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Abstract

For a rational number ¢, a rational D(q)-n-tuple is a set of n distinct nonzero
rationals {ai,as,...,a,} such that a;a; + ¢ is a square for all 1 < i < j < n.
For every ¢ we find all rational m such that there exists a D(g)-quadruple with
product ajasasas = m. We describe all such quadruples using points on a
specific elliptic curve depending on (g, m).
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1. Introduction

Let ¢ € Q be a nonzero rational number. A set of n distinct nonzero rationals
{a1,a2,...,a,} is called a rational D(q)-n-tuple if a;a; + ¢ is a square for all
1<i<yj<nlIf{a,as,...,a,} is a rational D(q)-n-tuple, then for all r €
Q, {rai,ras,...,ra,} is a D(qr®)-n-tuple, since (ra1)(raz) +qr® = (ajas +q)r?.
With this in mind, we restrict to square-free integers g. If we set ¢ = 1 then

such sets are called rational Diophantine n-tuples.
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The first example of a rational Diophantine quadruple was the set

1317 105
16’ 16" 4 16
found by Diophantus, while the first example of an integer Diophantine quadru-

ple, the set
{1, 3,8,120}

is due to Fermat.

In the case of integer Diophantine n-tuples, it is known that there are in-
finitely many Diophantine quadruples (e.g. {k — 1,k + 1,4k, 16k% — 4k}, for
k > 2). Dujella [3] showed there are no Diophantine sextuples and only finitely
many Diophantine quintuples, while recently He, Togbé and Ziegler [10] proved
there are no integer Diophantine quintuples, which was a long standing conjec-
ture.

Gibbs [9] found the first example of a rational Diophantine sextuple using
a computer, and Dujella, Kazalicki, Miki¢ and Szikszai [7] constructed infinite
families of rational Diophantine sextuples. Dujella and Kazalicki parametrized
Diophantine quadruples with a fixed product of elements using triples of points
on a specific elliptic curve, and used that parametrization for counting Diophan-
tine quadruples over finite fields [5] and for constructing rational sextuples [6].
There is no known rational Diophantine septuple.

Regarding rational D(q)-n-tuples, Dujella [2] has shown that there are in-
finitely many rational D(g)-quadruples for any ¢ € Q. Dujella and Fuchs in
[4] have shown that, assuming the Parity Conjecture, for infinitely squarefree
integers ¢ # 1 there exist infinitely many rational D(q)-quintuples. There is no
known rational D(q)-sextuple for q # a?,a € Q.

Our work uses a similar approach Dujella and Kazalicki had in [5] and [6].

Let {a,b,c,d} be a rational D(q)-quadruple, for a fixed nonzero rational g,
such that

ab+q=1t},, act+q=1ti;, ad+q=13,,

bc—i—q:t%S, bd+q:t§4, cd+q=t§4.



Then (t12,t13,t14, to3, t24, t34,m = abed) € Q7 defines a rational point on the

algebraic variety C defined by the equations
(t1, — @)(t3 — @) = m,
(ts — @) (3 — q) = m,

(ti - Q)(t§3 —q)=m.

The rational points (Zt19,t13, £t14, tto3, Ttog, Tt34,m) on C determine
— (t%2_g)(t%3_q)) if

two rational D(q) quadruples +(a,b,c,d) (speciﬁcally, a® o
“23

a, b, c,d are rational, distinct and nonzero.
Any point (tlg, t13,t14,%23, 124,134, m) € C corresponds to three points Q/l =

(t12,t34), Q5 = (t13,t24) and Q3 = (t14,%23) on the curve
Do (X2 — q)(Y2 —q) =m.

If D,,(Q) = 0, there are no rational D(g)-quadruples with product of elements
equal to m, so we assume there exists a point P; = (x1,y1) € D, (Q).

The curve D,, is a curve of genus 1 unless m = 0 or m = ¢, which we
assume from now on. Since we also assumed a point P; € D,,(Q), the curve

D, is birationally equivalent to the elliptic curve
Ep: W2 =T2 4 (4¢° — 2m)T? + m>T

via a rational map f: D,, — F,, given by

. 2¢1(y® — )z + (27 + Qy? + 23yf — 223¢ — yiq
T=li-9 (y—wn)?

