Rational $D(q)$-quadruples

Goran Dražić ${ }^{1}$, Matija Kazalicki ${ }^{2}$

Abstract

For a rational number q, a rational $D(q)$ - n-tuple is a set of n distinct nonzero rationals $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ such that $a_{i} a_{j}+q$ is a square for all $1 \leqslant i<j \leqslant n$. For every q we find all rational m such that there exists a $D(q)$-quadruple with product $a_{1} a_{2} a_{3} a_{4}=m$. We describe all such quadruples using points on a specific elliptic curve depending on (q, m).

Keywords:
2020 MSC: 11D09, 11G05
Diophantine n-tuples, Diophantine quadruples, Elliptic curves, Rational
Diophantine n-tuples

1. Introduction

Let $q \in \mathbb{Q}$ be a nonzero rational number. A set of n distinct nonzero rationals $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ is called a rational $D(q)$ - n-tuple if $a_{i} a_{j}+q$ is a square for all $1 \leqslant i<j \leqslant n$. If $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ is a rational $D(q)$ - n-tuple, then for all $r \in$ $\mathbb{Q},\left\{r a_{1}, r a_{2}, \ldots, r a_{n}\right\}$ is a $D\left(q r^{2}\right)$ - n-tuple, since $\left(r a_{1}\right)\left(r a_{2}\right)+q r^{2}=\left(a_{1} a_{2}+q\right) r^{2}$. With this in mind, we restrict to square-free integers q. If we set $q=1$ then such sets are called rational Diophantine n-tuples.

[^0]The first example of a rational Diophantine quadruple was the set

$$
\left\{\frac{1}{16}, \frac{33}{16}, \frac{17}{4}, \frac{105}{16}\right\}
$$

found by Diophantus, while the first example of an integer Diophantine quadruple, the set

$$
\{1,3,8,120\}
$$

is due to Fermat.
In the case of integer Diophantine n-tuples, it is known that there are infinitely many Diophantine quadruples (e.g. $\left\{k-1, k+1,4 k, 16 k^{3}-4 k\right\}$, for $k \geq 2$). Dujella [3] showed there are no Diophantine sextuples and only finitely many Diophantine quintuples, while recently He, Togbé and Ziegler [10] proved there are no integer Diophantine quintuples, which was a long standing conjecture.

Gibbs [9] found the first example of a rational Diophantine sextuple using a computer, and Dujella, Kazalicki, Mikić and Szikszai 7 constructed infinite families of rational Diophantine sextuples. Dujella and Kazalicki parametrized Diophantine quadruples with a fixed product of elements using triples of points on a specific elliptic curve, and used that parametrization for counting Diophantine quadruples over finite fields [5] and for constructing rational sextuples [6]. There is no known rational Diophantine septuple.

Regarding rational $D(q)-n$-tuples, Dujella [2] has shown that there are infinitely many rational $D(q)$-quadruples for any $q \in \mathbb{Q}$. Dujella and Fuchs in [4] have shown that, assuming the Parity Conjecture, for infinitely squarefree integers $q \neq 1$ there exist infinitely many rational $D(q)$-quintuples. There is no known rational $D(q)$-sextuple for $q \neq a^{2}, a \in \mathbb{Q}$.

Our work uses a similar approach Dujella and Kazalicki had in [5] and [6].
Let $\{a, b, c, d\}$ be a rational $D(q)$-quadruple, for a fixed nonzero rational q, such that

$$
\begin{array}{lll}
a b+q=t_{12}^{2}, & a c+q=t_{13}^{2}, & a d+q=t_{14}^{2}, \\
b c+q=t_{23}^{2}, & b d+q=t_{24}^{2}, & c d+q=t_{34}^{2} .
\end{array}
$$

Then $\left(t_{12}, t_{13}, t_{14}, t_{23}, t_{24}, t_{34}, m=a b c d\right) \in \mathbb{Q}^{7}$ defines a rational point on the algebraic variety \mathcal{C} defined by the equations

$$
\begin{aligned}
& \left(t_{12}^{2}-q\right)\left(t_{34}^{2}-q\right)=m \\
& \left(t_{13}^{2}-q\right)\left(t_{24}^{2}-q\right)=m \\
& \left(t_{14}^{2}-q\right)\left(t_{23}^{2}-q\right)=m
\end{aligned}
$$

The rational points $\left(\pm t_{12}, \pm t_{13}, \pm t_{14}, \pm t_{23}, \pm t_{24}, \pm t_{34}, m\right)$ on \mathcal{C} determine two rational $D(q)$ quadruples $\pm(a, b, c, d)$ (specifically, $\left.a^{2}=\frac{\left(t_{12}^{2}-q\right)\left(t_{13}^{2}-q\right)}{t_{23}^{2}-q}\right)$ if a, b, c, d are rational, distinct and nonzero.

Any point $\left(t_{12}, t_{13}, t_{14}, t_{23}, t_{24}, t_{34}, m\right) \in \mathcal{C}$ corresponds to three points $Q_{1}^{\prime}=$ $\left(t_{12}, t_{34}\right), Q_{2}^{\prime}=\left(t_{13}, t_{24}\right)$ and $Q_{3}^{\prime}=\left(t_{14}, t_{23}\right)$ on the curve

$$
\mathcal{D}_{m}:\left(X^{2}-q\right)\left(Y^{2}-q\right)=m
$$

If $\mathcal{D}_{m}(\mathbb{Q})=\emptyset$, there are no rational $D(q)$-quadruples with product of elements equal to m, so we assume there exists a point $P_{1}=\left(x_{1}, y_{1}\right) \in \mathcal{D}_{m}(\mathbb{Q})$.

