Rational D(q)-quadruples

Goran Dražić¹, Matija Kazalicki²

Abstract

For a rational number q, a rational D(q)-n-tuple is a set of n distinct nonzero rationals $\{a_1, a_2, \ldots, a_n\}$ such that $a_i a_j + q$ is a square for all $1 \leq i < j \leq n$. For every q we find all rational m such that there exists a D(q)-quadruple with product $a_1a_2a_3a_4 = m$. We describe all such quadruples using points on a specific elliptic curve depending on (q, m).

Keywords:

2020 MSC: 11D09, 11G05

Diophantine *n*-tuples, Diophantine quadruples, Elliptic curves, Rational Diophantine *n*-tuples

1. Introduction

Let $q \in \mathbb{Q}$ be a nonzero rational number. A set of n distinct nonzero rationals $\{a_1, a_2, \ldots, a_n\}$ is called a rational D(q)-n-tuple if $a_i a_j + q$ is a square for all $1 \leq i < j \leq n$. If $\{a_1, a_2, \ldots, a_n\}$ is a rational D(q)-n-tuple, then for all $r \in I$ $\mathbb{Q}, \{ra_1, ra_2, \dots, ra_n\}$ is a $D(qr^2)$ -*n*-tuple, since $(ra_1)(ra_2) + qr^2 = (a_1a_2 + q)r^2$. With this in mind, we restrict to square-free integers q. If we set q = 1 then such sets are called rational Diophantine *n*-tuples.

Preprint submitted to Indagationes Mathematicae

Email addresses: gdrazic@pbf.hr (Goran Dražić), matija.kazalicki@math.hr (Matija Kazalicki)

¹Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia. ²Department of Mathematics, University of Zagreb, Bijenička cesta 30, 10000 Zagreb,

Croatia.

The first example of a rational Diophantine quadruple was the set

$$\left\{\frac{1}{16}, \frac{33}{16}, \frac{17}{4}, \frac{105}{16}\right\}$$

found by Diophantus, while the first example of an integer Diophantine quadruple, the set

$$\{1, 3, 8, 120\}$$

is due to Fermat.

In the case of integer Diophantine *n*-tuples, it is known that there are infinitely many Diophantine quadruples (e.g. $\{k - 1, k + 1, 4k, 16k^3 - 4k\}$, for $k \ge 2$). Dujella [3] showed there are no Diophantine sextuples and only finitely many Diophantine quintuples, while recently He, Togbé and Ziegler [10] proved there are no integer Diophantine quintuples, which was a long standing conjecture.

Gibbs [9] found the first example of a rational Diophantine sextuple using a computer, and Dujella, Kazalicki, Mikić and Szikszai [7] constructed infinite families of rational Diophantine sextuples. Dujella and Kazalicki parametrized Diophantine quadruples with a fixed product of elements using triples of points on a specific elliptic curve, and used that parametrization for counting Diophantine quadruples over finite fields [5] and for constructing rational sextuples [6]. There is no known rational Diophantine septuple.

Regarding rational D(q)-n-tuples, Dujella [2] has shown that there are infinitely many rational D(q)-quadruples for any $q \in \mathbb{Q}$. Dujella and Fuchs in [4] have shown that, assuming the Parity Conjecture, for infinitely squarefree integers $q \neq 1$ there exist infinitely many rational D(q)-quintuples. There is no known rational D(q)-sextuple for $q \neq a^2, a \in \mathbb{Q}$.

Our work uses a similar approach Dujella and Kazalicki had in [5] and [6].

Let $\{a, b, c, d\}$ be a rational D(q)-quadruple, for a fixed nonzero rational q, such that

$$ab + q = t_{12}^2, \quad ac + q = t_{13}^2, \quad ad + q = t_{14}^2,$$

 $bc + q = t_{23}^2, \quad bd + q = t_{24}^2, \quad cd + q = t_{34}^2.$

Then $(t_{12}, t_{13}, t_{14}, t_{23}, t_{24}, t_{34}, m = abcd) \in \mathbb{Q}^7$ defines a rational point on the algebraic variety \mathcal{C} defined by the equations

$$\begin{split} (t_{12}^2-q)(t_{34}^2-q) &= m, \\ (t_{13}^2-q)(t_{24}^2-q) &= m, \\ (t_{14}^2-q)(t_{23}^2-q) &= m. \end{split}$$

The rational points $(\pm t_{12}, \pm t_{13}, \pm t_{14}, \pm t_{23}, \pm t_{24}, \pm t_{34}, m)$ on \mathcal{C} determine two rational D(q) quadruples $\pm (a, b, c, d)$ (specifically, $a^2 = \frac{(t_{12}^2 - q)(t_{13}^2 - q)}{t_{23}^2 - q}$) if a, b, c, d are rational, distinct and nonzero.

