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1. CATEGORY THEORY

1.1. Categories.
Lecture of August 23, 2021

1.1.1. Definition of category.

Definition 1.1. A category € consists of the following data:
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(1) a collection of objects, denoted Ob(%),

(2) for each pair of objects A, B € Ob(%), a set Home (A, B) of morphisms (also known as arrows) from
A to B,

(3) for each triple of objects A, B,C € Ob(%), a function

Homg (A, B) x Homg (B, C') — Homg (A, C)

written as («, 8) — o a that we call the composition rule.
These data are required to satisfy the following axioms:

(1) (Disjointness) the Hom sets are disjoint: if A # A’ or B # B’, then
Hom¢ (A, B) n Home (A', B') = @.

(2) (Identities) for every object A, there is an identity morphism 14 € Homeg (A, A) such that 140 f = f
and goly = g for all f € Homy (B, A) and all g € Hom¢ (A, B).
(3) (Associativity) composition is associative: fo (goh) = (fog)oh.

Remark 1.2. (1) The word “collection” as opposed to “set” is important here. The point is that there
is no set of all sets, but by utilizing bigger collecting objects in set theory, we can sensibly talk
about the collection of all sets. We’ll sweep all of the set theory under the rug there, but it’s worth
keeping in mind that the objects of a category don’t necessarily form a set. We did assume that the
collections of morphisms between a pair of objects form a set, though not everyone does.

(2) The first axiom above guarantees that every morphism « in a category € has a well-defined source

and target in Ob(%), namely, the unique A and B (respectively) such that o € Homg (A, B).

The name arrow dovetails with the common practice of depicting a morphism « € Home (A, B) as
A% B.
The composition of A % B and B S oA 0

Optional Exercise 1.3. Prove that every element in a category has a unique identity morphism (i.e., a

unique morphism that satisfies the hypothesis of axiom (2)).
1.1.2. Ezamples of categories. Many of our favorite objects from algebra naturally congregate in categories!

Example 1.4. (1) There is a category Set where
e Ob(Set) is the collection of all sets
o for two sets X, Y, Homget(X,Y) is the the set of functions from X to YV
e the composition rule is composition of functions
We observe that every set has an identity function, which behaves as an identity for composition,
and that composition of functions is associative.
(2) There is a category Grp where
e Ob(Grp) is the collection of all groups
o for two sets X, Y, Homg,p(X,Y) is the the set of group homomorphisms from X to Y
e the composition rule is composition of functions
Note that the identity function on a group is a group homomorphism, and that a composition of two
group homomorphisms is a group homomorphism.

(3) There is a category Ab where
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e Ob(AD) is the collection of all abelian groups
o for two sets X, Y, Homap(X,Y) is the the set of group homomorphisms from X to Y
e the composition rule is composition of functions
(4) In this class,
o A semigroup is a set S with an associative operation - that has an identity element; some may
prefer the term monoid, but I don’t.
e A semigroup homomorphism from semigroups S — T is a function that preserves the operation
and maps the identity element to the identity element.
There is a category Sgrp where the objects are all semigroups and the morphisms are semigroup
homomorphisms. (The composition rule is composition again.)
(5) In this class,
e A ring is a set R with two operations + and - such that (R, +) is abelian group, with identity
0, and (R,-) is a semigroup with identity 1, and such that the left and right distributive laws
hold: (r + s)t = rt + st and t(r + s) = tr + ts.
e A ring homomorphism is a function that preserves + and - and sends 1 to 1.
There is a category Ring where the objects are all rings and the morphisms are ring homomorphisms.
(6) Let R be a ring. In this class,
o A left R-module is an abelian group (M, +) equipped with a pairing R x M — M, written
(rym) — rm or (r,m) — r-m such that
(a) r1(ram) = (rir2)m,
(b) (r1 +r2)m =rim + rom,
(¢) r(m1 + msg) = rmy + rmgy, and
(d) 1m =m.
e A left module homomorphism or R-linear map between left R-modules ¢ : M — N is a homo-
morphism of abelian groups from (M, +) — (N, +) such that ¢(rm) = ré(m).
There is a category R—Mod where the objects are all left R-modules and the morphisms are R-linear
maps.
(7) There is a category Fld where the objects are all fields and the morphisms are all field homomor-
phisms.
(8) There is a category Top where the objects are all topological spaces and the morphisms are all

continuous functions.