The curve \mathcal{D}_{m} is a curve of genus 1 unless $m=0$ or $m=q^{2}$, which we assume from now on. Since we also assumed a point $P_{1} \in \mathcal{D}_{m}(\mathbb{Q})$, the curve \mathcal{D}_{m} is birationally equivalent to the elliptic curve

$$
E_{m}: W^{2}=T^{3}+\left(4 q^{2}-2 m\right) T^{2}+m^{2} T
$$

via a rational map $f: \mathcal{D}_{m} \rightarrow E_{m}$ given by

$$
\begin{aligned}
T & =\left(y_{1}^{2}-q\right) \cdot \frac{2 x_{1}\left(y^{2}-q\right) x+\left(x_{1}^{2}+q\right) y^{2}+x_{1}^{2} y_{1}^{2}-2 x_{1}^{2} q-y_{1}^{2} q}{\left(y-y_{1}\right)^{2}} \\
W & =T \cdot \frac{2 y_{1} x\left(q-y^{2}\right)+2 x_{1} y\left(q-y_{1}^{2}\right)}{y^{2}-y_{1}^{2}}
\end{aligned}
$$

Note that f maps $\left(x_{1}, y_{1}\right)$ to the point at infinity $\mathcal{O} \in E_{m}(\mathbb{Q})$, it maps $\left(-y_{1}, x_{1}\right)$ to a point of order four, $R=(m, 2 m q) \in E_{m}(\mathbb{Q})$, and maps $\left(-x_{1}, y_{1}\right)$ to

$$
S=\left(\frac{y_{1}^{2}\left(x_{1}^{2}-q\right)^{2}}{x_{1}^{2}}, \frac{q y_{1}\left(x_{1}^{2}+y_{1}^{2}\right)\left(x_{1}^{2}-q\right)^{2}}{x_{1}^{3}}\right) \in E_{m}(\mathbb{Q})
$$

which is generically a point of infinite order.

We have the following associations

$$
(a, b, c, d) \leftrightarrow \rightarrow \text { a point on } \mathcal{C}(\mathbb{Q}) \longleftrightarrow\left(Q_{1}^{\prime}, Q_{2}^{\prime}, Q_{3}^{\prime}\right) \in \mathcal{D}_{m}(\mathbb{Q})^{3}
$$

In order to obtain a rational $D(q)$-quadruple from a triple of points on $\mathcal{D}_{m}(\mathbb{Q})$, we must satisfy the previously mentioned conditions: a, b, c, d must be rational, mutually disjoint and nonzero.

It is easy to see that if one of them is rational, then so are the other three (i.e. $b=\frac{t_{12}^{2}-q}{a}$), and that they will be nonzero when $m \neq 0$, since $m=a b c d$.

The elements of the quadruple (a, b, c, d) corresponding to the triple of points $\left(Q_{1}^{\prime}, Q_{2}^{\prime}, Q_{3}^{\prime}\right)$ are distinct, if no two of the points $Q_{1}^{\prime}, Q_{2}^{\prime}, Q_{3}^{\prime}$ can be transformed from one to another via changing signs and/or switching coordinates. For example, the triple $\left(t_{12}, t_{34}\right),\left(-t_{34}, t_{12}\right),\left(t_{14}, t_{23}\right)$ would lead to $a=d$. This condition on points in \mathcal{D}_{m} is easily understood on points in E_{m}.

Assume $P \in E_{m} \leftrightarrow(x, y) \in \mathcal{D}_{m}$, that is, $f(x, y)=P$. Then

$$
\begin{equation*}
S-P \leftrightarrow(-x, y), \quad P+R \leftrightarrow(-y, x) \tag{1}
\end{equation*}
$$

The maps $P \mapsto S-P$ and $P \mapsto P+R$ generate a group G of translations on E_{m}, isomorphic to D_{8}, the dihedral group of order 8 , and G induces a group action on $E_{m}(\overline{\mathbb{Q}})$. In order to obtain a quadruple from the triple $\left(Q_{1}, Q_{2}, Q_{3}\right) \in E_{m}(\mathbb{Q})^{3}$, such that the elements of the quadruple are distinct, the orbits $G \cdot Q_{1}, G \cdot Q_{2}, G$. Q_{3} must be disjoint. This is because the set of points in \mathcal{D}_{m} corresponding to $G \cdot P$ is $\{(\pm x, \pm y),(\pm y, \pm x)\}$. We say that such a triple of points satisfies the non-degeneracy criteria.

Let $\overline{\mathcal{D}}_{m}$ denote the projective closure of the curve \mathcal{D}_{m} defined by

$$
\overline{\mathcal{D}}_{m}:\left(X^{2}-q Z^{2}\right)\left(Y^{2}-q Z^{2}\right)=m Z^{4}
$$

The map $f^{-1}: E_{m} \rightarrow \overline{\mathcal{D}}_{m}$ is a rational map, and since the curve E_{m} is smooth, the map is a morphism [11, II.2.1]. The map $x \circ f^{-1}: E_{m} \rightarrow \mathbb{A}^{1}$ given by

$$
x \circ f^{-1}(P)=\frac{X \circ f^{-1}(P)}{Z \circ f^{-1}(P)}
$$

has a pole in points P_{0} such that $f^{-1}\left(P_{0}\right)=[1: 0: 0]$, and is regular elsewhere. The map $y \circ f^{-1}: E_{m} \rightarrow \mathbb{A}^{1}$ given by

$$
y \circ f^{-1}(P)=\frac{Y \circ f^{-1}(P)}{Z \circ f^{-1}(P)}
$$

has a pole in points P_{2} such that $f^{-1}\left(P_{2}\right)=[0: 1: 0]$, and is regular elsewhere. We define the rational map $g: E_{m} \rightarrow \mathbb{A}^{1}$ by

$$
g(P)=\left(x_{1}^{2}-q\right) \cdot\left(\left(x \circ f^{-1}(P)\right)^{2}-q\right) .
$$

The map g has a pole in the same points as the map $x \circ f^{-1}$, and is regular elsewhere.

The maps f and g depend on a fixed point $P_{1} \in \mathcal{D}_{m}$. We omit noting this dependency and simply denote these maps by f and g. The motivation for the map g is [6, 2.4, Proposition 4]. Dujella and Kazalicki use the 2-descent homomorphism in the proof of Proposition 4, we will use g for similar purposes.