Any point $(t_{12}, t_{13}, t_{14}, t_{23}, t_{24}, t_{34}, m) \in \mathcal{C}$ corresponds to three points $Q'_1 = (t_{12}, t_{34}), Q'_2 = (t_{13}, t_{24})$ and $Q'_3 = (t_{14}, t_{23})$ on the curve

$$\mathcal{D}_m \colon (X^2 - q)(Y^2 - q) = m.$$

If $\mathcal{D}_m(\mathbb{Q}) = \emptyset$, there are no rational D(q)-quadruples with product of elements equal to m, so we assume there exists a point $P_1 = (x_1, y_1) \in \mathcal{D}_m(\mathbb{Q})$.

The curve \mathcal{D}_m is a curve of genus 1 unless m = 0 or $m = q^2$, which we assume from now on. Since we also assumed a point $P_1 \in \mathcal{D}_m(\mathbb{Q})$, the curve \mathcal{D}_m is birationally equivalent to the elliptic curve

$$E_m \colon W^2 = T^3 + (4q^2 - 2m)T^2 + m^2T$$

via a rational map $f: \mathcal{D}_m \to E_m$ given by

$$T = (y_1^2 - q) \cdot \frac{2x_1(y^2 - q)x + (x_1^2 + q)y^2 + x_1^2y_1^2 - 2x_1^2q - y_1^2q}{(y - y_1)^2},$$
$$W = T \cdot \frac{2y_1x(q - y^2) + 2x_1y(q - y_1^2)}{y^2 - y_1^2}.$$

Note that f maps (x_1, y_1) to the point at infinity $\mathcal{O} \in E_m(\mathbb{Q})$, it maps $(-y_1, x_1)$ to a point of order four, $R = (m, 2mq) \in E_m(\mathbb{Q})$, and maps $(-x_1, y_1)$ to

$$S = \left(\frac{y_1^2(x_1^2 - q)^2}{x_1^2}, \frac{qy_1(x_1^2 + y_1^2)(x_1^2 - q)^2}{x_1^3}\right) \in E_m(\mathbb{Q})$$

which is generically a point of infinite order.

We have the following associations

$$(a, b, c, d) \leftarrow -- \rightarrow a \text{ point on } \mathcal{C}(\mathbb{Q}) \longleftrightarrow (Q'_1, Q'_2, Q'_3) \in \mathcal{D}_m(\mathbb{Q})^3.$$

In order to obtain a rational D(q)-quadruple from a triple of points on $\mathcal{D}_m(\mathbb{Q})$, we must satisfy the previously mentioned conditions: a, b, c, d must be rational, mutually disjoint and nonzero.

It is easy to see that if one of them is rational, then so are the other three (i.e. $b = \frac{t_{12}^2 - q}{a}$), and that they will be nonzero when $m \neq 0$, since m = abcd.

The elements of the quadruple (a, b, c, d) corresponding to the triple of points (Q'_1, Q'_2, Q'_3) are distinct, if no two of the points Q'_1, Q'_2, Q'_3 can be transformed from one to another via changing signs and/or switching coordinates. For example, the triple $(t_{12}, t_{34}), (-t_{34}, t_{12}), (t_{14}, t_{23})$ would lead to a = d. This condition on points in \mathcal{D}_m is easily understood on points in E_m .

Assume $P \in E_m \leftrightarrow (x, y) \in \mathcal{D}_m$, that is, f(x, y) = P. Then

$$S - P \leftrightarrow (-x, y), \quad P + R \leftrightarrow (-y, x).$$
 (1)

The maps $P \mapsto S - P$ and $P \mapsto P + R$ generate a group G of translations on E_m , isomorphic to D_8 , the dihedral group of order 8, and G induces a group action on $E_m(\overline{\mathbb{Q}})$. In order to obtain a quadruple from the triple $(Q_1, Q_2, Q_3) \in E_m(\mathbb{Q})^3$, such that the elements of the quadruple are distinct, the orbits $G \cdot Q_1, G \cdot Q_2, G \cdot Q_3$ must be disjoint. This is because the set of points in \mathcal{D}_m corresponding to $G \cdot P$ is $\{(\pm x, \pm y), (\pm y, \pm x)\}$. We say that such a triple of points satisfies the non-degeneracy criteria.

Let $\overline{\mathcal{D}}_m$ denote the projective closure of the curve \mathcal{D}_m defined by

$$\overline{\mathcal{D}}_m \colon (X^2 - qZ^2)(Y^2 - qZ^2) = mZ^4.$$

The map $f^{-1}: E_m \to \overline{\mathcal{D}}_m$ is a rational map, and since the curve E_m is smooth, the map is a morphism [11, II.2.1]. The map $x \circ f^{-1}: E_m \to \mathbb{A}^1$ given by

$$x \circ f^{-1}(P) = \frac{X \circ f^{-1}(P)}{Z \circ f^{-1}(P)}$$

has a pole in points P_0 such that $f^{-1}(P_0) = [1:0:0]$, and is regular elsewhere. The map $y \circ f^{-1} \colon E_m \to \mathbb{A}^1$ given by

$$y \circ f^{-1}(P) = \frac{Y \circ f^{-1}(P)}{Z \circ f^{-1}(P)}$$

has a pole in points P_2 such that $f^{-1}(P_2) = [0:1:0]$, and is regular elsewhere. We define the rational map $g \colon E_m \to \mathbb{A}^1$ by

$$g(P) = (x_1^2 - q) \cdot \left(\left(x \circ f^{-1}(P) \right)^2 - q \right).$$

The map g has a pole in the same points as the map $x \circ f^{-1}$, and is regular elsewhere.