Remark 1.5. There are two special cases of the category of R-modules that are worth singling out:

e Every abelian group M is a Z-module in a unique way, by setting

n-m=m+---+m and —n-m=—(m+---+m) for n > 0.
— —
n—times n—times

Thus, Ab is basically just Z — Mod.
e When R = K happens to be a field, we are accustomed to calling K-modules vector spaces. Thus,
we might write X — Vect for K — Mod.

Lecture of August 25, 2021

Example 1.6. Here are some variations on the category K — Vect.

(1) The collection of finite dimensional K-vector spaces with all linear transformations is a category;
call it K — vect .
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(2) The collection of all n-dimensional K-vector spaces with all linear transformations is a category.

(3) The collection of all K-vector spaces (or n-dimensional vector spaces) with linear isomorphisms is a
category.

(4) The collection of all K-vector spaces (or n-dimensional vector spaces) with nonzero linear transfor-
mations is not a category, since it’s not closed under composition.

(5) The collection of all n-dimensional vector spaces with singular linear transformations is not a cate-

gory, since it doesn’t have identity maps.

Example 1.7. (1) There is a category Set, of pointed sets where
e the objects are pairs (X, z) where X is a set and z € X
e for two pointed sets, the morphisms from (X, z) to (Y,y) are functions f : X — Y such that
f(z) =y,
e usual composition.
(2) For a commutative ring A,
e A commutative A-algebra is a commutative ring R plus a homomorphism ¢ : A — R.
e Slightly more generally, an A-algebra is a ring R plus a homomorphism ¢ : A — R such that
@(A) lies in the center of R: r - ¢(a) = ¢(a) - r for any a € A and r € R. (In the more general
situation, A is still commutative but R may not be.)
o An A-algebra homomorphism between two A-algebras (R, ¢) and (S, 1)) is a ring homomorphism
«a: R — S such that co ¢ = 1.
The category of A-algebras is denoted A — Alg , and the category of commutative A-algebras is
A—cAlg .

(3) Fix a field K, and define a category Mat as follows: the objects are the positive natural numbers
n € N5o, and Homg (a,b) is the set of b x a matrices with entries in K. To see this as a category,
we need a composition rule. Given B € Home(b,c¢) and A € Home(a,b), take the composition
Ao B € Homg(a,c) to be the product AB. Since matrix multiplication is associative, axiom (3)
holds, and the n x n identity matrix serves as an identity morphism in the sense of axiom (2). Finally,
if A € Home(a,b) nHome(a’,b'), then A is a b x a matrix and a b’ x o’ matrix, so a = o’ and b =b'.

Notably, the morphisms in this category are not functions.
We can also make a bunch of categories in a hands-on way as follows:

Example 1.8. Let (P, <) be a poset. We define a category PO(P) from P as follows. The objects of

PO(P) are just the elements of P. For each pair a,b e P with a < b, form a symbol f°. Then we set
{ffy ifa<b
Hompo(py(a,b) = )
1%} otherwise.

There is only one possible composition rule:
Hompgo(p)(a,b) x Hompo(p)(b, c) — Hompg(py(a,c)

when a < b and b < ¢ we also have a < ¢, and the unique pair on the left must map to the unique element
on the right, so ffo f& = f¢ when either a £ b or b £ c, there is nothing to compose!

BEach morphism f? is in only one Hom set (with source a and target b). Composition is associative since
there is at most one function between one element sets. For any a, fi € Hompo(p)(a,a) is the identity

morphism.



MATH 901 LECTURE NOTES, FALL 2021 5

For a specific example, we can think of N5 as a category this way. Drawing all of the morphisms would

be a mess, but any morphism is a composition of the ones depicted:

1—2-—3—4—>5—>.--.

Note that the objects of this category are exactly the same as in Example 3), but with much fewer

morphisms!
Example 1.9. A category with one object is nothing but a semigroup.
1.1.3. Constructions of categories. Here are a few more basic constructions of categories:

Definition 1.10. Given a category €, the opposite category €°P is the category with Ob(%°P) = Ob(%¥),
and Home (A, B) = Home (B, A) for all A, B € Ob(%).

