u, v) is

(−1)
k+1
2 (k − 2).

d) If k is even, then the leading coefficient of the monomial v
k
2 in Pk(u, v) is

(−1)
k
2
+12.

Proof. The lemma follows by induction. �

Power series that we are working with have the following property.

Definition 3.5. Let m and M be integers. We say that a power series
∞∑
i=0

e(m+ iM)xm+iM

is special, if for every i ≥ 0 we have that v2(e(m+ iM)) ≥ 4i+ v2(e(m)).

Using the notion of special power series, we prove the following proposition.

Proposition 3.6. We have that

x(τ)−1 − y(τ)−1 =
∞∑
i=0

b

(
N + 1

2
+ iN

)
x(2τ)−(

N+1
2

+iN),

where b(N+1
2

+ iN) are rational numbers such that v2(b(
N+1
2

+ iN)) ≥ 4(i + 1) and

v2(b(
N+1
2

)) = 4.
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Proof. We use formula (1.3) and PN(u, v)v−N = 16 to calculate the x(2τ)−1-expansion
of u = x(τ)−1 − y(τ)−1 recursively. First note that Proposition 3.3 implies that

v = x(2τ)−1 +
∞∑
i=1

A(iN + 1)x(2τ)−(iN+1),

where v2(A(iN + 1)) ≥ 4i. Thus, we have that

v−1 = x(2τ) +
∞∑
i=1

B(iN − 1)x(2τ)−(iN−1),

where v2(B(iN − 1)) ≥ 4i. Hence v−1 is special.

Lemma 3.4 implies that the monomials of PN(u, v)v−N are of the form c(i)uiv
i+N
2 ,

i = 1, 3, . . . , N , and that c(1) is odd. It follows that v2(b(
N+1
2

)) = v2(16) = 4. Denote

by d( (i−1)N
2

)x(2τ)−
(i−1)

2
N the leading x(2τ)−1- term of c(i)uiv

i+N
2 . It is easy to see that

v2(d( (i−1)N
2

)) ≥ 4i. Using the fact that the product of special power series is special,
an easy inductive argument (using that c(1) is odd) implies that u is special. Hence,
the proposition follows. �

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. By Propositions 3.3 and 3.6, we have that u = 8
N
x(2τ)−

N+1
2 +. . .

and v = x(2τ)−1 + . . ..
First, we assume that k is even. Lemma 3.4 implies that

Pk(u, v) =

k
2∑
i=0

dk(i)v
iuk−2i,

where dk(k/2) = ±2, and the leading coefficients of x(2τ)−1-expansions of monomials
dk(i)v

iuk−2i are of degree k/2+ k−2i
2
N . Hence, j = k/2, and ck(j) = 1. Propositions 3.3

and 3.6 imply that each monomial dk(i)v
iuk−2i is special (with respect to the x(2τ)−1-

expansion), and that the 2-adic valuations of the leading coefficients in their expansions
are ≥ 4(k−2i). Since v2(dk(k/2)) = 1, it follows that Pk(u, v) is special with the 2-adic
valuation of the leading x(2τ)−1 term equal to 1. Now the claim follows from Lemma
3.2.

Next, assume that k is odd. Lemma 3.4 implies that

Pk(u, v) =

k−1
2∑
i=0

dk(i)v
iuk−2i,

where dk(
k−1
2

) is odd, and the leading coefficients of x(2τ)−1-expansions of monomials

dk(i)v
iuk−2i are of degree k/2 + k−2i

2
N . Hence j = N+k

2
, and v2(ck(j)) = 4. Now, an

argument as in the previous case completes the proof. �
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4. Proofs of Theorems 1.1 and 1.2

Proof of Theorem 1.2. Since x(τ) = q−1+
∑∞

i=1 a(iN−1)qiN−1, we have that j1 = N−1
2

,

and jm = jm−1/2 if jm−1 is even, and jm = jm−1+N
2

otherwise. The formula for jm now
follows by induction. Note that in the first case N ′m = N ′m−1, while in the second
N ′m = N ′m−1 + 2m−1. Hence, the number of 1’s in binary expansion of N ′m counts the
number of odd elements in the sequence ji, for i ∈ {0, 1, . . .m − 1}, where we define
j0 = −1.

Next, we prove by induction that x(τ)|U(2m) is special, and the formula for v2(bm(jm)).
If m = 1 then N ′1 = 1, and Proposition 3.3 together with Proposition 3.6 implies that
x(τ)|U(2) is special and that v2(b1(j1)) = 3. Assume that m > 1 is such that jm−1
is even. Then Theorem 3.1 implies that v2(bm(jm)) = v2(bm−1(jm−1)). If jm−1 is odd,
then both bm−1(jm−1)x(τ)−jm−1|U(2) and bm−1(jm−1+N)x(τ)−(jm−1+N)|U(2) contribute
the bm(jm)x(τ)−jm term of x(τ)|U(2m). However, an induction hypothesis implies that
v2(bm(jm)) = v2(bm−1(jm−1)) + 3, since v2(bm−1(jm−1 + N)) ≥ 4 + bm−1(jm−1). Thus,
the formula follows. Using Theorem 3.1 and the induction hypothesis, an argument
similar as before implies that x(τ)|U(2m) is special, and so the theorem follows. �

Proof of Theorem 1.1. The theorem follows directly from the Theorem 1.2, and the
definition of U(2). �
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