2y12(q — y?) + 221y(q — yi)
y2 — i

)

W="-

Note that f maps (z1,y1) to the point at infinity O € E,,(Q), it maps (—y1, 1)
to a point of order four, R = (m,2mgq) € E,,(Q), and maps (—z1,y1) to

2 ’ 3

g (y%(xf —0)® (el +v7)(at —q)2> € E,(Q),
1 7

which is generically a point of infinite order.



We have the following associations
((Z,b7 C, d) «--—a pOth on C(Q) A (Qlla Q/Za Qé) € Dm(@)g

In order to obtain a rational D(g)-quadruple from a triple of points on D,,(Q),
we must satisfy the previously mentioned conditions: a, b, ¢, d must be rational,
mutually disjoint and nonzero.

It is easy to see that if one of them is rational, then so are the other three

(ie. b= t%i;q), and that they will be nonzero when m # 0, since m = abcd.

The elements of the quadruple (a, b, ¢, d) corresponding to the triple of points
(Q}, @4, Q%) are distinct, if no two of the points @, Q%, Q% can be transformed
from one to another via changing signs and /or switching coordinates. For exam-
ple, the triple (¢12,t34), (—t34,t12), (t14, t23) would lead to a = d. This condition
on points in D,, is easily understood on points in E,,.

Assume P € E,, < (x,y) € Dy, that is, f(x,y) = P. Then
S—PH(—:&y), P+R(—>(—y,$) (1)

The maps P — S— P and P — P+ R generate a group G of translations on E,,,
isomorphic to Dg, the dihedral group of order 8, and G induces a group action on
E,,(Q). In order to obtain a quadruple from the triple (Q1, Q2,Q3) € E,,(Q)3,
such that the elements of the quadruple are distinct, the orbits G-Q1,G - Q2, G-
Qs must be disjoint. This is because the set of points in D,, corresponding to
G- P is {(£z, ty), (+y, £x)}. We say that such a triple of points satisfies the
non-degeneracy criteria.

Let D,, denote the projective closure of the curve D,,, defined by

D (X% —qZ*)(Y? - qZ%) = mZ*.
The map f~': E,, — D,, is a rational map, and since the curve E,, is smooth,
the map is a morphism [IT} I1.2.1]. The map zo f~': E,, — A! given by

_ Xof(P)

ST



has a pole in points Py such that f~1(Py) = [1:0: 0], and is regular elsewhere.
The map yo f~': E,, — Al given by

IR CYalle

has a pole in points P, such that f~1(P) = [0:1:0], and is regular elsewhere.
We define the rational map g: E,, — Al by

_ 2
9(P) = (a2 = q)- ((wo f7'(P)" ~a).
The map ¢ has a pole in the same points as the map x o f~!, and is regular
elsewhere.
The maps f and g depend on a fixed point P; € D,,,. We omit noting this
dependency and simply denote these maps by f and g. The motivation for

the map ¢ is [6, 2.4, Proposition 4]. Dujella and Kazalicki use the 2-descent

homomorphism in the proof of Proposition 4, we will use g for similar purposes.

Theorem 1. Let (x1,y1) € Dy, (Q) be the point used to define the map f: Dy, —
En. If (Q1,Q2,Q3) € E,,(Q)3 is a triple satisfying the non-degeneracy criteria
such that (y? — q) - 9(Q1 + Q2 + Q3) is a square, then the numbers

(1 gQ) g(@) g(@) \'?
“i< >) /

m (2t —q) (21 —q) (#1 — ¢

9(Q1) = 9(Q2) d= 9(Q3)
a(zi—q)  alzi-q) a(zi-q)

are rational and form a rational D(q)-quadruple such that abed = m.

b=

Conversely, assume (a,b,c,d) is a rational D(q)-quadruple, such that m =

abed. If the triple (Q1, Q2, Q3) € En(Q)3 corresponds to (a,b,c,d), then (y? —
7)9(Q1 + Q2 + Q3) is a square.

It is not true that the existence of a rational point on D,,(Q) implies the
existence of a rational D(q)-quadruple with product m. Examples with further

clarification are given in Section [l The following classification theorem holds:

Theorem 2. There exists a rational D(q)-quadruple with product m if and only

if
2 “2_(1 2
m = (t —q)( o )




for some rational parameters (t,u).