That is, the opposite category is the “same category with the arrows reversed.” To avoid confusion, we

might write a®P for the morphism B % Ain @oP corresponding to A —*» B in €.

Definition 1.11. Given two categories € and Z, the product category € x 2 is the category with Ob(% x Z)
given by the collection of pairs (C, D) with C € Ob(%) and D € Ob(Z), and Hom¢ 9 ((4, B), (C, D)) =
Homeg (A, C) x Homg (B, D). We leave it to you to pin down the composition rule.

Definition 1.12. A category & is a subcategory of another category ¢ provided

(1) every object of 2 is an object of €

(2) for every A, B € Ob(2), Homg (A, B) € Homg (A, B), and

(3) for every A% B and B 2 Cin 2, the composition of a and 8 in Z equals the composition of «

and B in €.
If equality hold in (2) (for all A, B), we say that & is a full subcategory of €.
Example 1.13. Since every group is a set, and every homomorphism is a function, Grp is a subcategory of
Set. However, since not every function between groups is a homomorphism, Grp is not a full subcategory
of Set. Similarly, Ab, Ring, R — Mod, and Top are all subcategories of Set.
On the other hand, Ab is a full subcategory of Grp, and Grp is a full subcategory of Sgrp: a morphism

of abelian groups is a morphism of groups that happens to be between abelian groups (and likewise for

groups and semigroups)!
Lecture of August 27, 2021
1.2. Basic notions with morphisms.

Definition 1.14. A diagram in a category % is a directed multigraph whose vertices are objects in % and
whose arrows/edges are morphisms in €. A commutative diagram in € is a diagram in which for each pair

of vertices A, B, any two paths from A to B compose to the same morphism.

A B
’yi lﬁ
C D

commutes is to say that S oa = 0 oy in Homg (A, D).

Example 1.15. To say that the diagram

R

&
_—
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Definition 1.16. Let € be any category and A = B a morphism.

e « is an isomorphism if there exists B 2, A such that Boa=14 and o = 1. Such an S is called
the inverse of f.
e « has [ as a left inverse if foa =14. Similarly define right inverse.

e « is a monomorphism or is monic if for all arrows
1 «@
C—=A——2B
B2
if a8y = afs then B; = B5. That is, a can be cancelled from the left.

e « is an epimorphism or is epic if for all arrows

AL>B*>;.C

B2
if f1a = Boa then B = B, That is, o can be cancelled from the right.

Remark 1.17. Note that « has a left inverse in % if and only if a°? has a right inverse in ¥°P, and that « is

monic in ¢ if and only if a°P is epic in €°P. We say that these are dual notions in category theory.
Lemma 1.18. If a has a left inverse, then a is monic. Similarly for “right inverse” and “epic”.
Proof. If foa =14 and 1,72 are two morphisms from C' — A such that a oy, = a 07, then
N =(Boa)oy =po(aom)=PFo(aoy)=(Boa)oy ="
Similarly for “right inverse” and “epic”. |

Example 1.19. In Set, the monomorphisms and left-invertible morphisms agree, and these are the injective

functions. The epimorphisms and right-invertible morphisms agree, and there are the surjective functions.

Optional Exercise 1.20. For any poset P, in PO(P), every morphism is both monic and epic, but no

nonidentity morphism has a left or right-inverse.

1.3. Category-theoretic constructions of objects. A property or construction is category theoretic if

can be described just in terms of the data of the category rather than aspects of a particular category.

Example 1.21. Can we identify @ in Set without looking at the objects’ and morphisms’ names? We can:

for every set S, there is a unique function f: @ — S; @ is the only set with this property.

Definition 1.22. (1) An object X in a category € is initial if there for every Y € Ob(%), there is a
unique morphism X — Y.
(2) An object X in a category € is terminal if there for every Y € Ob(%), there is a unique morphism
Y - X.

Example 1.23. (1) We just saw that & is initial in Set. Any singleton is terminal.
(2) A group with only one element {e} is both initial and terminal in Grp.
(3) Z is initial in Ring.

