CONGRUENT NUMBERS AND CONGRUENCES BETWEEN
HALF-INTEGRAL WEIGHT MODULAR FORMS
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ABSTRACT. In this paper we investigate 2-parts of class numbers of quadratic imagi-
nary field Q(v/—d) and 2- parts of the algebraic parts of the central L-values associated
to the elliptic curves Ey : 4% = 2% —d?z by studying congruences modulo small powers
of two between certain half-integral weight modular forms. Assuming the full Birch
and Swinnerton-Dyer conjecture for elliptic curves E;, we prove results about the
structure of the 2-part of the Tate-Shafarevich group III(E,;). Bruin and Hemenway
[2] unconditionally proved some of these results, therefore we verify that for curves
E4 Birch and Swinnerton-Dyer conjecture gives correct predictions about the size of
2-part of its Tate-Shafarevich group.

1. INTRODUCTION AND STATEMENT OF RESULTS

A positive integer d is called congruent if it is the area of a right triangle with
rational side lengths. The congruent number problem asks for the classification of
positive integers which are congruent. It is well known that d is congruent if and
only if the elliptic curve Ey : y*> = 23 — d?z has a positive rank over Q. Tunnell [10]
constructed weight 3/2 Hecke eigenform

F(7) = n(82)n(162)00(2) = > _a(n)g" € S5 (T(128)),

whose image under Shimura correspondence g(z) has property that L(E;,s) = L(g, s).
Using Waldspurger’s result [11](note that the curves F, are quadratic twist of Fy), he
proved that if d is a positive, odd and square-free integer, then

L(Ey 1) = a(d)Z&

where () ;= ffo \/jfi_x. We define the square root of the algebraic part of L(Eq4, 1) to

be \/LY9(E4, 1) := a(d).
If we assume Birch and Swinnerton-Dyer (BSD) conjecture, we have that d is a
noncongruent number if and only if a(d) # 0. On the other hand, known results
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on BSD conjecture imply unconditionally that if a(d) # 0, then d is a noncongruent
number.

Starting with Gauss, who developed genus theory, many people studied the struc-
ture of 2-Sylow subgroup of the class group of the imaginary quadratic fields. For a
prime p =1 (mod 4), denote by h(—4p) the class number of quadratic imaginary field
Q(y/=p). Cohn and Barrucand [3] discovered that 8|h(—4p) if and only if p = 22432y,
for some integers « and y. Williams [13] showed that if e = 7'+ U,/p is a fundamen-
tal unit of the real quadratic field Q(y/p) then h(—4p) =T +p — 1 (mod 16), where
8|h(—4p). Tt is not known are there infinitely many primes p for which 16|h(—4p).

In the light of the well known analogy between the class group and Tate-Shafarevich
group of the elliptic curve, one can ask the similar questions about III(E,), the Tate-
Shafarevich group of the elliptic curve E,. Bruin and Hemenway [2] proved, under the
assumption that the primes p for which £,(Q) has rank 2 have asymptotic density 0
in the set of primes, that at least one of the following is true.

a) There are infinitely many primes p such that Z/8Z — III(E,).
b) There are infinitely many primes p such that 16|h(—4p).

We prove the “L-function” analog of this result.

Theorem 1.1. If d is a positive square free integer, then

3H(—4d) = /LY (E4 1) +8b(d) (mod 16),
where b(d) is dth Fourier coefficient of the certain Eisenstein series (see Proposition

3.1), and H(—4d) is the Hurwitz class number (see Section 2 ). In particular, if p is a
prime, then

La9(E, 1) (mod 16) ifp=1 (mod 16),
VLY (E,1)+8 (mod16) ifp=9 (mod 16)
Remark. The author [6] proved a similar congruence relation between h(—4p) and

algebraic part of the central value of L-function associated to Ramanujan A-function
and its quadratic twists.

3h(—4p) = {

Remark. G. Boxer and P. Diao [1] proved a similar theorem for a certain class of elliptic
curves without any rational 2-torsion over Q (note that E) has a full rational 2-torsion

over Q).
Assuming the full BSD conjecture, Tunell showed that #III(E,) = {a(p)* when
a(p) # 0, hence we have the following corollary.

Corollary 1.2. Let p be a prime. If we assume the full BSD conjecture for the curve
E

», then the following are true:
a) If p=1 (mod 16) then
16|h(—4p) < (Z/8Z)* — 1(E,) or p is congruent.
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b) If p=9 (mod 16), then
8||h(—4p) <= (Z/8Z)* — UI(E,) or p is congruent.