In Section [2| we study properties of the function g which we then use in
Section [3] to prove Theorems [I] and 2} In Section [d] we give an algorithm on
how to determine whether a specific m, such that D,,(Q) # 0, admits a rational
D(g)-quadruple with product m. We conclude the section with an example of

an infinite family.

2. Properties of the function g

In this section, we investigate the properties of the function g which we will
use to prove the main theorems. The following proposition describes the divisor

of g.
Proposition 3. The divisor of g is
divg = 2(51) +2(S2) — 2(R1) — 2(R2),

where S1, Ry, S, Ry € E,,(Q(y/q)) with coordinates

o
2
=
+
S
\.l\')
\
N
=
S

The points Sy, 52, Ry and Ry satisfy the following identities:

281 =285; = f(xla 7y1) =5+ 2Ra
2R1 = 2R2 = f(—l‘1,y1) = S,

Si+R=Ry, Ri+R=S3 Sy+R=Ry;, Ry+R=015.

Proof. We seek zeros and poles of g. The poles of g are the same as the poles

of x o f~1. To find zeros of g, notice that

m
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so all we need to find are poles of yo f~1.

The zeros of x o f~! are points on E,, which map to affine points on D,,
that have zero x-coordinate. We can easily calculate such points. If z = 0, then
y? = @. Denote K = qum. We know K # 0, since m # ¢>.

The zeros of z o f~! are the points f(0,K), f(0,—K) € E,,(Q), which are
different since K # 0. Since z o f~! is of degree two, both zeros are of order
one. We conclude z o f~! has either one double pole, or two poles of order one.

Similarly, the zeros of y o f=1 are the points f(K,0), f(—K,0) € E,,(Q),
both of order one. The map y o f~! also has either a double pole or two poles
of order one.

Assume the point Py € E,, maps to a non-affine point in D,,. This means
that Z o f~1(P) = 0, and at least one of the projective coordinate functions
X o f71,Y o f~! is nonzero at Py. It follows that P, is a pole of at least one of
the maps zo f~1,yo f~1.

Let Py € E,, be a pole of one of the maps 2z o f~!,y o f~1. None of the
points f~1(Py), f~H(Po+ R), f*(Py + 2R), f~}(Py + 3R) are affine points on
D, because if one of them is an affine point, then they all are, since the map
P+ P + R viewed on D,, maps affine points to affine points. We conclude
that each of the points Py, Py + R, Py + 2R, Py + 3R is a pole of one of the maps
zo f~' yo f~! and with the previous claims we have that zo f~!,yo f~! both
have two poles of order one.

The map P +— S — P, viewed on D,,,, also maps affine points to affine points.
Similarly as above, the points f=1(S — Py), f~Y(S — Py + R), f~Y(S — Py +
2R), f~1(S — Py + 3R) are not affine in D,,,, because the point f~'(Py) would
be affine as well. The sets {Py, P+ R, Py +2R, Py + 3R} and {S — Py, S— Py +
R,S— Py+2R, S — Py+ 3R} must be equal, otherwise the maps zo f =1, yo f!
would have more than four different poles in total. This means that every pole
satisfies the equality 2Py = S + kR for some k € {0,1,2,3}. Equivalently, every
pole P, is a fixed point of some involution i; of the foorm P — S — P + kR.
Each involution i, has four fixed points on E,,(Q), because any two fixed points

differ by an element from the [2]-torsion.



The involution ig, viewed on D,,, maps an affine point (z,y) = f~1(P) to
(—z,y) = f~1(S — P). It has two affine fixed points which have x-coordinate
equal to zero on D,,, as well as two fixed points which are not affine on D,,,.
Such points are either poles of x o f~1 or poles of y o f~1. Using Magmal[l] we
calculate the coordinates explicitly to obtain R; and R,. Computationally, we
confirm R; and Ry are poles of z o f~!, that is, poles of g.

The involution iy, viewed on D,,,, maps an affine point (z,y) = f~1(P) to
(z,—y) = f~1(S—P+2R). It has two affine fixed points which have y-coordinate
equal to zero on D,,, as well as two fixed points which are not affine on D,,.
These points must be poles of the map yo f~!, that is, zeros of g. Again, using
Magma, we calculate the coordinates to obtain S; and Ss.

