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Abstract. In this paper we investigate 2-parts of class numbers of quadratic imagi-
nary �eld Q(

√
−d) and 2-parts of the algebraic parts of the central L-values associated

to the elliptic curves Ed : y2 = x3−d2x by studying congruences modulo small powers
of two between certain half-integral weight modular forms. Assuming the full Birch
and Swinnerton-Dyer conjecture for elliptic curves Ed, we prove results about the
structure of the 2-part of the Tate-Shafarevich group X(Ed). Bruin and Hemenway
[2] unconditionally proved some of these results, therefore we verify that for curves
Ed Birch and Swinnerton-Dyer conjecture gives correct predictions about the size of
2-part of its Tate-Shafarevich group.

1. Introduction and statement of results

A positive integer d is called congruent if it is the area of a right triangle with
rational side lengths. The congruent number problem asks for the classi�cation of
positive integers which are congruent. It is well known that d is congruent if and
only if the elliptic curve Ed : y2 = x3 − d2x has a positive rank over Q. Tunnell [10]
constructed weight 3/2 Hecke eigenform

f(τ) = η(8z)η(16z)θ0(z) =
∞∑
n=1

a(n)qn ∈ S 3
2
(Γ0(128)),

whose image under Shimura correspondence g(z) has property that L(E1, s) = L(g, s).
Using Waldspurger's result [11](note that the curves Ed are quadratic twist of E1), he
proved that if d is a positive, odd and square-free integer, then

L(Ed, 1) = a(d)2
Ω

4
√
d
,

where Ω :=
∫∞
1

dx√
x3−x . We de�ne the square root of the algebraic part of L(Ed, 1) to

be
√
Lalg(Ed, 1) := a(d).

If we assume Birch and Swinnerton-Dyer (BSD) conjecture, we have that d is a
noncongruent number if and only if a(d) 6= 0. On the other hand, known results
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on BSD conjecture imply unconditionally that if a(d) 6= 0, then d is a noncongruent
number.
Starting with Gauss, who developed genus theory, many people studied the struc-

ture of 2-Sylow subgroup of the class group of the imaginary quadratic �elds. For a
prime p ≡ 1 (mod 4), denote by h(−4p) the class number of quadratic imaginary �eld
Q(
√
−p). Cohn and Barrucand [3] discovered that 8|h(−4p) if and only if p = x2+32y2,

for some integers x and y. Williams [13] showed that if ε = T + U
√
p is a fundamen-

tal unit of the real quadratic �eld Q(
√
p) then h(−4p) ≡ T + p − 1 (mod 16), where

8|h(−4p). It is not known are there in�nitely many primes p for which 16|h(−4p).
In the light of the well known analogy between the class group and Tate-Shafarevich

group of the elliptic curve, one can ask the similar questions about X(Ep), the Tate-
Shafarevich group of the elliptic curve Ep. Bruin and Hemenway [2] proved, under the
assumption that the primes p for which Ep(Q) has rank 2 have asymptotic density 0
in the set of primes, that at least one of the following is true.

a) There are in�nitely many primes p such that Z/8Z ↪→X(Ep).
b) There are in�nitely many primes p such that 16|h(−4p).

We prove the �L-function� analog of this result.

Theorem 1.1. If d is a positive square free integer, then

3H(−4d) ≡
√
Lalg(Ed, 1) + 8b(d) (mod 16),

where b(d) is dth Fourier coe�cient of the certain Eisenstein series (see Proposition
3.1), and H(−4d) is the Hurwitz class number (see Section 2 ). In particular, if p is a
prime, then

3h(−4p) ≡
{ √

Lalg(Ep, 1) (mod 16) if p ≡ 1 (mod 16),√
Lalg(Ep, 1) + 8 (mod 16) if p ≡ 9 (mod 16)

Remark. The author [6] proved a similar congruence relation between h(−4p) and
algebraic part of the central value of L-function associated to Ramanujan ∆-function
and its quadratic twists.

Remark. G. Boxer and P. Diao [1] proved a similar theorem for a certain class of elliptic
curves without any rational 2-torsion over Q (note that E1 has a full rational 2-torsion
over Q).

Assuming the full BSD conjecture, Tunell showed that #X(Ep) = 1
4
a(p)2 when

a(p) 6= 0, hence we have the following corollary.

Corollary 1.2. Let p be a prime. If we assume the full BSD conjecture for the curve
Ep, then the following are true:

a) If p ≡ 1 (mod 16) then

16|h(−4p) ⇐⇒ (Z/8Z)2 ↪→X(Ep) or p is congruent.
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b) If p ≡ 9 (mod 16), then

8||h(−4p) ⇐⇒ (Z/8Z)2 ↪→X(Ep) or p is congruent.

Chebotarev's density theorem implies that the set S of primes p ≡ 9 (mod 16) with
property that 8|h(−4p) has a positive density in the set of primes. For p ∈ S, the sign
of functional equation of L(Ep, s) is 1, hence BSD conjecture implies that the rank of
Ep is even. If we assume that the set of primes p for which Ep has rank 2 have density
0 in the set of primes, we conclude that there are in�nitely many primes p ∈ S for
which p is noncongruent. Corollary 1.2 b) now implies that for p ∈ S either 16|h(−4p)
or (Z/8Z)2 ↪→X(Ep).
The following theorem relates the structure of X(Ep) to the arithmetic of real qua-

dratic �eld Q(
√
p).