The maps f and g depend on a fixed point $P_1 \in \mathcal{D}_m$. We omit noting this dependency and simply denote these maps by f and g. The motivation for the map g is [6, 2.4, Proposition 4]. Dujella and Kazalicki use the 2-descent homomorphism in the proof of Proposition 4, we will use g for similar purposes.

Theorem 1. Let $(x_1, y_1) \in \mathcal{D}_m(\mathbb{Q})$ be the point used to define the map $f: \mathcal{D}_m \to E_m$. If $(Q_1, Q_2, Q_3) \in E_m(\mathbb{Q})^3$ is a triple satisfying the non-degeneracy criteria such that $(y_1^2 - q) \cdot g(Q_1 + Q_2 + Q_3)$ is a square, then the numbers

$$a = \pm \left(\frac{1}{m} \frac{g(Q_1)}{(x_1^2 - q)} \frac{g(Q_2)}{(x_1^2 - q)} \frac{g(Q_3)}{(x_1^2 - q)}\right)^{1/2},$$

$$b = \frac{g(Q_1)}{a(x_1^2 - q)}, c = \frac{g(Q_2)}{a(x_1^2 - q)}, d = \frac{g(Q_3)}{a(x_1^2 - q)}$$

are rational and form a rational D(q)-quadruple such that abcd = m.

Conversely, assume (a, b, c, d) is a rational D(q)-quadruple, such that m = abcd. If the triple $(Q_1, Q_2, Q_3) \in E_m(\mathbb{Q})^3$ corresponds to (a, b, c, d), then $(y_1^2 - q)g(Q_1 + Q_2 + Q_3)$ is a square.

It is not true that the existence of a rational point on $\mathcal{D}_m(\mathbb{Q})$ implies the existence of a rational D(q)-quadruple with product m. Examples with further clarification are given in Section 4. The following classification theorem holds:

Theorem 2. There exists a rational D(q)-quadruple with product m if and only if

$$m = (t^2 - q) \left(\frac{u^2 - q}{2u}\right)^2$$

for some rational parameters (t, u).

In Section 2 we study properties of the function g which we then use in Section 3 to prove Theorems 1 and 2. In Section 4, we give an algorithm on how to determine whether a specific m, such that $\mathcal{D}_m(\mathbb{Q}) \neq \emptyset$, admits a rational D(q)-quadruple with product m. We conclude the section with an example of an infinite family.

2. Properties of the function g

In this section, we investigate the properties of the function g which we will use to prove the main theorems. The following proposition describes the divisor of g.

Proposition 3. The divisor of g is

$$div g = 2(S_1) + 2(S_2) - 2(R_1) - 2(R_2),$$

where $S_1, R_1, S_2, R_2 \in E_m(\mathbb{Q}(\sqrt{q}))$ with coordinates

$$\begin{split} S_1 &= (\ (y_1^2 - q)(x_1 - \sqrt{q})^2, \qquad 2y_1\sqrt{q} \ (y_1^2 - q)(x_1 - \sqrt{q})^2 \), \\ R_1 &= (\ (x_1^2 - q)(y_1 + \sqrt{q})^2, \qquad 2x_1\sqrt{q} \ (x_1^2 - q)(y_1 + \sqrt{q})^2 \), \\ S_2 &= (\ (y_1^2 - q)(x_1 + \sqrt{q})^2, \ -2y_1\sqrt{q} \ (y_1^2 - q)(x_1 + \sqrt{q})^2 \), \\ R_2 &= (\ (x_1^2 - q)(y_1 + \sqrt{q})^2, \ -2x_1\sqrt{q} \ (x_1^2 - q)(y_1 - \sqrt{q})^2 \). \end{split}$$

The points S_1, S_2, R_1 and R_2 satisfy the following identities:

$$2S_1 = 2S_2 = f(x_1, -y_1) = S + 2R,$$

$$2R_1 = 2R_2 = f(-x_1, y_1) = S,$$

$$S_1 + R = R_1, \quad R_1 + R = S_2, \quad S_2 + R = R_2, \quad R_2 + R = S_1$$

Proof. We seek zeros and poles of g. The poles of g are the same as the poles of $x \circ f^{-1}$. To find zeros of g, notice that

$$(x \circ f^{-1}(P))^2 - q = \frac{m}{(y \circ f^{-1}(P))^2 - q},$$

so all we need to find are poles of $y \circ f^{-1}$.

The zeros of $x \circ f^{-1}$ are points on E_m which map to affine points on $\overline{\mathcal{D}}_m$ that have zero x-coordinate. We can easily calculate such points. If x = 0, then $y^2 = \frac{q^2 - m}{q}$. Denote $K = \sqrt{\frac{q^2 - m}{q}}$. We know $K \neq 0$, since $m \neq q^2$.