Since the poles of z o f~! are of order one, then the poles of g are of order
two. The same is true for poles of y o f~!, that is, for zeros of g. The last row

of identities in the statement of the theorem is checked by Magma. O
Proposition 4. There exists h € Q(E,,) such that go [2] = h?.
Proof. Let h € Q(E,,) such that

div h = [2]*((S1) + (S2) — (R1) — (R2))
DTS+ A+ D (S5+T) - D (R AT) - Y (R +1T),

TEE,[2] TEE,,[2] TEE,,[2] TEER[2]

where 25 = S;, 2R} = R, and [2]* is the pullback of the doubling map on E,,.

Such h exists because of Corollary 3.5 in Silverman[IT} IIL.3] stating that if
E is an elliptic curve and D = > np(P) € Div(FE), then D is principal if and
only if

Z np =0 and Z[np]on,

PeE PeE

where the second sum is addition on E.
The first sum being equal to zero is immediate, and for the second one we

have

YNooSt+T)+ > (Si+T) - Y (Ri+T) - Y (Ry+T) =

TEE,[2] TEE,[2] TEE,[2] TEE,[2]



= [4)(S] + Sy — R} — Ry) = [2](S1 4+ S2 — Ry — Rg) =

—

—[2](Si —Ra+ S — R Z 2)(R+ R) = 0,

where (x) follows from the last row of identities in Proposition

Easy calculations give us div g o [2] = div 2% which implies Ch? = g o [2],
for some C' € Q. Let h := hy/C € Q(E,,) so that h?> = g o [2]. We will prove
h e Q(E.y).

First, we show that every o € Gal(Q/Q) permutes zeros and poles of h. Let
us check what o does to S; and S;. Since S; and Sy are conjugates over Q(,/q),
the only possibilities for S are Sy or Ss. If SY = Sy, then we must have (57)7 =
S1+T, where T € E,,,[2], because 2((S])? — S1) = (257)7 =251 =87 -5, = O.

Thus o fixes Y. (S1+7T). Since in this case we also know that S§ = Ss, we
TEE,(2]

get that o fixes Y, (S5+T) as well.
TEE,[2]
If S = S, it is easy to see that

ag a

SNoS+) | = Y. (Sh+T)and | > (S4+T) | = D (SiHD).

TEE,(2] TEE,(2] TEEm(2] TEE,(2]

Similar statements hold for R; and R», so we conclude that h is defined over
Q. Both h and h have the same divisor so A is also defined over Q. Now we use

the second statement from Theorem 7.8.3. in [§]:
Theorem 5. Let C be a curve over a perfect field k and let f € k(C).

1. Ifo(f) = f, for each o € Gal(k/k) then f € k(C).
2. If div (f) is defined over k then f = ch for some ¢ € k and h € k(C).

From the second statement of the previous theorem we conclude that h = c-h’/

where ¢ € Q and I/ € Q(E,,). We know that ¢?(h')? = h? = g o [2], and that
2

)2
g0 [2](0) = (z? — ¢)? is a rational square. It follows that ¢ = a;;/(@)qg is a
rational square as well, hence c is rational. Finally, we have h € Q(E,,). O

We end this section with a theorem which will handle rationality issues in

Theorem [il



Theorem 6. For all P,Q € E,,(Q) we have g(P+Q) = g(P)g(Q) mod (Q*)2.
In particular, if P = Q mod 2E,,(Q) then g(P) = g(Q) mod (Q*)2.

Proof. Let P, Q" € E,,(Q) such that 2P’ = P and 2Q’ = Q. We prove that
o(h(P'+ Q")) _ a(h(P")) o(h(Q"))

h(P'+Q) — h(P) K@)

Following Silverman [11], IIL.8|, assume T' € E,,[2]. From Proposition [4] it
follows that h*(X + T) = go 2)(X +T) = go [2](X) = h*(X), for every

X € E,,. This means that h(h)f ;)“ € {£1}. The morphism

hMX+T)

1
E,, — P, X — hX)

is not surjective, so by [II} I1.2.3] it must be constant.