Theorem 1.3. Let p ≡ 1 (mod 8) be a prime. If we assume the full BSD conjecture
for the curve Ep, then we have

(Z/8Z)2 ↪→X(Ep) or p is congruent ⇐⇒ 16|R2,

where R2 := log2(ε) is 2-adic regulator and ε is a fundamental unit of the real quadratic
�eld Q(

√
p).

Remark. In view of the congruences that author proved for Ramanujan ∆-function [6],
it is natural to ask whether analogs of the results of this paper (and those of Bruin
and Hemenway) hold for Tate-Shafarevich groups of twists of Tate twists of modular
motives associated to ∆-function.

2. Preliminaries

2.1. The theta function. (See [7], p.12, p.134). A prototypical example of a half-
integral weight modular form is the theta function.

De�nition 2.1. The theta function θ0(z) is given by the Fourier series

θ0(z) = 1 + 2
∞∑
n=1

qn
2 ∈M 1

2
(Γ0(4)).

We will be interested in

θ0(z)3 =
∞∑
n=0

r(n)qn = 1 + 6q + 12q2 + 8q3 + · · · .

A classical result of Gauss states that

r(n) =


12H(−4n) if n ≡ 1, 2 (mod 4)
24H(−n) if n ≡ 3 (mod 8),
r(n/4) if n ≡ 0 (mod 4),
0 if n ≡ 7 (mod 8).
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Here H(−n) is the Hurwitz class number. It is related to the class number h(−n)
by the following formula:

H(−n) =
h(−D)

w(−D)

∑
d|f

µ(d)

(
−D
d

)
σ1(f/d),

where −N = −Df 2 (−D is a negative fundamental discriminant), w(−D) is half the
number of units in Q(

√
−D), and µ(d) is the Möbius function.

2.2. Cohen-Eisenstein series. (See [7], p.14). To study special values of Dirichlet
L-functions at negative integers we de�ne Cohen-Eisenstein series.

De�nition 2.2. If r ≥ 2 is an integer, then the weight r + 1
2
Cohen-Eisenstein series

is de�ned by

Hr(z) =
∞∑
N=0

H(r,N)qN .

Here H(r,N) is de�ned by

H(r,N) = L(1− r, χD)
∑
d|n

µ(d)χD(d)dr−1σ2r−1(n/d),

where χD(d) =
(
D
d

)
. In particular, H(r,N) = L(1 − r, χD) if D = (−1)rN is a

fundamental discriminant.

Cohen [4] proved the following important result.

Theorem 2.3. If r ≥ 2 is an integer, then Hr(z) ∈Mr+ 1
2
(Γ0(4)).

2.3. Sturm's Theorem. (See [9], p.171). In order to prove congruences between
modular forms it is enough to check congruences between a �nite number of their
initial Fourier coe�cients.
Let f(z) =

∑∞
n=0 a(n)qn ∈Mk(Γ), be a modular form of weight k ∈ Z for a congru-

ence group Γ < SL2(Z) with a(n) ∈ OK , and let m ⊂ OK be an ideal. De�ne

ordm(f) = min{n : a(n) /∈ m}.
Theorem 2.4 (Sturm). If we have

ordm(f) >
k

12
[SL2(Z) : Γ],

then it follows that ordm(f) =∞.
We will apply this result to half-integral weight modular forms. We call the quantity

in the theorem the Sturm bound for Mk(Γ).
Let N ,M and 2k be integers. Assume 4|N and N |M . We de�ne

Mk(M,N) =
⊕
χ

Mk(Γ0(M), χ),
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where the sum is over all Dirichlet characters of conductor dividing N . We have the
following proposition (for the proof see Section 3.2. of [6]).

Proposition 2.5. Let k be an integer and f(z) ∈Mk+ 1
2
(M,N). If we have

ordm(f) >
2k + 1

24
Mφ(N)

∏
p|M

(1 +
1

p
),

then we have ordm(f) =∞.

For a power series f(z) =
∑
c(n)qn, and positive integers a < b, with gcd(a, b) = 1,

denote by f(z)a, b a power series
∑

n≡a (mod b)

c(n)qn. It follows that if f(z) ∈Mk+ 1
2
(M, 2N),

then f(z)a, 2b ∈Mk+ 1
2
(M · 22b,max(2N , 2b−1)). Denote by f+(z) := f(z)1,8.

2.4. Weight 1 Eisenstein series. Let n ≥ 2 be a positive integer. In this subsection,
we recall the construction of weight one Eisenstein series Wn(z) with the property that
Wn(z) ≡ 1 (mod 2n)(for more details see Section 3.3. of [6]).

De�nition 2.6. For primitive Dirichlet characters ψ and φ, such that (ψφ)(−1) = −1,
we de�ne an Eisenstein series

Eψ,φ
1 (z) = δ(φ)L(0, ψ) + δ(ψ)L(0, φ) + 2

∞∑
n=1

σψ,φ0 (n)qn.