Theorem 1. Let $\left(x_{1}, y_{1}\right) \in \mathcal{D}_{m}(\mathbb{Q})$ be the point used to define the map $f: \mathcal{D}_{m} \rightarrow$ E_{m}. If $\left(Q_{1}, Q_{2}, Q_{3}\right) \in E_{m}(\mathbb{Q})^{3}$ is a triple satisfying the non-degeneracy criteria such that $\left(y_{1}^{2}-q\right) \cdot g\left(Q_{1}+Q_{2}+Q_{3}\right)$ is a square, then the numbers

$$
\begin{aligned}
a & = \pm\left(\frac{1}{m} \frac{g\left(Q_{1}\right)}{\left(x_{1}^{2}-q\right)} \frac{g\left(Q_{2}\right)}{\left(x_{1}^{2}-q\right)} \frac{g\left(Q_{3}\right)}{\left(x_{1}^{2}-q\right)}\right)^{1 / 2} \\
b & =\frac{g\left(Q_{1}\right)}{a\left(x_{1}^{2}-q\right)}, c=\frac{g\left(Q_{2}\right)}{a\left(x_{1}^{2}-q\right)}, d=\frac{g\left(Q_{3}\right)}{a\left(x_{1}^{2}-q\right)}
\end{aligned}
$$

are rational and form a rational $D(q)$-quadruple such that $a b c d=m$.
Conversely, assume (a, b, c, d) is a rational $D(q)$-quadruple, such that $m=$ abcd. If the triple $\left(Q_{1}, Q_{2}, Q_{3}\right) \in E_{m}(\mathbb{Q})^{3}$ corresponds to (a, b, c, d), then $\left(y_{1}^{2}-\right.$ q) $g\left(Q_{1}+Q_{2}+Q_{3}\right)$ is a square.

It is not true that the existence of a rational point on $\mathcal{D}_{m}(\mathbb{Q})$ implies the existence of a rational $D(q)$-quadruple with product m. Examples with further clarification are given in Section 4 . The following classification theorem holds:

Theorem 2. There exists a rational $D(q)$-quadruple with product m if and only if

$$
m=\left(t^{2}-q\right)\left(\frac{u^{2}-q}{2 u}\right)^{2}
$$

for some rational parameters (t, u).

In Section 2 we study properties of the function g which we then use in Section 3 to prove Theorems 1 and 2. In Section 4, we give an algorithm on how to determine whether a specific m, such that $\mathcal{D}_{m}(\mathbb{Q}) \neq \emptyset$, admits a rational $D(q)$-quadruple with product m. We conclude the section with an example of an infinite family.

2. Properties of the function g

In this section, we investigate the properties of the function g which we will use to prove the main theorems. The following proposition describes the divisor of g.

Proposition 3. The divisor of g is

$$
\operatorname{div} g=2\left(S_{1}\right)+2\left(S_{2}\right)-2\left(R_{1}\right)-2\left(R_{2}\right)
$$

where $S_{1}, R_{1}, S_{2}, R_{2} \in E_{m}(\mathbb{Q}(\sqrt{q}))$ with coordinates

$$
\begin{array}{ll}
S_{1}=\left(\left(y_{1}^{2}-q\right)\left(x_{1}-\sqrt{q}\right)^{2},\right. & \left.2 y_{1} \sqrt{q}\left(y_{1}^{2}-q\right)\left(x_{1}-\sqrt{q}\right)^{2}\right) \\
R_{1}=\left(\left(x_{1}^{2}-q\right)\left(y_{1}+\sqrt{q}\right)^{2},\right. & \left.2 x_{1} \sqrt{q}\left(x_{1}^{2}-q\right)\left(y_{1}+\sqrt{q}\right)^{2}\right) \\
S_{2}=\left(\left(y_{1}^{2}-q\right)\left(x_{1}+\sqrt{q}\right)^{2},\right. & \left.-2 y_{1} \sqrt{q}\left(y_{1}^{2}-q\right)\left(x_{1}+\sqrt{q}\right)^{2}\right) \\
R_{2}=\left(\left(x_{1}^{2}-q\right)\left(y_{1}+\sqrt{q}\right)^{2},\right. & \left.-2 x_{1} \sqrt{q}\left(x_{1}^{2}-q\right)\left(y_{1}-\sqrt{q}\right)^{2}\right) .
\end{array}
$$

The points S_{1}, S_{2}, R_{1} and R_{2} satisfy the following identities:

$$
\begin{aligned}
2 S_{1} & =2 S_{2}=f\left(x_{1},-y_{1}\right)=S+2 R \\
2 R_{1} & =2 R_{2}=f\left(-x_{1}, y_{1}\right)=S \\
S_{1}+R & =R_{1}, \quad R_{1}+R=S_{2}, \quad S_{2}+R=R_{2}, \quad R_{2}+R=S_{1}
\end{aligned}
$$

Proof. We seek zeros and poles of g. The poles of g are the same as the poles of $x \circ f^{-1}$. To find zeros of g, notice that

$$
\left(x \circ f^{-1}(P)\right)^{2}-q=\frac{m}{\left(y \circ f^{-1}(P)\right)^{2}-q},
$$

so all we need to find are poles of $y \circ f^{-1}$.
The zeros of $x \circ f^{-1}$ are points on E_{m} which map to affine points on $\overline{\mathcal{D}}_{m}$ that have zero x-coordinate. We can easily calculate such points. If $x=0$, then $y^{2}=\frac{q^{2}-m}{q}$. Denote $K=\sqrt{\frac{q^{2}-m}{q}}$. We know $K \neq 0$, since $m \neq q^{2}$.

The zeros of $x \circ f^{-1}$ are the points $f(0, K), f(0,-K) \in E_{m}(\overline{\mathbb{Q}})$, which are different since $K \neq 0$. Since $x \circ f^{-1}$ is of degree two, both zeros are of order one. We conclude $x \circ f^{-1}$ has either one double pole, or two poles of order one.

Similarly, the zeros of $y \circ f^{-1}$ are the points $f(K, 0), f(-K, 0) \in E_{m}(\overline{\mathbb{Q}})$, both of order one. The map $y \circ f^{-1}$ also has either a double pole or two poles of order one.