For o € Gal(Q/Q) we have o(P') — P’ € E,[2],0(Q") — Q' € E,[2] and
o(P'+ Q) — (P + Q') € E,[2]. This holds since 2P’ = P € E,,(Q) and
2Q' =Q € E,,(Q). Now we get

o(h(P)) _ h(a(P) _ h(P'+(o(P) = P)) _ h(X +(o(P) = P))

WP hP) h(P") - h(X)
Similarly
oh(@) WX+ (@) -Q)  oh(P'+Q) _hX + (0P +Q) ~ (P +Q))
hQ’) h(X) TP+ Q) h(X) '
Now

o(h(P'+ Q) _ WX+ (o(P+Q)—
WP +Q) h(X)
_ WX+ (@(P+Q) = (P + @) (X +o(P) - P)
hX +o(P")— P h(X)
_ o(MQ) o(h(P))
hQ")  h(P)

by plugging in X = P’ + Q' — o(P’) for the first X and X = P’ for the second

P+ Q)

one. This leads to

hP'+Q) _ oW +Q)) _ (h(P’ +Q) )

h(PHR(Q) — a(h(@)a(h(P"))

h(P")h(Q’)

10



for every o € Gal(Q/Q). Now we conclude

h(P/+Q/) 2(p/ N — KL2(DN\L2( m *\2
h(P,)h(Q,)EQ:>h(P+Q)_h(P)h Q") od (Q")".

Finally
9(P+Q) = go[2](P'+Q") = B*(P'+Q) = h*(P")h*(Q") = g(P)g(Q) mod (Q*)*.

The second statement of the theorem follows easily from the first.

If P = Q + 2S5, with S3 € E,,,(Q), then

9(P) = g(Q + 255) = g(Q)g(Ss5)* = g(Q) mod (Q*)*.
0

Theorem |§|was more difficult to prove compared to a similar statement in [6]
2.4.]. Their version of the function g had a very simple factorization mod (Q*)2,

allowing them to use the 2-descent homomorphism.

3. Proofs of main theorems

The main difficulty in the following proof is the issue of rationality of the
quadruple. As we have mentioned, Theorem [6] will deal with this.

Proof of Theorem : From the assumptions on (Q1,Q2,Q@3) we know
(¥3 — q)g(Q1 + Q2 + Q3) is a square. We have

g2 = 9(Q1)9(@2)9(@s) _ 9(Q1)9(Q2)9(Q3)(y7 — q)
(¢1 —q)’m (of - a)*(vi — 0)?

=g(Q1+ Q2+ Q3)(yi —¢) mod (Q*)*.

The equivalence is a direct application of Theorem @ This implies a? is
a rational square so a is rational, which in turn implies b, c and d are rational
numbers, as noted in the introduction. Since abed = m # 0, none of the numbers
a,b,c,d are zero, and the non-degeneracy criteria of (Q1,Q2,@3) ensure that
a,b, c,d are pairwise different. Lastly, ab + q = (z o f~1(Q1))? (with similar
equalities holding for other pairs of the quadruple). The previous statements

prove the quadruple (a,b, ¢, d) is a rational D(q)-quadruple.

11



On the other hand, if (a,b,¢,d) is a rational D(q)-quadruple, then we can
define the points (Q1,Q2,Q3) € E,,(Q)? in correspondence to (a, b, c,d). Using

the same identities mod (Q*)? as above, we get that

(i — 9)9(Q1 + Q2+ Qs) =a®  mod (Q*)*.

To prove Theorem [2] we use the following lemma:

Lemma 7. Let (a,b,c,d) be a rational D(q)-quadruple such that abed = m.

There exists a point (xo,Yo) € Dm(Q), such that 2% — q is a rational square.

Proof. From Theorem [1| we know that (y? — q)g(Q1 + Q2 + Q3) is a square,
where (Q1,Q2,Q3) € E,,(Q)? is the triple that corresponds to the quadruple
(a,b,c,d).

Let @ = Q1 + Q2 + Q3. We have

(v - 9)9(Q) = (47 — )2 — @) ((x o f7H(Q))> —q) =m - (z o [71(Q))* —q)
m 2 1

(o f Y@ —a  (yof UQ)?*—q

Since the left hand side is a square, we conclude (yo f~1(Q))? —q is a square

as well. Now define (zo, o) := f~1(Q + R). We know that

(o @7 -0 o @+ R —g=13—q
so the claim follows. 0O

Proof of Theorem @ Assume we have a rational D(g)-quadruple. Using
Lemma [7 there exists a point (z0,90) € Dy (Q) such that 23 — ¢ is a rational
square. Since 3 — q = k?, then ¢ = 23 — k* = (29 — k)(x¢ + k). Denote
u = x9 — k, then zp + k¥ = ¢/u and by adding the previous two equalities

together to eliminate k, we get x¢ = %. Denoting t = yy we get

m= (x5 —q)(ys — q) = ((q—;zﬂ)z —Q> (t* —q) = (q;uu2>2(t2 —q).