1.3.1. Definitions of product and coproduct.

Definition 1.24. Let € be a category, and {Xx}xea be a family of objects. A product of {X)}xea is given
by an object P and a family of morphisms {py : P — X} ea that is universal in the following sense:
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Given an object Y and a family of morphisms {f) : Y — X)}xea, there is a unique morphism ¢ : Y — P
such that py o ¢ = fy for all \.

Here is a diagram for the (first few) maps involved when A = N is countable:

- f1

-
< J

2 X,
f3 \
X3

We can also take a “big picture” view of this universal property:

Y

P
[ /1 {pxr}
/
/
Y X,
NSRS

where the squiggly arrows are again collections of maps instead of maps. The data of Y with a family of
maps to each X is the sort of thing a product might be, so we may think of it as a “product candidate.”
In this way, we can think of a product as a “terminal product candidate.”

Lecture of August 30, 2021

Remark 1.25. Note that (P, {px}rea) is a product of {X)}aea if and only if the function

Homg (Y, P)

X yep Home (Y, X))

X (Px © ®)ren

is a bijection for all objects Y: the universal property says that everything in the target comes from a unique

thing in the source.

Definition 1.26. Let & be a category, and {X)}xea be a family of objects. A coproduct of {Xx}xea is given
by an object C' and a family of morphisms {i) : X\ — C}aea that is universal in the following sense:

Given an object Y and a family of morphisms {f) : X» — Y }xea, there is a unique morphism ¢ : C - Y
such that ¢ o7y = fy for all .
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Here is a diagram for the (first few) maps involved when A = N is countable:

f1

Xo

X1
We can also take a “big picture” view of the universal property:
C

{ix} AN
AN
\

X Y,
)~y

where the squiggly arrows are now collections of maps instead of maps. We can again think of the coproduct

as the “initial coproduct candidate.”

Remark 1.27. Note that (C, {ix}rea) is a coproduct of {X)}aea if and only if the function

Homg(C’, Y) X AEA HOng(X)\, Y)

o (¢ oir)ren

is a bijection for all objects Y: the universal property says that everything in the target comes from a unique

thing in the source.

Proposition 1.28. If (P,{px : P — Xu}xea) and (P',{p) : P' — Xx}xea) are both products for the same
family of objects {X)}xen in a category €, then there is a unique isomorphism o« : P —> P’ such that

ph oa =py for all \. The analogous statement holds for coproducts.

Proof. We will just deal with products. The following picture is a rough guide:

{Xo}

Since (P,{px}) is a product and (P, {p)}) is an object with maps to each X}, there is a unique map
g : P — P such that py o 8 = p). Switching roles, we obtain a unique map a : P — P’ such that

P oa = px.
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Consider the composition o« : P — P. We have p) o foa = p) oa = py for all \. The identity map
1p : P — P also satisfies the condition p) o 1p = py for all A, so by the uniqueness property of products,
Boa=1p. We can again switch roles to see that « o § = 1p/. Thus « is an isomorphism. The uniqueness

of o in the statement is part of the universal property. O
Optional Exercise 1.29. Prove the analogous statement for coproducts.

We use the notation [ [,., X to denote the (object part of the) product of {X»} and [[,., X to denote
the (object part of the) coproduct of {X)}.
Observe that products and coproducts are dual notions in the same way as monic versus epic morphisms.

The product of a family in € is the coproduct of the same family in €°P.

1.3.2. Products in familiar categories. The familiar notion of Cartesian product or direct product serves as
a product in many of our favorite categories. Let’s note first that given a family of objects {X}ea in any of
the categories Set, Sgrp, Grp, Ring, R — Mod, Top, the direct product X ,_, X is an object of the same
category:
e for sets, this is clear;
e for semigroups, groups, and rings, take the operation coordinate by coordinate: (zx)xea - (Yn)rea =
(T - Yr)ren;
e for modules, addition is coordinate by coordinate, and the action is the same on each coordinate:
7 (T )aer = (7 Tx)ren;
e for topological spaces, use the product topology.

Note that this is not true for fields!

Proposition 1.30. In each of the categories Set, Sgrp, Grp, Ring, R—Mod, Top, given a family {Xx}xea,
the direct product X ,., X along with the projection maps my : X jen X, — X, forms a product in the

category.

Proof. We observe that in each category, the direct product is an object, and the projection maps 7y are
morphisms in the category.