Assume the point $P_{0} \in E_{m}$ maps to a non-affine point in $\overline{\mathcal{D}}_{m}$. This means that $Z \circ f^{-1}\left(P_{0}\right)=0$, and at least one of the projective coordinate functions $X \circ f^{-1}, Y \circ f^{-1}$ is nonzero at P_{0}. It follows that P_{0} is a pole of at least one of the maps $x \circ f^{-1}, y \circ f^{-1}$.

Let $P_{0} \in E_{m}$ be a pole of one of the maps $x \circ f^{-1}, y \circ f^{-1}$. None of the points $f^{-1}\left(P_{0}\right), f^{-1}\left(P_{0}+R\right), f^{-1}\left(P_{0}+2 R\right), f^{-1}\left(P_{0}+3 R\right)$ are affine points on $\overline{\mathcal{D}}_{m}$ because if one of them is an affine point, then they all are, since the map $P \mapsto P+R$ viewed on $\overline{\mathcal{D}}_{m}$ maps affine points to affine points. We conclude that each of the points $P_{0}, P_{0}+R, P_{0}+2 R, P_{0}+3 R$ is a pole of one of the maps $x \circ f^{-1}, y \circ f^{-1}$ and with the previous claims we have that $x \circ f^{-1}, y \circ f^{-1}$ both have two poles of order one.

The map $P \mapsto S-P$, viewed on $\overline{\mathcal{D}}_{m}$, also maps affine points to affine points. Similarly as above, the points $f^{-1}\left(S-P_{0}\right), f^{-1}\left(S-P_{0}+R\right), f^{-1}\left(S-P_{0}+\right.$ $2 R), f^{-1}\left(S-P_{0}+3 R\right)$ are not affine in $\overline{\mathcal{D}}_{m}$, because the point $f^{-1}\left(P_{0}\right)$ would be affine as well. The sets $\left\{P_{0}, P_{0}+R, P_{0}+2 R, P_{0}+3 R\right\}$ and $\left\{S-P_{0}, S-P_{0}+\right.$ $\left.R, S-P_{0}+2 R, S-P_{0}+3 R\right\}$ must be equal, otherwise the maps $x \circ f^{-1}, y \circ f^{-1}$ would have more than four different poles in total. This means that every pole satisfies the equality $2 P_{0}=S+k R$ for some $k \in\{0,1,2,3\}$. Equivalently, every pole P_{0} is a fixed point of some involution i_{k} of the form $P \mapsto S-P+k R$. Each involution i_{k} has four fixed points on $E_{m}(\overline{\mathbb{Q}})$, because any two fixed points differ by an element from the [2]-torsion.

The involution i_{0}, viewed on $\overline{\mathcal{D}}_{m}$, maps an affine point $(x, y)=f^{-1}(P)$ to $(-x, y)=f^{-1}(S-P)$. It has two affine fixed points which have x-coordinate equal to zero on $\overline{\mathcal{D}}_{m}$, as well as two fixed points which are not affine on $\overline{\mathcal{D}}_{m}$. Such points are either poles of $x \circ f^{-1}$ or poles of $y \circ f^{-1}$. Using Magma 1 we calculate the coordinates explicitly to obtain R_{1} and R_{2}. Computationally, we confirm R_{1} and R_{2} are poles of $x \circ f^{-1}$, that is, poles of g.

The involution i_{2}, viewed on $\overline{\mathcal{D}}_{m}$, maps an affine point $(x, y)=f^{-1}(P)$ to $(x,-y)=f^{-1}(S-P+2 R)$. It has two affine fixed points which have y-coordinate equal to zero on $\overline{\mathcal{D}}_{m}$, as well as two fixed points which are not affine on $\overline{\mathcal{D}}_{m}$. These points must be poles of the map $y \circ f^{-1}$, that is, zeros of g. Again, using Magma, we calculate the coordinates to obtain S_{1} and S_{2}.

Since the poles of $x \circ f^{-1}$ are of order one, then the poles of g are of order two. The same is true for poles of $y \circ f^{-1}$, that is, for zeros of g. The last row of identities in the statement of the theorem is checked by Magma.

Proposition 4. There exists $h \in \mathbb{Q}\left(E_{m}\right)$ such that $g \circ[2]=h^{2}$.
Proof. Let $\tilde{h} \in \overline{\mathbb{Q}}\left(E_{m}\right)$ such that

$$
\begin{aligned}
\operatorname{div} \tilde{h} & =[2]^{*}\left(\left(S_{1}\right)+\left(S_{2}\right)-\left(R_{1}\right)-\left(R_{2}\right)\right) \\
& =\sum_{T \in E_{m}[2]}\left(S_{1}^{\prime}+T\right)+\sum_{T \in E_{m}[2]}\left(S_{2}^{\prime}+T\right)-\sum_{T \in E_{m}[2]}\left(R_{1}^{\prime}+T\right)-\sum_{T \in E_{m}[2]}\left(R_{2}^{\prime}+T\right),
\end{aligned}
$$

where $2 S_{i}^{\prime}=S_{i}, 2 R_{i}^{\prime}=R_{i}$ and [2]* is the pullback of the doubling map on E_{m}.
Such \tilde{h} exists because of Corollary 3.5 in Silverman[11, III.3] stating that if E is an elliptic curve and $D=\sum n_{P}(P) \in \operatorname{Div}(E)$, then D is principal if and only if

$$
\sum_{P \in E} n_{P}=0 \quad \text { and } \quad \sum_{P \in E}\left[n_{P}\right] P=0
$$

where the second sum is addition on E.
The first sum being equal to zero is immediate, and for the second one we have

$$
\sum_{T \in E_{m}[2]}\left(S_{1}^{\prime}+T\right)+\sum_{T \in E_{m}[2]}\left(S_{2}^{\prime}+T\right)-\sum_{T \in E_{m}[2]}\left(R_{1}^{\prime}+T\right)-\sum_{T \in E_{m}[2]}\left(R_{2}^{\prime}+T\right)=
$$

$$
\begin{gathered}
=[4]\left(S_{1}^{\prime}+S_{2}^{\prime}-R_{1}^{\prime}-R_{2}^{\prime}\right)=[2]\left(S_{1}+S_{2}-R_{1}-R_{2}\right)= \\
=[2]\left(S_{1}-R_{2}+S_{2}-R_{1}\right) \stackrel{(*)}{=}[2](R+R)=\mathcal{O},
\end{gathered}
$$

where $(*)$ follows from the last row of identities in Proposition 3 .
Easy calculations give us div $g \circ[2]=\operatorname{div} \tilde{h}^{2}$ which implies $C \tilde{h}^{2}=g \circ[2]$, for some $C \in \overline{\mathbb{Q}}$. Let $h:=\tilde{h} \sqrt{C} \in \overline{\mathbb{Q}}\left(E_{m}\right)$ so that $h^{2}=g \circ[2]$. We will prove $h \in \mathbb{Q}\left(E_{m}\right)$.