12



2
Now, let m = (q7“2> (t> — q) for some rational (¢,u). Denote y; = t, 21 =

2u
q+“ . Tt is easy to check that (z? — q)(y? — q) = m, so there is a rational point

2u
(z1,y1) =: P1 to define the map f : D, — E,,. Let Q1 = R+ S,Q2 = 28

and Q3 = 3S. The sets G - Q; are disjoint and g(Q1 + Q2 + Q3)(¥? — q) =

9(R+68)(yi —a) = g(R)(¥? — @) = ((=1 — @) (] — @) (¥} — ¢) mod (Q*)?
a rational square. The points (Q1, Q2, Q3) satisfy the conditions of Theorem

2
(z1,y1) € Dyn(Q) such that 23 — g = (“2_") is a square. We use this point

giving us a rational D(q) quadruple. O

2
Remark 8. The condition m = (q;“Q) (t?> — q) is equivalent to the fact that

u

there exists (79,%0) € D (Q) such that 23 — ¢ is a square. This was proven in

the preceding theorems.

4. Examples
There are plenty of examples where m = (27 — q)(y? — q) for some rational z;
and yj, such that there does not exist a rational D(q)-quadruple with product

2 — ) such that 22 — g is a

m. Equivalently, m cannot be written as (22 — q) (2
square.

According to Theorem [1} to find out whether there is a rational D(q)-
quadruple with product m, one needs to check whether there is a point 1" €
E,,(Q) such that g(T")(y? — q) is a square. Theorem |§| tells us that we only
need to check the points T € FE,,(Q)/2E,,(Q), which is a finite set. If for
some explicit ¢, m we know the generators of the group F,,(Q)/2E,,(Q), we
can determine whether there exist rational D(g)-quadruples with product m,
and parametrize them using points on E,,(Q). For such computations we used
Magma.

Let ¢ = 3,71 = 5 and y; = 7 making m = (5% — 3)(7? — 3) = 1012. The
rank of F,, is two, E,, has one torsion point of order four, giving us in eight
points in total to check. None of the points T € E,,(Q)/2E,,(Q) satisfy that

g(T)(y? — q) is a square, so there are no D(3)-quadruples with product 1012.

13



On the other hand, take ¢ = —3,77 = 1 so that 23 — ¢ = 4 and let y; =t
which makes m = 4-(t>+3). The point S is a point of infinite order on E,,(Q(t)),
and the triple (Q1,Q2,Q3) = (S+ R, 25, 35) satisfies the conditions of Theorem
[[] We obtain the following family:

Lo 2 (34 6t + Tth) - (27 + 1622 + 801t* + 1548t° + 1069¢® + 306t10 + 183¢12)
(3-+12) - (1+3t2) - (9+ 9t2 + 19t + 27¢5) - (3 + 27¢2 + 33t4 + ¢6) ’
(34+12)2- (1 +3t2) - (9 + 92 + 19¢t* + 27¢5) - (3 4 27t2 + 33t* + 19)

T 2. (34 612+ Tth) - (27 + 1622 + 8014 + 15486 + 1069t + 30610 + 183¢12)”
2 (3+6t2 4+ 7th) - (3 +27t% + 33t* +15) - (9 + 9t% + 19¢* + 271%)
(3+1t2) - (14 3t2) - (27 + 162t + 801¢* 4 1548t6 + 1069¢® + 306t10 + 183¢12)’
2. (34+12)- (14 3t2) - (27 + 162t> + 801t* + 1548t5 + 1069t® + 306t'° 4 183t12)

Cc

d
(34 6¢2 + Tt*) - (34 27¢2 + 33t* +t6) - (9 + 92 + 19¢* + 27¢5)

. . 2
We can generalize the example above by setting ¢ = ¢,y1 = t, 21 = q';:j . The

triple of points (S + R, 25, 35) satisfies the conditions of Theorem [1|and we can
calculate an explicit family of rational D(g)-quadruples with product m, but
this example is too large to print (the numerator of a is a polynomial in the
variables (g, t,u) of degree forty).

All the computations in this paper were done in Magma [I].
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