Let € be one of these categories, and suppose that we have morphisms gy : ¥ — X, for all X in ¥.
We need to show there is a unique morphism ¢ : ¥ — X, ., X such that my o ¢ = g, for all A. The last
condition is equivalent to (¢(y))x = (mx 0 @)(y) = ga(y) for all A, which is equivalent to ¢(y) = (gx(¥))rea,
so if this is a valid morphism, it is unique. Thus, it suffices to show that the map ¢(y) = (gx(¥))area is a
morphism in %, which is easy to see in each case. O

1.3.3. Coproducts in familiar categories.

Example 1.31. Let {X)}xea be a family of sets. The product of {X)}xea is given by the cartesian product
along with the projection maps. The coproduct of {X}xea is given by the “disjoint union” with the various
inclusion maps. By disjoint union, we simply mean union if the sets are disjoint; in general do something
like replace X with X x {\} to make them disjoint.

Proposition 1.32. Let R be a ring, and {My}rea be a family of left R-modules. A coproduct for the family
{A4X}AGA 18 (CDXEA_A4},{LA}AEA),1Uh6T€

C—B My = {(zx)rea | Tx # 0 for at most finitely many A} < 1_[ M,
AEA AEA

is the direct sum of the modules M)y, and vy is the inclusion map to the \ coordinate.
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Lecture of September 1, 2021

Remark 1.33. If the index set A is finite, then the objects [ [ o, My and @,., M) are identical, but the
product and coproduct are not the same since one involves projection maps and the other involves inclusion

maps.

Proof. Given R-module homomorphisms gy : My — N for each A, we need to show that there is a unique
R-module homomorphism « : @AGA M)y — N such that a0ty = g). We define
a((ma)ren) = Y galma).
AEA
Note that since (my)aea is in the direct sum, at most finitely many m) are nonzero, so the sum on the right

hand side is finite, and hence makes sense in N. We need to check that « is R-linear; indeed,

a((my) + (n2)) = a((my +1x)) = Y ga(ma +n2) = D ga(ma) + D ga(na) = a((ma)) + a((ny)),

and the check for scalar multiplication is similar. For uniqueness of «, note that @,_, M is generated by
the elements ¢y (my) for my € M. Thus, if o also satisfies o’ o1y = g, for all A, then a(cy(my)) = ga(my) =

o’ (tx(my)) so the maps must be equal. O

Remark 1.34. For any indexing set A, [[,., R is a free R-module. If R = K happens to be a field, then
[T,ep K is free, since all vector spaces are free modules, but in general, [ [,_, R is not free for an infinite
set A.

Remark 1.35. e In Top, disjoint unions serve as coproducts.
e In Sgrp and Grp, coproducts exist, and are given as free products. You may see or have seen them
in topology in the context of Van Kampen’s theorem.
e In Ring, the story is more complicated. Let’s note first that disjoint unions won’t work, since they
aren’t rings. Direct sums of infinitely many rings don’t have 1, so aren’t rings, but even finite direct
sums/products won’t work, since the inclusion maps don’t send 1 to 1. We will later on construct

coproducts in cRing , the full subcategory of Ring consisting of commutative rings.
1.4. Functors.

Definition 1.36. Let ¥ and Z be categories. A covariant functor F : € — 2 is a mapping that assigns
to each object A € Ob(%) an object F(A) € Ob(2) and to each morphism « € Home (A4, B) a morphism
F(a) € Homg(F(A), F(B)) such that

(1) F preserves compositions, meaning F'(a o 8) = F(a) o F(B) for all morphisms «, 5 in €, and

(2) F preserves identity morphisms, meaning F'(14) = 1p(4) for all objects A in 4.

A contravariant functor F : € — & is a mapping that assigns to each object A € Ob(%) an object

F(A) € Ob(2) and to each morphism « € Hom¢ (A, B) a morphism F'(«) € Homg (F(B), F(A)) such that

(1) F preserves compositions, meaning F'(a o 8) = F(8) o F(a) for all morphisms «, 8 in €, and

(2) F preserves identity morphisms, meaning F'(14) = 1p(4) for all objects A in 4.

Remark 1.37. One can also interpret a contravariant functor as a covariant functor from ¢°? — &, or as a

covariant functor from & — 2°P.