First, we show that every $\sigma \in \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ permutes zeros and poles of \tilde{h}. Let us check what σ does to S_{1} and S_{2}. Since S_{1} and S_{2} are conjugates over $\mathbb{Q}(\sqrt{q})$, the only possibilities for S_{1}^{σ} are S_{1} or S_{2}. If $S_{1}^{\sigma}=S_{1}$, then we must have ($\left.S_{1}^{\prime}\right)^{\sigma}=$ $S_{1}^{\prime}+T$, where $T \in E_{m}[2]$, because $2\left(\left(S_{1}^{\prime}\right)^{\sigma}-S_{1}^{\prime}\right)=\left(2 S_{1}^{\prime}\right)^{\sigma}-2 S_{1}^{\prime}=S_{1}^{\sigma}-S_{1}=\mathcal{O}$. Thus σ fixes $\sum_{T \in E_{m}[2]}\left(S_{1}^{\prime}+T\right)$. Since in this case we also know that $S_{2}^{\sigma}=S_{2}$, we get that σ fixes $\sum_{T \in E_{m}[2]}\left(S_{2}^{\prime}+T\right)$ as well.

If $S_{1}^{\sigma}=S_{2}$ it is easy to see that

$$
\left(\sum_{T \in E_{m}[2]}\left(S_{1}^{\prime}+T\right)\right)^{\sigma}=\sum_{T \in E_{m}[2]}\left(S_{2}^{\prime}+T\right) \text { and }\left(\sum_{T \in E_{m}[2]}\left(S_{2}^{\prime}+T\right)\right)^{\sigma}=\sum_{T \in E_{m}[2]}\left(S_{1}^{\prime}+T\right)
$$

Similar statements hold for R_{1} and R_{2}, so we conclude that \tilde{h} is defined over \mathbb{Q}. Both h and \tilde{h} have the same divisor so h is also defined over \mathbb{Q}. Now we use the second statement from Theorem 7.8.3. in [8]:

Theorem 5. Let C be a curve over a perfect field k and let $f \in \bar{k}(C)$.

1. If $\sigma(f)=f, \quad$ for each $\sigma \in \operatorname{Gal}(\bar{k} / k)$ then $f \in k(C)$.
2. If $\operatorname{div}(f)$ is defined over k then $f=$ ch for some $c \in \bar{k}$ and $h \in k(C)$.

From the second statement of the previous theorem we conclude that $h=c \cdot h^{\prime}$ where $c \in \overline{\mathbb{Q}}$ and $h^{\prime} \in \mathbb{Q}\left(E_{m}\right)$. We know that $c^{2}\left(h^{\prime}\right)^{2}=h^{2}=g \circ[2]$, and that $g \circ[2](\mathcal{O})=\left(x_{1}^{2}-q\right)^{2}$ is a rational square. It follows that $c^{2}=\frac{\left(x_{1}^{2}-q\right)^{2}}{h^{\prime}(\mathcal{O})^{2}}$ is a rational square as well, hence c is rational. Finally, we have $h \in \mathbb{Q}\left(E_{m}\right)$.

We end this section with a theorem which will handle rationality issues in Theorem 1 .

Theorem 6. For all $P, Q \in E_{m}(\mathbb{Q})$ we have $g(P+Q) \equiv g(P) g(Q) \bmod \left(\mathbb{Q}^{*}\right)^{2}$. In particular, if $P \equiv Q \bmod 2 E_{m}(\mathbb{Q})$ then $g(P) \equiv g(Q) \bmod \left(\mathbb{Q}^{*}\right)^{2}$.

Proof. Let $P^{\prime}, Q^{\prime} \in E_{m}(\overline{\mathbb{Q}})$ such that $2 P^{\prime}=P$ and $2 Q^{\prime}=Q$. We prove that

$$
\frac{\sigma\left(h\left(P^{\prime}+Q^{\prime}\right)\right)}{h\left(P^{\prime}+Q^{\prime}\right)}=\frac{\sigma\left(h\left(P^{\prime}\right)\right)}{h\left(P^{\prime}\right)} \frac{\sigma\left(h\left(Q^{\prime}\right)\right)}{h\left(Q^{\prime}\right)}
$$

Following Silverman [11, III.8], assume $T \in E_{m}[2]$. From Proposition 4 it follows that $h^{2}(X+T)=g \circ[2](X+T)=g \circ[2](X)=h^{2}(X)$, for every $X \in E_{m}$. This means that $\frac{h(X+T)}{h(X)} \in\{ \pm 1\}$. The morphism

$$
E_{m} \rightarrow \mathbb{P}^{1}, \quad X \mapsto \frac{h(X+T)}{h(X)}
$$

is not surjective, so by [11, II.2.3] it must be constant.
For $\sigma \in \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ we have $\sigma\left(P^{\prime}\right)-P^{\prime} \in E_{m}[2], \sigma\left(Q^{\prime}\right)-Q^{\prime} \in E_{m}[2]$ and $\sigma\left(P^{\prime}+Q^{\prime}\right)-\left(P^{\prime}+Q^{\prime}\right) \in E_{m}[2]$. This holds since $2 P^{\prime}=P \in E_{m}(\mathbb{Q})$ and $2 Q^{\prime}=Q \in E_{m}(\mathbb{Q})$. Now we get

$$
\frac{\sigma\left(h\left(P^{\prime}\right)\right)}{h\left(P^{\prime}\right)}=\frac{h\left(\sigma\left(P^{\prime}\right)\right)}{h\left(P^{\prime}\right)}=\frac{h\left(P^{\prime}+\left(\sigma\left(P^{\prime}\right)-P^{\prime}\right)\right)}{h\left(P^{\prime}\right)}=\frac{h\left(X+\left(\sigma\left(P^{\prime}\right)-P^{\prime}\right)\right)}{h(X)} .
$$