The zeros of $x \circ f^{-1}$ are the points $f(0, K), f(0, -K) \in E_m(\overline{\mathbb{Q}})$, which are different since $K \neq 0$. Since $x \circ f^{-1}$ is of degree two, both zeros are of order one. We conclude $x \circ f^{-1}$ has either one double pole, or two poles of order one.

Similarly, the zeros of $y \circ f^{-1}$ are the points $f(K,0), f(-K,0) \in E_m(\overline{\mathbb{Q}})$, both of order one. The map $y \circ f^{-1}$ also has either a double pole or two poles of order one.

Assume the point $P_0 \in E_m$ maps to a non-affine point in $\overline{\mathcal{D}}_m$. This means that $Z \circ f^{-1}(P_0) = 0$, and at least one of the projective coordinate functions $X \circ f^{-1}, Y \circ f^{-1}$ is nonzero at P_0 . It follows that P_0 is a pole of at least one of the maps $x \circ f^{-1}, y \circ f^{-1}$.

Let $P_0 \in E_m$ be a pole of one of the maps $x \circ f^{-1}, y \circ f^{-1}$. None of the points $f^{-1}(P_0), f^{-1}(P_0 + R), f^{-1}(P_0 + 2R), f^{-1}(P_0 + 3R)$ are affine points on $\overline{\mathcal{D}}_m$ because if one of them is an affine point, then they all are, since the map $P \mapsto P + R$ viewed on $\overline{\mathcal{D}}_m$ maps affine points to affine points. We conclude that each of the points $P_0, P_0 + R, P_0 + 2R, P_0 + 3R$ is a pole of one of the maps $x \circ f^{-1}, y \circ f^{-1}$ and with the previous claims we have that $x \circ f^{-1}, y \circ f^{-1}$ both have two poles of order one.

The map $P \mapsto S - P$, viewed on $\overline{\mathcal{D}}_m$, also maps affine points to affine points. Similarly as above, the points $f^{-1}(S - P_0)$, $f^{-1}(S - P_0 + R)$, $f^{-1}(S - P_0 + 2R)$, $f^{-1}(S - P_0 + 3R)$ are not affine in $\overline{\mathcal{D}}_m$, because the point $f^{-1}(P_0)$ would be affine as well. The sets $\{P_0, P_0 + R, P_0 + 2R, P_0 + 3R\}$ and $\{S - P_0, S - P_0 + R, S - P_0 + 2R, S - P_0 + 3R\}$ must be equal, otherwise the maps $x \circ f^{-1}, y \circ f^{-1}$ would have more than four different poles in total. This means that every pole satisfies the equality $2P_0 = S + kR$ for some $k \in \{0, 1, 2, 3\}$. Equivalently, every pole P_0 is a fixed point of some involution i_k of the form $P \mapsto S - P + kR$. Each involution i_k has four fixed points on $E_m(\overline{\mathbb{Q}})$, because any two fixed points differ by an element from the [2]-torsion. The involution i_0 , viewed on $\overline{\mathcal{D}}_m$, maps an affine point $(x, y) = f^{-1}(P)$ to $(-x, y) = f^{-1}(S - P)$. It has two affine fixed points which have x-coordinate equal to zero on $\overline{\mathcal{D}}_m$, as well as two fixed points which are not affine on $\overline{\mathcal{D}}_m$. Such points are either poles of $x \circ f^{-1}$ or poles of $y \circ f^{-1}$. Using Magma[1] we calculate the coordinates explicitly to obtain R_1 and R_2 . Computationally, we confirm R_1 and R_2 are poles of $x \circ f^{-1}$, that is, poles of g.

The involution i_2 , viewed on $\overline{\mathcal{D}}_m$, maps an affine point $(x, y) = f^{-1}(P)$ to $(x, -y) = f^{-1}(S - P + 2R)$. It has two affine fixed points which have y-coordinate equal to zero on $\overline{\mathcal{D}}_m$, as well as two fixed points which are not affine on $\overline{\mathcal{D}}_m$. These points must be poles of the map $y \circ f^{-1}$, that is, zeros of g. Again, using Magma, we calculate the coordinates to obtain S_1 and S_2 .

Since the poles of $x \circ f^{-1}$ are of order one, then the poles of g are of order two. The same is true for poles of $y \circ f^{-1}$, that is, for zeros of g. The last row of identities in the statement of the theorem is checked by Magma.

Proposition 4. There exists $h \in \mathbb{Q}(E_m)$ such that $g \circ [2] = h^2$.

Proof. Let $\tilde{h} \in \overline{\mathbb{Q}}(E_m)$ such that

$$\operatorname{div} \tilde{h} = [2]^*((S_1) + (S_2) - (R_1) - (R_2))$$
$$= \sum_{T \in E_m[2]} (S'_1 + T) + \sum_{T \in E_m[2]} (S'_2 + T) - \sum_{T \in E_m[2]} (R'_1 + T) - \sum_{T \in E_m[2]} (R'_2 + T)$$

where $2S'_i = S_i, 2R'_i = R_i$ and $[2]^*$ is the pullback of the doubling map on E_m .