Example 1.38. Here are some examples of functors.
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(1) Many of the categories we considered before are sets with extra structure, and the morphisms are
functions that preserve the extra structure. The forgetful functor from such a category € to Set, is
the covariant functor that forgets that extra structure are returns the underlying set of the object.
For example the forgetful functor Grp — Set sends each group to its set of elements, and each
homomorphism to its corresponding function of sets. Along similar lines, a ring is a group under
addition with the bonus structure of multiplication, and we can talk about the forgetful functor from
Ring to Grp, etc.

(2) The identity functor 1¢ on any category & sends each object to itself and each morphism to itself.
It is covariant.

(3) There is a covariant functor (—)*? : Set — Set that sends every set S to its cartesian square
S x S, and every function f : S — T to the function (f, f) : S x S — T x T that sends (s1, s2) —
(f(s1), f(s2)). Let’s check the axioms: given g : S — T and f : T — U, we need to see that
(f, f)o(g,9) = (fog, fog), which is clear, and that (1g,1g) is the identity map on S x S, which is
also clear.

(4) Given a group G, the subgroup G’ < G generated by the set of commutators {ghg=*h~! | g,h € G}
is a normal subgroup, and the quotient G** := G/G’ is called the abelianization of G. The group
G?P is abelian. Given a group homomorphism ¢ : G — H, ¢ automatically takes commutators
to commutators, so it induces a homomorphism G®» — H?®P. Put together, abelianization gives a
covariant functor from Grp to Ab.

(5) Given any topological space X, the set of continuous functions from X to R, Cont(X,R) is a ring
with pointwise addition and multiplication. Given a continuous map X - Y, and a continuous
map Y ER R, the composition X 2°f, R is a continuous function. In this way, we get a map from
Cont(Y,R) to Cont(X,R). In fact, this map is a ring homomorphism. Put together, we obtain a
contravariant functor from Top to Ring.

(6) Fix a field K. Given a vector space V, the collection V* of linear transformations from V to K is
again a K-vector space, the dual vector space of V. If ¢ : W — V is a linear transformation and
£:V > Kisin V* then fo¢p: W — K isin W*, so there is a map V* — W*. You can check that
this together forms a functor (—)* that is contravariant.

(7) You may be familiar with the fundamental group of a pointed topological space; this is a group
m1(X, z) assigned to a topological space and a point in it. The rule m; gives a functor from pointed
topological spaces to groups.

(8) The unit group functor Ring — Grp sends each ring to its group of units. A homomorphism of
rings restricts to a group homomorphism on the units: if x € R is a unit, sozy =1, and ¢ : R — S
is a group homomorphism, then 1 = ¢(zy) = ¢(z)P(y), so ¢(z) is a unit; ¢ preserves multiplication

as well. This is covariant.

Lecture of September 3, 2021
It follows from the definition of covariant functor that if we apply a covariant functor F' to a commutative

diagram, we get another commutative diagram of the same shape, e.g.:

o F F(a)
A—— B s F(A) — F(B)
v l l B F(v) l J{ F(B)
c—2-D o)

F(C) —% F(D).
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If we apply a contravariant functor G to a commutative diagram, we get a commutative diagram of the

same shape with the arrows reversed, e.g.:

[e% G G(O‘)
gl l iﬁ G(v)T TG(&)
c—-D G(©)

G(C) < G(D).

Remark 1.39. A composition of two covariant functors, or of two contravariant functors, is a covariant
functor. The composition of a covariant functor and a contravariant functor, or vice versa, is a contravariant

functor.
1.5. Natural transformations.

Definition 1.40. Let F' and G be covariant functors € — 2. A natural transformation n between F and
G is a mapping that to each object A in € assigns a morphism 74 € Homg(F(A), G(A)) such that for all

f € Homg (A, B), the diagram
nA

F(A) " G(4)
() lcm
F(B) — G(B)

nBe
commutes. We sometimes write n: I = G.

A natural isomorphism is a natural transformation 7 where each 74 is an isomorphism.
In short, a natural transformation is a rule to turn F' of whatever into G of whatever in a reasonable way.