Chebotarev’s density theorem implies that the set S of primes p =9 (mod 16) with
property that 8|h(—4p) has a positive density in the set of primes. For p € S, the sign
of functional equation of L(E,, s) is 1, hence BSD conjecture implies that the rank of
E, is even. If we assume that the set of primes p for which F, has rank 2 have density
0 in the set of primes, we conclude that there are infinitely many primes p € S for
which p is noncongruent. Corollary 1.2 b) now implies that for p € S either 16|h(—4p)
or (Z/8Z)* — UI(E,).

The following theorem relates the structure of III(E,) to the arithmetic of real qua-

dratic field Q(,/p).

Theorem 1.3. Let p =1 (mod 8) be a prime. If we assume the full BSD conjecture
for the curve E,, then we have

(Z/87)* — 1(E,) or p is congruent <= 16|Ry,

where Ry := log,(€) is 2-adic requlator and € is a fundamental unit of the real quadratic

field Q(\/p).

Remark. In view of the congruences that author proved for Ramanujan A-function [6],
it is natural to ask whether analogs of the results of this paper (and those of Bruin
and Hemenway) hold for Tate-Shafarevich groups of twists of Tate twists of modular
motives associated to A-function.

2. PRELIMINARIES

2.1. The theta function. (See [7], p.12, p.134). A prototypical example of a half-
integral weight modular form is the theta function.

Definition 2.1. The theta function 0y(z) is given by the Fourier series

Oo(2) =1+ 2iq"2 € My (To(4)).

n=1
We will be interested in
Oo(2)° = r(n)q" =1+ 6q+12¢> +8¢° +--- .
n=0

A classical result of Gauss states that

12H(—4n) ifn=1,2 (mod 4)
) 24H(—n) iftn=3 (mod38),
r(n) = r(n/4) ifn=0 (mod 4),

0 ifn=7 (mod 8).
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Here H(—n) is the Hurwitz class number. It is related to the class number h(—n)
by the following formula:

() = 2D S i) () i,

where —N = —Df? (=D is a negative fundamental discriminant), w(—D) is half the
number of units in Q(v/—D), and u(d) is the Mobius function.

2.2. Cohen-Eisenstein series. (See 7], p.14). To study special values of Dirichlet
L-functions at negative integers we define Cohen-Eisenstein series.

Definition 2.2. If r > 2 is an integer, then the weight r + % Cohen-FEisenstein series
s defined by

N=0
Here H(r,N) is defined by
H(r,N)=L(1—-rxp Z,u d"toy,_1(n/d),
dn
where xp(d) = (§). In particular, H(r,N) = L(1 —r,xp) if D = (=1)"N is a

fundamental discriminant.
Cohen [4] proved the following important result.
Theorem 2.3. Ifr > 2 is an integer, then H,(z) € M, 1(I'o(4)).

2.3. Sturm’s Theorem. (See [9], p.171). In order to prove congruences between
modular forms it is enough to check congruences between a finite number of their
initial Fourier coefficients.
Let f(z) => " a(n)g" € My(T'), be a modular form of weight k € Z for a congru-
ence group I' < SLy(Z) with a(n) € Ok, and let m C Ok be an ideal. Define
orde(f) = min{n : a(n) ¢ m}.
Theorem 2.4 (Sturm). If we have

ordy(f) > %[SLQ(Z) : T,

then it follows that ordy,(f) = oo.

We will apply this result to half-integral weight modular forms. We call the quantity
in the theorem the Sturm bound for M (T).
Let N,M and 2k be integers. Assume 4|N and N|M We define

M,(M,N) = @Mk To(M
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where the sum is over all Dirichlet characters of conductor dividing N. We have the
following proposition (for the proof see Section 3.2. of [6]).

Proposition 2.5. Let k be an integer and f(z) € My 1 (M, N). If we have
2k +1 1

p|M

then we have ordy(f) = oo.

For a power series f(z) = > c¢(n)q", and positive integers a < b, with ged(a,b) = 1,

denote by f(z)q,» a powerseries Y. ¢(n)q™. It follows thatif f(z) € M, 1(M,2"),
n=a (mod b)

then f(2), 2 € MH%(M - 22 max(2V,2°71)). Denote by fT(2) := f(2)1s

1
2

2.4. Weight 1 Eisenstein series. Let n > 2 be a positive integer. In this subsection,
we recall the construction of weight one Eisenstein series W,,(z) with the property that
W, (2) =1 (mod 2")(for more details see Section 3.3. of [6]).