Similarly

$$
\frac{\sigma\left(h\left(Q^{\prime}\right)\right)}{h\left(Q^{\prime}\right)}=\frac{h\left(X+\left(\sigma\left(Q^{\prime}\right)-Q^{\prime}\right)\right)}{h(X)}, \quad \frac{\sigma\left(h\left(P^{\prime}+Q^{\prime}\right)\right)}{h\left(P^{\prime}+Q^{\prime}\right)}=\frac{h\left(X+\left(\sigma\left(P^{\prime}+Q^{\prime}\right)-\left(P^{\prime}+Q^{\prime}\right)\right)\right)}{h(X)} .
$$

Now

$$
\begin{aligned}
\frac{\sigma\left(h\left(P^{\prime}+Q^{\prime}\right)\right)}{h\left(P^{\prime}+Q^{\prime}\right)} & =\frac{h\left(X+\left(\sigma\left(P^{\prime}+Q^{\prime}\right)-\left(P^{\prime}+Q^{\prime}\right)\right)\right)}{h(X)} \\
& =\frac{h\left(X+\left(\sigma\left(P^{\prime}+Q^{\prime}\right)-\left(P^{\prime}+Q^{\prime}\right)\right)\right)}{h\left(X+\sigma\left(P^{\prime}\right)-P^{\prime}\right)} \frac{h\left(X+\sigma\left(P^{\prime}\right)-P^{\prime}\right)}{h(X)} \\
& =\frac{\sigma\left(h\left(Q^{\prime}\right)\right)}{h\left(Q^{\prime}\right)} \frac{\sigma\left(h\left(P^{\prime}\right)\right)}{h\left(P^{\prime}\right)}
\end{aligned}
$$

by plugging in $X=P^{\prime}+Q^{\prime}-\sigma\left(P^{\prime}\right)$ for the first X and $X=P^{\prime}$ for the second one. This leads to

$$
\frac{h\left(P^{\prime}+Q^{\prime}\right)}{h\left(P^{\prime}\right) h\left(Q^{\prime}\right)}=\frac{\sigma\left(h\left(P^{\prime}+Q^{\prime}\right)\right)}{\sigma\left(h\left(Q^{\prime}\right)\right) \sigma\left(h\left(P^{\prime}\right)\right)}=\sigma\left(\frac{h\left(P^{\prime}+Q^{\prime}\right)}{h\left(P^{\prime}\right) h\left(Q^{\prime}\right)}\right)
$$

for every $\sigma \in \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$. Now we conclude

$$
\frac{h\left(P^{\prime}+Q^{\prime}\right)}{h\left(P^{\prime}\right) h\left(Q^{\prime}\right)} \in \mathbb{Q} \Longrightarrow h^{2}\left(P^{\prime}+Q^{\prime}\right) \equiv h^{2}\left(P^{\prime}\right) h^{2}\left(Q^{\prime}\right) \quad \bmod \left(\mathbb{Q}^{*}\right)^{2}
$$

Finally
$g(P+Q)=g \circ[2]\left(P^{\prime}+Q^{\prime}\right)=h^{2}\left(P^{\prime}+Q^{\prime}\right) \equiv h^{2}\left(P^{\prime}\right) h^{2}\left(Q^{\prime}\right)=g(P) g(Q) \bmod \left(\mathbb{Q}^{*}\right)^{2}$.

The second statement of the theorem follows easily from the first. If $P=Q+2 S_{3}$, with $S_{3} \in E_{m}(\mathbb{Q})$, then

$$
g(P)=g\left(Q+2 S_{3}\right) \equiv g(Q) g\left(S_{3}\right)^{2} \equiv g(Q) \quad \bmod \left(\mathbb{Q}^{*}\right)^{2}
$$

Theorem 6] was more difficult to prove compared to a similar statement in [6, 2.4.]. Their version of the function g had a very simple factorization $\bmod \left(\mathbb{Q}^{*}\right)^{2}$, allowing them to use the 2-descent homomorphism.

3. Proofs of main theorems

The main difficulty in the following proof is the issue of rationality of the quadruple. As we have mentioned, Theorem 6 will deal with this.

Proof of Theorem 1. From the assumptions on $\left(Q_{1}, Q_{2}, Q_{3}\right)$ we know $\left(y_{1}^{2}-q\right) g\left(Q_{1}+Q_{2}+Q_{3}\right)$ is a square. We have

$$
\begin{aligned}
a^{2} & =\frac{g\left(Q_{1}\right) g\left(Q_{2}\right) g\left(Q_{3}\right)}{\left(x_{1}^{2}-q\right)^{3} m}=\frac{g\left(Q_{1}\right) g\left(Q_{2}\right) g\left(Q_{3}\right)\left(y_{1}^{2}-q\right)}{\left(x_{1}^{2}-q\right)^{4}\left(y_{1}^{2}-q\right)^{2}} \\
& \equiv g\left(Q_{1}+Q_{2}+Q_{3}\right)\left(y_{1}^{2}-q\right) \quad \bmod \left(\mathbb{Q}^{*}\right)^{2}
\end{aligned}
$$

The equivalence is a direct application of Theorem 6. This implies a^{2} is a rational square so a is rational, which in turn implies b, c and d are rational numbers, as noted in the introduction. Since $a b c d=m \neq 0$, none of the numbers a, b, c, d are zero, and the non-degeneracy criteria of $\left(Q_{1}, Q_{2}, Q_{3}\right)$ ensure that a, b, c, d are pairwise different. Lastly, $a b+q=\left(x \circ f^{-1}\left(Q_{1}\right)\right)^{2}$ (with similar equalities holding for other pairs of the quadruple). The previous statements prove the quadruple (a, b, c, d) is a rational $D(q)$-quadruple.