Optional Exercise 1.41. Let F,G : € — & be covariant functors. Show that a natural transformation
n: F = G is a natural isomorphism if and only if there is another natural transformation p: G = F

such that pon is the identity natural isomorphism on F' and 7o y is the identity natural transformation on

G.
‘We can make make a similar definition for contravariant functors.

Definition 1.42. Let F' and G be contravariant functors € — 2. A natural transformation between F
and G is a mapping that to each object A in € assigns a morphism 74 € Homg (F(A), G(A)) such that for

all f € Homy (A, B), the diagram

F(A) 2~ G(A)

F(f) Tcm
F(B) —— G(B)

comimutes.

X2

Example 1.43. Let’s describe a natural transformation of functors 7 : (—)*? = 1get, namely we take

nstsXSHS (81,52)'—>81.
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We need to check for every map f : S — T the commutativity of a diagram:

SxS .4

w|

TxT ——=T.
nr

Going either down then left or right then down, (s1, s2) maps to f(s1), so this does commute, and we indeed
have a natural transformation. This is not a natural isomorphism, since the map 7g is not always (almost

never) an isomorphism of sets.

Example 1.44. Let € be the full subcategory of Set consisting of countable sets. For every S € Ob(%),
there is a €-isomorphism, i.e., a bijection, ng : § — S x S. Namely, we can take ng as follows: enumerate

S as S = {s1, 82,83, ..}, and do the usual zigzag trick

§1 = (81,81

S — (52,81

(s1,51)
(52,51)
s3> (s1,82)
(s1,83)
(s2,52)
(s3,51)

™ I ™

547 151,53 (s1,83) (s2,83) (s3,53) (54,83)
S5 > (82, 52 PN AN N

s6 — (83, 51 (s1,52) (s2,52) (s3,52) (54, 52)
™ N ™

(81,31) - (82,51) (53,31) - (34781)

However, the bijections g do not form a natural bijection (in fact, if we just choose ng like so for one
set S, no matter what the other choices are, we can’t get a natural transformation). Let f : .S — S satisfy

f(s1) = s2 and f(s3) = s1. Then in the diagram

s .5xs

fl l(f,f)

SHSXS,
ns

we have ng(f(s1)) = (s2,s1) while (f, f)(ns(s1)) = (s2, s2), so the diagram does not commute.

Intuitively, we can blame the fact that our map 7 decided on a choice of enumeration of the set.

Example 1.45. Recall the contravariant functor (—)* : K — vect — K — vect; here we are restricting to
finite dimensional vector spaces.

For every V € K — vect, there is an isomorphism V =~ V*: if we fix a basis B for V, there is a dual basis
for V* (the B-coordinate functions) of the same size, so they are isomorphic. However, there is no natural

isomorphism 7 : 1x_vect = (—)*, since 1k _yect is covariant and (—)*

is contravariant. We will actually
see a more compelling version of this nonnatruality statement in the homework.

Composing the dual functor with itself twice we get the covariant double-dual functor (—)** : K —vect —
K — vect. We will show that there is a natural isomorphism 1x_yect = (—)**.
For every v € V, there is a map ev, : V¥ — V given by evaluation at v: ev,({) = £(v). So, ev, € V**.

Since we have one for each v, there is a function ev : V- — V** given by ev(v) = ev,,.
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The map ev is a linear transformation:
eVeptw(l) = L(cv + w) = cl(v) + L(w) = cevy (L) + evy, (£).

It is injective, since any nonzero vector takes on a nonzero value for some linear functional. It is then a
bijection since dim(V) = dim(V*) = dim(V**).
We just need to check commutativity of the square:

V &y

T
W v W **
This translates to
eVa() = (ev 0 §)(v) = (6¥* 0 ev)(v) = §**(ev,)
in W** for all v € V. But, for all £ € W#*|

V() (£) = £((v)) = ¢*(£)(v) = (evy 0 §*)(£) = ¢ (evy)(£),
so the equality holds.

In the homework, we will discuss some more examples from linear algebra. For example, for a pair of
vector spaces W < V, there are isomorphisms V =~ W @ V /W, but no natural isomorphism of the sort. On
the bright side, we will see that if V' has an inner product, then V and V* are naturally isomorphic in a

suitable sense.