Definition 2.6. For primitive Dirichlet characters ¢ and ¢, such that (Yo)(—1) = —1,
we define an Fisenstein series

B4 (2) = 8(8)L(0, ) + 5(1) L(0, 6) + 2Za

Here §(¢0) = 1 if v = 1, and 0 otherwise, and the genemlzzed divisor sum 1s
- Eo(2) et
Also for a positive integer t, we define
BP9 (2) = By (tz).

The following well known result gives a basis for the Eisenstein subspace of weight
1 (for the proof see [5], p.141).

Theorem 2.7. Let N be a positive integer. Let Ay be a set of pairs ({1, ¢}, t) where )
and ¢ are primitive Dirichlet characters of modulus u and v, such that (¥¢)(—1) = —1,
and t is a positive integer such that tuv|N. Then the set

{BY*'(2) - ({0}, 1) € Ax}
represents a basis of the Eisenstein subspace of My(I'1(N)).

Recall that the group of Dirichlet characters of modulus 2" is isomorphic to Z /27 x
7.)2"27. Also, if ¢ is an odd Dirichlet character of conductor f, we have

-1
L(O,%) =B, = —% S v,
=0
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where Bj 4 is a generalized Bernoulli number.

Theorem 2.8. Let n > 2 be a positive integer, and let 1 and ¢ be the generators of the
group of Dirichet characters of modulus 2" of order 2 and 2"2. Then the Eisenstein
series

00 n—2
Wo =Y aig' = =2 (~1)'E;"? (2) € My(T1(2"))
=0 =0

satisfies W,, =1 (mod 2").

3. PROOFS
The following proposition was proved in [6].

Proposition 3.1. The following congruences hold.

We have
200(2)*" = 5900(2) " + 64F,(2) — 8Hy(2)" (mod 128),
where Fy(z) =2 b(n)g™ € My(T'1(128)) is an Eisenstein series such that for prime
number p we have

b(p) =0 (mod?2) ifp=1 (mod 16),
b(p)=1 (mod2) ifp=9 (mod 16).

The following result relates Fourier coefficients a(d) to the special values of Dirichlet
L-function.

Proposition 3.2. We have that
16 (2) = 240H, (2) +14 Y d'¢® =8 > dq" +8 Y ¢* (mod 2°)
d>0 odd d>0 odd d>0 odd
Proof. Sturm bound for the modular form

h(z) = 1617 (2)Wr(2)? — 240H] (2) = TWa(2)* D i%0p(2)i0
i=1 (mod 8)
0<i<26
— 4W7(Z>4 Z i90<z>i,25 + 4W7(Z>4¢90(Z)1,2 € M4+1 (214, 27)

3
i=1 (mod 8)
0<i<25

is 589824. A computer check verifies that h(z) = 0 (mod 2%), which completes the
proof since h(z) is congruent modulo 2® to the expression from the statement of the
proposition. ]

Combining these two propositions, we obtain proofs of the results from the intro-
duction.
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Proof of Theorem 1.1. From Proposition 3.1 it follows that 3H (—4d) = 8b(d) — H (4, d)
(mod 16), while Proposition 3.2 implies a(d) = —H(4,d) (mod 16). Putting this to-
gether we get a(d) = 3H(—4d) — 8b(d) (mod 16). The rest follows from Proposition
3.1. 0

Proof of Corollary 1.2. Let p=1 (mod 16) be a prime. If 16|h(—4p), then Proposition
3.2 implies that 16|a(p). If a(p) # 0, then p is noncongruent and #II(E,) = ta(p)?
implies that (Z/8Z)* — #III(E,). The rest follows similarly. O

Theorem 1.3. We recall the 2-adic class number formula ([12], p.71). Let € be a fun-
damental unit of Q(,/p). Then we have (up to the sign)

2

Since h(p) is odd, we have 16| log, € if and only if 16]Ls(1, x;,). On the other hand, by

definition Lo(1—2" x,) = (1 —x,(2)2%" "1 L(1 —2", x,) and La(1, x,) = La(1 — 22, x,)

(mod 32) (Shiratani [8]), hence 16|L2(1, x,) if and only if 16|L(—3, x,). Proposition

3.2 implies that a(p) = 15L(—3, x,) (mod 16), hence 16| log, € if and only 16|a(p). If
1

p is noncongruent, then #II(E,) = fa(p)* so 16]a(p) is equivalent to (Z/8Z)* —

1I(E,). 0

2h(p)logae (1 xp(2) !
T = (1 ) LQ(l,Xp).
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