On the other hand, if (a, b, c, d) is a rational $D(q)$-quadruple, then we can define the points $\left(Q_{1}, Q_{2}, Q_{3}\right) \in E_{m}(\mathbb{Q})^{3}$ in correspondence to (a, b, c, d). Using the same identities $\bmod \left(\mathbb{Q}^{*}\right)^{2}$ as above, we get that

$$
\left(y_{1}^{2}-q\right) g\left(Q_{1}+Q_{2}+Q_{3}\right) \equiv a^{2} \quad \bmod \left(\mathbb{Q}^{*}\right)^{2}
$$

To prove Theorem 2 we use the following lemma:
Lemma 7. Let (a, b, c, d) be a rational $D(q)$-quadruple such that abcd $=m$. There exists a point $\left(x_{0}, y_{0}\right) \in \mathcal{D}_{m}(\mathbb{Q})$, such that $x_{0}^{2}-q$ is a rational square.

Proof. From Theorem 1 we know that $\left(y_{1}^{2}-q\right) g\left(Q_{1}+Q_{2}+Q_{3}\right)$ is a square, where $\left(Q_{1}, Q_{2}, Q_{3}\right) \in E_{m}(\mathbb{Q})^{3}$ is the triple that corresponds to the quadruple (a, b, c, d).

Let $Q=Q_{1}+Q_{2}+Q_{3}$. We have

$$
\begin{aligned}
\left(y_{1}^{2}-q\right) g(Q) & \left.=\left(y_{1}^{2}-q\right)\left(x_{1}^{2}-q\right)\left(\left(x \circ f^{-1}(Q)\right)^{2}-q\right)=m \cdot\left(x \circ f^{-1}(Q)\right)^{2}-q\right) \\
& =m \cdot \frac{m}{\left(y \circ f^{-1}(Q)\right)^{2}-q}=m^{2} \frac{1}{\left(y \circ f^{-1}(Q)\right)^{2}-q}
\end{aligned}
$$

Since the left hand side is a square, we conclude $\left(y \circ f^{-1}(Q)\right)^{2}-q$ is a square as well. Now define $\left(x_{0}, y_{0}\right):=f^{-1}(Q+R)$. We know that

$$
\left(y \circ f^{-1}(Q)\right)^{2}-q \stackrel{\sqrt{1}}{=}\left(x \circ f^{-1}(Q+R)\right)^{2}-q=x_{0}^{2}-q
$$

so the claim follows.

Proof of Theorem 2: Assume we have a rational $D(q)$-quadruple. Using Lemma 7 there exists a point $\left(x_{0}, y_{0}\right) \in \mathcal{D}_{m}(\mathbb{Q})$ such that $x_{0}^{2}-q$ is a rational square. Since $x_{0}^{2}-q=k^{2}$, then $q=x_{0}^{2}-k^{2}=\left(x_{0}-k\right)\left(x_{0}+k\right)$. Denote $u=x_{0}-k$, then $x_{0}+k=q / u$ and by adding the previous two equalities together to eliminate k, we get $x_{0}=\frac{q+u^{2}}{2 u}$. Denoting $t=y_{0}$ we get

$$
m=\left(x_{0}^{2}-q\right)\left(y_{0}^{2}-q\right)=\left(\left(\frac{q+u^{2}}{2 u}\right)^{2}-q\right)\left(t^{2}-q\right)=\left(\frac{q-u^{2}}{2 u}\right)^{2}\left(t^{2}-q\right)
$$

Now, let $m=\left(\frac{q-u^{2}}{2 u}\right)^{2}\left(t^{2}-q\right)$ for some rational (t, u). Denote $y_{1}=t, x_{1}=$ $\frac{q+u^{2}}{2 u}$. It is easy to check that $\left(x_{1}^{2}-q\right)\left(y_{1}^{2}-q\right)=m$, so there is a rational point $\left(x_{1}, y_{1}\right) \in \mathcal{D}_{m}(\mathbb{Q})$ such that $x_{1}^{2}-q=\left(\frac{u^{2}-q}{2 u}\right)^{2}$ is a square. We use this point $\left(x_{1}, y_{1}\right)=: P_{1}$ to define the map $f: \mathcal{D}_{m} \rightarrow E_{m}$. Let $Q_{1}=R+S, Q_{2}=2 S$ and $Q_{3}=3 S$. The sets $G \cdot Q_{i}$ are disjoint and $g\left(Q_{1}+Q_{2}+Q_{3}\right)\left(y_{1}^{2}-q\right)=$ $g(R+6 S)\left(y_{1}^{2}-q\right) \equiv g(R)\left(y_{1}^{2}-q\right)=\left(\left(x_{1}^{2}-q\right)\left(y_{1}^{2}-q\right)\right)\left(y_{1}^{2}-q\right) \bmod \left(\mathbb{Q}^{*}\right)^{2}$ is a rational square. The points $\left(Q_{1}, Q_{2}, Q_{3}\right)$ satisfy the conditions of Theorem 1 giving us a rational $D(q)$ quadruple.
Remark 8. The condition $m=\left(\frac{q-u^{2}}{2 u}\right)^{2}\left(t^{2}-q\right)$ is equivalent to the fact that there exists $\left(x_{0}, y_{0}\right) \in \mathcal{D}_{m}(\mathbb{Q})$ such that $x_{0}^{2}-q$ is a square. This was proven in the preceding theorems.

4. Examples

There are plenty of examples where $m=\left(x_{1}^{2}-q\right)\left(y_{1}^{2}-q\right)$ for some rational x_{1} and y_{1}, such that there does not exist a rational $D(q)$-quadruple with product m. Equivalently, m cannot be written as $\left(x_{0}^{2}-q\right)\left(y_{0}^{2}-q\right)$ such that $x_{0}^{2}-q$ is a square.

According to Theorem 1, to find out whether there is a rational $D(q)$ quadruple with product m, one needs to check whether there is a point $T^{\prime} \in$ $E_{m}(\mathbb{Q})$ such that $g\left(T^{\prime}\right)\left(y_{1}^{2}-q\right)$ is a square. Theorem 6 tells us that we only need to check the points $T \in E_{m}(\mathbb{Q}) / 2 E_{m}(\mathbb{Q})$, which is a finite set. If for some explicit q, m we know the generators of the group $E_{m}(\mathbb{Q}) / 2 E_{m}(\mathbb{Q})$, we can determine whether there exist rational $D(q)$-quadruples with product m, and parametrize them using points on $E_{m}(\mathbb{Q})$. For such computations we used Magma.