Such \tilde{h} exists because of Corollary 3.5 in Silverman[11, III.3] stating that if E is an elliptic curve and $D = \sum n_P(P) \in \text{Div}(E)$, then D is principal if and only if

$$\sum_{P \in E} n_P = 0 \quad \text{and} \quad \sum_{P \in E} [n_P]P = 0,$$

where the second sum is addition on E.

The first sum being equal to zero is immediate, and for the second one we have

$$\sum_{T \in E_m[2]} (S_1' + T) + \sum_{T \in E_m[2]} (S_2' + T) - \sum_{T \in E_m[2]} (R_1' + T) - \sum_{T \in E_m[2]} (R_2' + T) = \sum_{T \in E_m[2]} (R_1' + T) - \sum_{T \in E_m[2]} (R_1' + T) -$$

$$= [4](S'_1 + S'_2 - R'_1 - R'_2) = [2](S_1 + S_2 - R_1 - R_2) =$$
$$= [2](S_1 - R_2 + S_2 - R_1) \stackrel{(*)}{=} [2](R + R) = \mathcal{O},$$

where (*) follows from the last row of identities in Proposition 3.

Easy calculations give us div $g \circ [2] = \operatorname{div} \tilde{h}^2$ which implies $C\tilde{h}^2 = g \circ [2]$, for some $C \in \overline{\mathbb{Q}}$. Let $h := \tilde{h}\sqrt{C} \in \overline{\mathbb{Q}}(E_m)$ so that $h^2 = g \circ [2]$. We will prove $h \in \mathbb{Q}(E_m)$.

First, we show that every $\sigma \in \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ permutes zeros and poles of \tilde{h} . Let us check what σ does to S_1 and S_2 . Since S_1 and S_2 are conjugates over $\mathbb{Q}(\sqrt{q})$, the only possibilities for S_1^{σ} are S_1 or S_2 . If $S_1^{\sigma} = S_1$, then we must have $(S_1')^{\sigma} =$ $S_1' + T$, where $T \in E_m[2]$, because $2((S_1')^{\sigma} - S_1') = (2S_1')^{\sigma} - 2S_1' = S_1^{\sigma} - S_1 = \mathcal{O}$. Thus σ fixes $\sum_{T \in E_m[2]} (S_1' + T)$. Since in this case we also know that $S_2^{\sigma} = S_2$, we get that σ fixes $\sum_{T \in E_m[2]} (S_2' + T)$ as well.

If $S_1^{\sigma} = S_2$ it is easy to see that

$$\left(\sum_{T \in E_m[2]} (S'_1 + T)\right)^{\sigma} = \sum_{T \in E_m[2]} (S'_2 + T) \text{ and } \left(\sum_{T \in E_m[2]} (S'_2 + T)\right)^{\sigma} = \sum_{T \in E_m[2]} (S'_1 + T)$$

Similar statements hold for R_1 and R_2 , so we conclude that \tilde{h} is defined over \mathbb{Q} . Both h and \tilde{h} have the same divisor so h is also defined over \mathbb{Q} . Now we use the second statement from Theorem 7.8.3. in [8]:

Theorem 5. Let C be a curve over a perfect field k and let $f \in \overline{k}(C)$.

- 1. If $\sigma(f) = f$, for each $\sigma \in Gal(\overline{k}/k)$ then $f \in k(C)$.
- 2. If div(f) is defined over k then f = ch for some $c \in \overline{k}$ and $h \in k(C)$.

From the second statement of the previous theorem we conclude that $h = c \cdot h'$ where $c \in \overline{\mathbb{Q}}$ and $h' \in \mathbb{Q}(E_m)$. We know that $c^2(h')^2 = h^2 = g \circ [2]$, and that $g \circ [2](\mathcal{O}) = (x_1^2 - q)^2$ is a rational square. It follows that $c^2 = \frac{(x_1^2 - q)^2}{h'(\mathcal{O})^2}$ is a rational square as well, hence c is rational. Finally, we have $h \in \mathbb{Q}(E_m)$. \Box

We end this section with a theorem which will handle rationality issues in Theorem 1. **Theorem 6.** For all $P, Q \in E_m(\mathbb{Q})$ we have $g(P+Q) \equiv g(P)g(Q) \mod (\mathbb{Q}^*)^2$. In particular, if $P \equiv Q \mod 2E_m(\mathbb{Q})$ then $g(P) \equiv g(Q) \mod (\mathbb{Q}^*)^2$.