Here δ(ψ) = 1 if ψ = 1, and 0 otherwise, and the generalized divisor sum is

σψ,φ0 (n) =
∑
m|n

ψ
( n
m

)
φ(m).

Also for a positive integer t, we de�ne

Eψ,φ,t
1 (z) = Eψ,φ

1 (tz).

The following well known result gives a basis for the Eisenstein subspace of weight
1 (for the proof see [5], p.141).

Theorem 2.7. Let N be a positive integer. Let AN be a set of pairs ({ψ, φ}, t) where ψ
and φ are primitive Dirichlet characters of modulus u and v, such that (ψφ)(−1) = −1,
and t is a positive integer such that tuv|N . Then the set

{Eψ,φ,t
1 (z) : ({ψ, φ}, t) ∈ AN}

represents a basis of the Eisenstein subspace of M1(Γ1(N)).

Recall that the group of Dirichlet characters of modulus 2n is isomorphic to Z/2Z×
Z/2n−2Z. Also, if ψ is an odd Dirichlet character of conductor f , we have

L(0, ψ) = −B1,ψ = − 1

f

f−1∑
i=0

ψ(i)i,
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where B1,ψ is a generalized Bernoulli number.

Theorem 2.8. Let n ≥ 2 be a positive integer, and let ψ and φ be the generators of the
group of Dirichet characters of modulus 2n of order 2 and 2n−2. Then the Eisenstein
series

Wn =
∞∑
i=0

aiq
i = −2

2n−2∑
i=0

(−1)iE1,ψφi

1 (z) ∈M1(Γ1(2
n))

satis�es Wn ≡ 1 (mod 2n).

3. Proofs

The following proposition was proved in [6].

Proposition 3.1. The following congruences hold.
We have

2θ0(z)3+ ≡ 59θ0(z)+ + 64F1(z)− 8H4(z)+ (mod 128),

where F1(z) =
∑∞

n=0 b(n)qn ∈M1(Γ1(128)) is an Eisenstein series such that for prime
number p we have

b(p) ≡ 0 (mod 2) if p ≡ 1 (mod 16),
b(p) ≡ 1 (mod 2) if p ≡ 9 (mod 16).

The following result relates Fourier coe�cients a(d) to the special values of Dirichlet
L-function.

Proposition 3.2. We have that

16f+(z) ≡ 240H+
4 (z) + 14

∑
d>0 odd

d4qd
2 − 8

∑
d>0 odd

d2qd
2

+ 8
∑

d>0 odd

qd
2

(mod 28)

Proof. Sturm bound for the modular form

h(z) = 16f+(z)W7(z)3 − 240H+
4 (z)− 7W7(z)4

∑
i≡1 (mod 8)

0<i<26

i2θ0(z)i,26

− 4W7(z)4
∑

i≡1 (mod 8)
0<i<25

iθ0(z)i,25 + 4W7(z)4θ0(z)1,2 ∈M4+ 1
2
(214, 27)

is 589824. A computer check veri�es that h(z) ≡ 0 (mod 28), which completes the
proof since h(z) is congruent modulo 28 to the expression from the statement of the
proposition. �

Combining these two propositions, we obtain proofs of the results from the intro-
duction.



CONGRUENT NUMBERS AND CONGRUENCES BETWEEN MODULAR FORMS 7

Proof of Theorem 1.1. From Proposition 3.1 it follows that 3H(−4d) ≡ 8b(d)−H(4, d)
(mod 16), while Proposition 3.2 implies a(d) ≡ −H(4, d) (mod 16). Putting this to-
gether we get a(d) ≡ 3H(−4d) − 8b(d) (mod 16). The rest follows from Proposition
3.1. �

Proof of Corollary 1.2. Let p ≡ 1 (mod 16) be a prime. If 16|h(−4p), then Proposition
3.2 implies that 16|a(p). If a(p) 6= 0, then p is noncongruent and #X(Ep) = 1

4
a(p)2

implies that (Z/8Z)2 ↪→ #X(Ep). The rest follows similarly. �

Theorem 1.3. We recall the 2-adic class number formula ([12], p.71). Let ε be a fun-
damental unit of Q(

√
p). Then we have (up to the sign)

2h(p) log2 ε√
p

=

(
1− χp(2)

2

)−1
L2(1, χp).

Since h(p) is odd, we have 16| log2 ε if and only if 16|L2(1, χp). On the other hand, by
de�nition L2(1− 2n, χp) = (1−χp(2)22n−1)L(1− 2n, χp) and L2(1, χp) ≡ L2(1− 22, χp)
(mod 32) (Shiratani [8]), hence 16|L2(1, χp) if and only if 16|L(−3, χp). Proposition
3.2 implies that a(p) ≡ 15L(−3, χp) (mod 16), hence 16| log2 ε if and only 16|a(p). If
p is noncongruent, then #X(Ep) = 1

4
a(p)2 so 16|a(p) is equivalent to (Z/8Z)2 ↪→

X(Ep). �
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