Let $q=3, x_{1}=5$ and $y_{1}=7$ making $m=\left(5^{2}-3\right)\left(7^{2}-3\right)=1012$. The rank of E_{m} is two, E_{m} has one torsion point of order four, giving us in eight points in total to check. None of the points $T \in E_{m}(\mathbb{Q}) / 2 E_{m}(\mathbb{Q})$ satisfy that $g(T)\left(y_{1}^{2}-q\right)$ is a square, so there are no $D(3)$-quadruples with product 1012.

On the other hand, take $q=-3, x_{1}=1$ so that $x_{1}^{2}-q=4$ and let $y_{1}=t$ which makes $m=4 \cdot\left(t^{2}+3\right)$. The point S is a point of infinite order on $E_{m}(\mathbb{Q}(t))$, and the triple $\left(Q_{1}, Q_{2}, Q_{3}\right)=(S+R, 2 S, 3 S)$ satisfies the conditions of Theorem 1. We obtain the following family:
$a=\frac{2 \cdot\left(3+6 t^{2}+7 t^{4}\right) \cdot\left(27+162 t^{2}+801 t^{4}+1548 t^{6}+1069 t^{8}+306 t^{10}+183 t^{12}\right)}{\left(3+t^{2}\right) \cdot\left(1+3 t^{2}\right) \cdot\left(9+9 t^{2}+19 t^{4}+27 t^{6}\right) \cdot\left(3+27 t^{2}+33 t^{4}+t^{6}\right)}$,
$b=\frac{\left(3+t^{2}\right)^{2} \cdot\left(1+3 t^{2}\right) \cdot\left(9+9 t^{2}+19 t^{4}+27 t^{6}\right) \cdot\left(3+27 t^{2}+33 t^{4}+t^{6}\right)}{2 \cdot\left(3+6 t^{2}+7 t^{4}\right) \cdot\left(27+162 t^{2}+801 t^{4}+1548 t^{6}+1069 t^{8}+306 t^{10}+183 t^{12}\right)}$,
$c=\frac{2 \cdot\left(3+6 t^{2}+7 t^{4}\right) \cdot\left(3+27 t^{2}+33 t^{4}+t^{6}\right) \cdot\left(9+9 t^{2}+19 t^{4}+27 t^{6}\right)}{\left(3+t^{2}\right) \cdot\left(1+3 t^{2}\right) \cdot\left(27+162 t^{2}+801 t^{4}+1548 t^{6}+1069 t^{8}+306 t^{10}+183 t^{12}\right)}$,
$d=\frac{2 \cdot\left(3+t^{2}\right) \cdot\left(1+3 t^{2}\right) \cdot\left(27+162 t^{2}+801 t^{4}+1548 t^{6}+1069 t^{8}+306 t^{10}+183 t^{12}\right)}{\left(3+6 t^{2}+7 t^{4}\right) \cdot\left(3+27 t^{2}+33 t^{4}+t^{6}\right) \cdot\left(9+9 t^{2}+19 t^{4}+27 t^{6}\right)}$.
We can generalize the example above by setting $q=q, y_{1}=t, x_{1}=\frac{q+u^{2}}{2 u}$. The triple of points $(S+R, 2 S, 3 S)$ satisfies the conditions of Theorem 1 and we can calculate an explicit family of rational $D(q)$-quadruples with product m, but this example is too large to print (the numerator of a is a polynomial in the variables (q, t, u) of degree forty).

All the computations in this paper were done in Magma [1].

5. Acknowledgements

The authors were supported by the Croatian Science Foundation under the project no. 1313.

The second author was supported by the QuantiXLie Centre of Excellence, a project cofinanced by the Croatian Government and the European Union through the European Regional Development Fund - the Competitiveness and Cohesion Operational Programme (Grant KK.01.1.1.01.0004).

References

[1] W. Bosma, J. Cannon, and C. Playoust. The Magma algebra system I: The user language. Journal of Symbolic Computation, 24(3-4):235-265, 1997.
[2] A. Dujella. A note on Diophantine quintuples. Algebraic Number Theory and Diophantine Analysis (F. Halter-Koch, RF Tichy, eds.), Walter de Gruyter, Berlin, pages 123-127, 2000.
[3] A. Dujella. There are only finitely many Diophantine quintuples. Journal fur die Reine und Angewandte Mathematik, 2004(566):183-214, 2004.
[4] A. Dujella and C. Fuchs. On a problem of Diophantus for rationals. Journal of number theory, 132(10):2075-2083, 2012.
[5] A. Dujella and M. Kazalicki. Diophantine m-tuples in finite fields and modular forms. arXiv preprint arXiv:1609.09356, 2016.
[6] A. Dujella and M. Kazalicki. More on Diophantine sextuples. In Number Theory-Diophantine Problems, Uniform Distribution and Applications, pages 227-235. Springer, 2017.
[7] A. Dujella, M. Kazalicki, M. Mikić, and M. Szikszai. There are infinitely many rational Diophantine sextuples. International Mathematics Research Notices, 2017(2):490-508, 2017.
[8] S. D. Galbraith. Mathematics of public key cryptography. Cambridge University Press, 2012.
[9] P. Gibbs. Some rational Diophantine sextuples. Glasnik matematički, 41 (2):195-203, 2006.
[10] B. He, A. Togbé, and V. Ziegler. There is no Diophantine quintuple. Transactions of the American Mathematical Society, 371(9):6665-6709, 2019.
[11] J. H. Silverman. The arithmetic of elliptic curves, volume 106. Springer Science \& Business Media, 2009.

[^0]: Email addresses: gdrazic@pbf.hr (Goran Dražić), matija.kazalicki@math.hr (Matija Kazalicki)
 ${ }^{1}$ Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia.
 ${ }^{2}$ Department of Mathematics, University of Zagreb, Bijenička cesta 30, 10000 Zagreb, Croatia.