Proof. Let $P', Q' \in E_m(\overline{\mathbb{Q}})$ such that 2P' = P and 2Q' = Q. We prove that

$$\frac{\sigma(h(P'+Q'))}{h(P'+Q')} = \frac{\sigma(h(P'))}{h(P')} \frac{\sigma(h(Q'))}{h(Q')}.$$

Following Silverman [11, III.8], assume $T \in E_m[2]$. From Proposition 4 it follows that $h^2(X + T) = g \circ [2](X + T) = g \circ [2](X) = h^2(X)$, for every $X \in E_m$. This means that $\frac{h(X+T)}{h(X)} \in \{\pm 1\}$. The morphism

$$E_m \to \mathbb{P}^1, \qquad X \mapsto \frac{h(X+T)}{h(X)}$$

is not surjective, so by [11, II.2.3] it must be constant.

For $\sigma \in \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ we have $\sigma(P') - P' \in E_m[2], \sigma(Q') - Q' \in E_m[2]$ and $\sigma(P' + Q') - (P' + Q') \in E_m[2]$. This holds since $2P' = P \in E_m(\mathbb{Q})$ and $2Q' = Q \in E_m(\mathbb{Q})$. Now we get

$$\frac{\sigma(h(P'))}{h(P')} = \frac{h(\sigma(P'))}{h(P')} = \frac{h(P' + (\sigma(P') - P'))}{h(P')} = \frac{h(X + (\sigma(P') - P'))}{h(X)}.$$

Similarly

$$\frac{\sigma(h(Q'))}{h(Q')} = \frac{h(X + (\sigma(Q') - Q'))}{h(X)}, \quad \frac{\sigma(h(P' + Q'))}{h(P' + Q')} = \frac{h(X + (\sigma(P' + Q') - (P' + Q')))}{h(X)}.$$

Now

$$\begin{aligned} \frac{\sigma(h(P'+Q'))}{h(P'+Q')} &= \frac{h(X+(\sigma(P'+Q')-(P'+Q')))}{h(X)} \\ &= \frac{h(X+(\sigma(P'+Q')-(P'+Q')))}{h(X+\sigma(P')-P')} \frac{h(X+\sigma(P')-P')}{h(X)} \\ &= \frac{\sigma(h(Q'))}{h(Q')} \frac{\sigma(h(P'))}{h(P')} \end{aligned}$$

by plugging in $X=P'+Q'-\sigma(P')$ for the first X and X=P' for the second one. This leads to

$$\frac{h(P'+Q')}{h(P')h(Q')} = \frac{\sigma(h(P'+Q'))}{\sigma(h(Q'))\sigma(h(P'))} = \sigma\left(\frac{h(P'+Q')}{h(P')h(Q')}\right)$$

for every $\sigma \in \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$. Now we conclude

$$\frac{h(P'+Q')}{h(P')h(Q')} \in \mathbb{Q} \implies h^2(P'+Q') \equiv h^2(P')h^2(Q') \mod (\mathbb{Q}^*)^2.$$

Finally

$$g(P+Q) = g \circ [2](P'+Q') = h^2(P'+Q') \equiv h^2(P')h^2(Q') = g(P)g(Q) \mod (\mathbb{Q}^*)^2.$$

The second statement of the theorem follows easily from the first. If $P = Q + 2S_3$, with $S_3 \in E_m(\mathbb{Q})$, then

$$g(P) = g(Q + 2S_3) \equiv g(Q)g(S_3)^2 \equiv g(Q) \mod (\mathbb{Q}^*)^2.$$

Theorem 6 was more difficult to prove compared to a similar statement in [6, 2.4.]. Their version of the function g had a very simple factorization $\mod (\mathbb{Q}^*)^2$, allowing them to use the 2-descent homomorphism.

3. Proofs of main theorems

The main difficulty in the following proof is the issue of rationality of the quadruple. As we have mentioned, Theorem 6 will deal with this.

Proof of Theorem 1: From the assumptions on (Q_1, Q_2, Q_3) we know $(y_1^2 - q)g(Q_1 + Q_2 + Q_3)$ is a square. We have

$$a^{2} = \frac{g(Q_{1})g(Q_{2})g(Q_{3})}{(x_{1}^{2} - q)^{3}m} = \frac{g(Q_{1})g(Q_{2})g(Q_{3})(y_{1}^{2} - q)}{(x_{1}^{2} - q)^{4}(y_{1}^{2} - q)^{2}}$$
$$\equiv g(Q_{1} + Q_{2} + Q_{3})(y_{1}^{2} - q) \mod (\mathbb{Q}^{*})^{2}.$$

The equivalence is a direct application of Theorem 6. This implies a^2 is a rational square so a is rational, which in turn implies b, c and d are rational numbers, as noted in the introduction. Since $abcd = m \neq 0$, none of the numbers a, b, c, d are zero, and the non-degeneracy criteria of (Q_1, Q_2, Q_3) ensure that a, b, c, d are pairwise different. Lastly, $ab + q = (x \circ f^{-1}(Q_1))^2$ (with similar equalities holding for other pairs of the quadruple). The previous statements prove the quadruple (a, b, c, d) is a rational D(q)-quadruple. On the other hand, if (a, b, c, d) is a rational D(q)-quadruple, then we can define the points $(Q_1, Q_2, Q_3) \in E_m(\mathbb{Q})^3$ in correspondence to (a, b, c, d). Using the same identities mod $(\mathbb{Q}^*)^2$ as above, we get that

$$(y_1^2 - q)g(Q_1 + Q_2 + Q_3) \equiv a^2 \mod (\mathbb{Q}^*)^2.$$

To prove Theorem 2 we use the following lemma:

Lemma 7. Let (a, b, c, d) be a rational D(q)-quadruple such that abcd = m. There exists a point $(x_0, y_0) \in \mathcal{D}_m(\mathbb{Q})$, such that $x_0^2 - q$ is a rational square.

Proof. From Theorem 1 we know that $(y_1^2 - q)g(Q_1 + Q_2 + Q_3)$ is a square, where $(Q_1, Q_2, Q_3) \in E_m(\mathbb{Q})^3$ is the triple that corresponds to the quadruple (a, b, c, d).

Let $Q = Q_1 + Q_2 + Q_3$. We have

$$\begin{split} (y_1^2 - q)g(Q) &= (y_1^2 - q)(x_1^2 - q)((x \circ f^{-1}(Q))^2 - q) = m \cdot (x \circ f^{-1}(Q))^2 - q) \\ &= m \cdot \frac{m}{(y \circ f^{-1}(Q))^2 - q} = m^2 \frac{1}{(y \circ f^{-1}(Q))^2 - q}. \end{split}$$

Since the left hand side is a square, we conclude $(y \circ f^{-1}(Q))^2 - q$ is a square as well. Now define $(x_0, y_0) := f^{-1}(Q + R)$. We know that

$$(y \circ f^{-1}(Q))^2 - q \stackrel{(1)}{=} (x \circ f^{-1}(Q+R))^2 - q = x_0^2 - q$$

so the claim follows.

Proof of Theorem 2: Assume we have a rational D(q)-quadruple. Using Lemma 7 there exists a point $(x_0, y_0) \in \mathcal{D}_m(\mathbb{Q})$ such that $x_0^2 - q$ is a rational square. Since $x_0^2 - q = k^2$, then $q = x_0^2 - k^2 = (x_0 - k)(x_0 + k)$. Denote $u = x_0 - k$, then $x_0 + k = q/u$ and by adding the previous two equalities together to eliminate k, we get $x_0 = \frac{q+u^2}{2u}$. Denoting $t = y_0$ we get

$$m = (x_0^2 - q)(y_0^2 - q) = \left(\left(\frac{q + u^2}{2u}\right)^2 - q\right)(t^2 - q) = \left(\frac{q - u^2}{2u}\right)^2(t^2 - q).$$

Now, let $m = \left(\frac{q-u^2}{2u}\right)^2 (t^2 - q)$ for some rational (t, u). Denote $y_1 = t, x_1 = \frac{q+u^2}{2u}$. It is easy to check that $(x_1^2 - q)(y_1^2 - q) = m$, so there is a rational point $(x_1, y_1) \in \mathcal{D}_m(\mathbb{Q})$ such that $x_1^2 - q = \left(\frac{u^2 - q}{2u}\right)^2$ is a square. We use this point $(x_1, y_1) =: P_1$ to define the map $f: \mathcal{D}_m \to E_m$. Let $Q_1 = R + S, Q_2 = 2S$ and $Q_3 = 3S$. The sets $G \cdot Q_i$ are disjoint and $g(Q_1 + Q_2 + Q_3)(y_1^2 - q) = g(R + 6S)(y_1^2 - q) \equiv g(R)(y_1^2 - q) = ((x_1^2 - q)(y_1^2 - q))(y_1^2 - q) \mod (\mathbb{Q}^*)^2$ is a rational square. The points (Q_1, Q_2, Q_3) satisfy the conditions of Theorem 1 giving us a rational D(q) quadruple.

Remark 8. The condition $m = \left(\frac{q-u^2}{2u}\right)^2 (t^2 - q)$ is equivalent to the fact that there exists $(x_0, y_0) \in \mathcal{D}_m(\mathbb{Q})$ such that $x_0^2 - q$ is a square. This was proven in the preceding theorems.

4. Examples

There are plenty of examples where $m = (x_1^2 - q)(y_1^2 - q)$ for some rational x_1 and y_1 , such that there does not exist a rational D(q)-quadruple with product m. Equivalently, m cannot be written as $(x_0^2 - q)(y_0^2 - q)$ such that $x_0^2 - q$ is a square.

According to Theorem 1, to find out whether there is a rational D(q)quadruple with product m, one needs to check whether there is a point $T' \in E_m(\mathbb{Q})$ such that $g(T')(y_1^2 - q)$ is a square. Theorem 6 tells us that we only need to check the points $T \in E_m(\mathbb{Q})/2E_m(\mathbb{Q})$, which is a finite set. If for some explicit q, m we know the generators of the group $E_m(\mathbb{Q})/2E_m(\mathbb{Q})$, we can determine whether there exist rational D(q)-quadruples with product m, and parametrize them using points on $E_m(\mathbb{Q})$. For such computations we used Magma.

Let $q = 3, x_1 = 5$ and $y_1 = 7$ making $m = (5^2 - 3)(7^2 - 3) = 1012$. The rank of E_m is two, E_m has one torsion point of order four, giving us in eight points in total to check. None of the points $T \in E_m(\mathbb{Q})/2E_m(\mathbb{Q})$ satisfy that $g(T)(y_1^2 - q)$ is a square, so there are no D(3)-quadruples with product 1012. On the other hand, take q = -3, $x_1 = 1$ so that $x_1^2 - q = 4$ and let $y_1 = t$ which makes $m = 4 \cdot (t^2 + 3)$. The point S is a point of infinite order on $E_m(\mathbb{Q}(t))$, and the triple $(Q_1, Q_2, Q_3) = (S + R, 2S, 3S)$ satisfies the conditions of Theorem 1. We obtain the following family:

$$\begin{split} a &= \frac{2 \cdot (3 + 6t^2 + 7t^4) \cdot (27 + 162t^2 + 801t^4 + 1548t^6 + 1069t^8 + 306t^{10} + 183t^{12})}{(3 + t^2) \cdot (1 + 3t^2) \cdot (9 + 9t^2 + 19t^4 + 27t^6) \cdot (3 + 27t^2 + 33t^4 + t^6)},\\ b &= \frac{(3 + t^2)^2 \cdot (1 + 3t^2) \cdot (9 + 9t^2 + 19t^4 + 27t^6) \cdot (3 + 27t^2 + 33t^4 + t^6)}{2 \cdot (3 + 6t^2 + 7t^4) \cdot (27 + 162t^2 + 801t^4 + 1548t^6 + 1069t^8 + 306t^{10} + 183t^{12})},\\ c &= \frac{2 \cdot (3 + 6t^2 + 7t^4) \cdot (3 + 27t^2 + 33t^4 + t^6) \cdot (9 + 9t^2 + 19t^4 + 27t^6)}{(3 + t^2) \cdot (1 + 3t^2) \cdot (27 + 162t^2 + 801t^4 + 1548t^6 + 1069t^8 + 306t^{10} + 183t^{12})},\\ d &= \frac{2 \cdot (3 + t^2) \cdot (1 + 3t^2) \cdot (27 + 162t^2 + 801t^4 + 1548t^6 + 1069t^8 + 306t^{10} + 183t^{12})}{(3 + 6t^2 + 7t^4) \cdot (3 + 27t^2 + 33t^4 + t^6) \cdot (9 + 9t^2 + 19t^4 + 27t^6)} \end{split}$$

We can generalize the example above by setting $q = q, y_1 = t, x_1 = \frac{q+u^2}{2u}$. The triple of points (S + R, 2S, 3S) satisfies the conditions of Theorem 1 and we can calculate an explicit family of rational D(q)-quadruples with product m, but this example is too large to print (the numerator of a is a polynomial in the variables (q, t, u) of degree forty).

All the computations in this paper were done in Magma [1].

5. Acknowledgements

The authors were supported by the Croatian Science Foundation under the project no. 1313.

The second author was supported by the QuantiXLie Centre of Excellence, a project cofinanced by the Croatian Government and the European Union through the European Regional Development Fund - the Competitiveness and Cohesion Operational Programme (Grant KK.01.1.1.01.0004).

References

 W. Bosma, J. Cannon, and C. Playoust. The Magma algebra system I: The user language. *Journal of Symbolic Computation*, 24(3-4):235-265, 1997.

- [2] A. Dujella. A note on Diophantine quintuples. Algebraic Number Theory and Diophantine Analysis (F. Halter-Koch, RF Tichy, eds.), Walter de Gruyter, Berlin, pages 123–127, 2000.
- [3] A. Dujella. There are only finitely many Diophantine quintuples. Journal fur die Reine und Angewandte Mathematik, 2004(566):183-214, 2004.
- [4] A. Dujella and C. Fuchs. On a problem of Diophantus for rationals. Journal of number theory, 132(10):2075–2083, 2012.
- [5] A. Dujella and M. Kazalicki. Diophantine m-tuples in finite fields and modular forms. arXiv preprint arXiv:1609.09356, 2016.
- [6] A. Dujella and M. Kazalicki. More on Diophantine sextuples. In Number Theory-Diophantine Problems, Uniform Distribution and Applications, pages 227-235. Springer, 2017.
- [7] A. Dujella, M. Kazalicki, M. Mikić, and M. Szikszai. There are infinitely many rational Diophantine sextuples. *International Mathematics Research Notices*, 2017(2):490–508, 2017.
- [8] S. D. Galbraith. Mathematics of public key cryptography. Cambridge University Press, 2012.
- [9] P. Gibbs. Some rational Diophantine sextuples. Glasnik matematički, 41 (2):195-203, 2006.
- [10] B. He, A. Togbé, and V. Ziegler. There is no Diophantine quintuple. Transactions of the American Mathematical Society, 371(9):6665-6709, 2019.
- [11] J. H. Silverman. The arithmetic of elliptic curves, volume 106. Springer Science & Business Media, 2009.