2. R-MODULES
Lecture of September 8, 2021

2.0.1. Left vs right vs both. Recall that a left R-module is an abelian group M with an action map RxM — M
written (r,m) — rm such that r(sm) = (rs)m, along with two distributive properties and the condition that
1 acts as the identity. A right module over R is defined similarly; we usually write the action as (r,m) — mr,
and we have (mr)s = m(rs), along with distributive and identity properties. The point is that when we act
by a product rs € R, we can think of it as an iterated action; in a left module, the left factor acts last while

in a right module the right factor acts last.

Definition 2.1. If R is a ring, the opposite ring R°P is the ring with the same underlying set and same

addition, but with multiplication given by r -gor s = s g 7.

A right R-module is exactly the same thing as a left R°P-module (except our convention for writing the
action). In particular, if R is commutative, then a left R-module is exactly the same thing as a right R-
module, and we will just say “module” in this case. By default, in general, when we say module, we will

mean left R-module.

Example 2.2. Let R be a ring. The collection M, (R) of n x n matrices with entries in R forms a ring that
in general is not commutative. The set R™ of column vectors of length n with entries in R is naturally a
left M,,(R)-module. The collection of row vectors of length n with entries in R is naturally a right M, (R)-
module. We can also identify this latter action with a right module action on R™ by transposing any column

vector into a row vector, acting, then transposing back:

v-M=@'M)T = M.
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We can think of R-module structures in a different way. To prepare, let’s record a lemma.

Lemma 2.3. If M is an abelian group, then Endap(M) := Homap (M, M) forms a ring with pointwise
addition and composition as multiplication. More generally, if M is a left R-module, then Endr(M) :=

Homp_mod(M, M) forms a ring (with the aforementioned operations).

Proof. The first statement is a special case of the first, since an abelian group is the same thing as a Z-module,

so we'll prove the second. Let f, g € Endgr(M). Since

(f +9)rm +n) = f(rm +n) + g(rm +n) = rf(m) + f(n) + rg(m) + g(n) = r(f + g)(m) + (f + 9)(n)

we see that f + g € Endr(M). It’s easy to see that Endg (M) is an abelian group under +. Associativity of

multiplication is a special case of associativity of composition of functions. For distributive laws, we have
((f +9)h)(m) = (f + g)(h(m)) = f(h(m)) + g(h(m)) = (fh)(m) + (gh)(m)
(f(g + Rh))(m) = f(g(m) + h(m)) = f(g(m)) + f(h(m)) = (fg)(m) + (fh)(m);

for the latter distributive law, it was crucial that we are dealing with homomorphisms of abelian groups. We

also have the identity map on M as a mutliplicative identity. O
Optional Exercise 2.4. Show that there is a ring isomorphism Endg(R) =~ R°P.
Proposition 2.5. Let R be a ring and (M, +) an abelian group. There is a bijective correspondence

{R — module actions R x M — M (with given +)} <— {ring homomorphisms p: R — Endz(M)}

y p(r)(m) = r-m

rem = p(r)(m) B

Proof. We clearly have a bijection as long as the maps are well-defined.

Given an R-module action -, one distributive property translates to the condition that p(r) is Z-linear;
the identity condition means p(1g) is the identity function on M, which is the 1 element in Endyz(M); the
other distributive condition means p preserves addition; and the associativity condition means p preserves

multiplication. Thus, p is a ring homomorphism. And conversely. O

It turns out that we often have a left module structure and a right module structure on something in a

compatible way.

Definition 2.6. Let R and S be rings. An (R, S)-bimodule is an abelian group M equipped with a left

R-module structure and a right S-module structure that commute with each other:
(r-m)-s=r-(m-s) forallme M,re R,s € S.
Example 2.7. Here are some basic sources of bimodules:

(1) If R is a ring, then M = R is an (R, R)-bimodule in the obvious way. More generally, if ¢ : A > R
is a ring homomorphism, then R is an (R, A)-bimodule by

s-r-a=sro(a) for r,s € R,a € A,

equally well, R is an (A, R) or (A, A)-bimodule.
(2) If R is a commutative ring and M is any left module, then M is also a right module by the same

action, and M is an (R, R)-bimodule with these structures. ILe., starting with an action r - m, we
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set m - s to be s-m, and
(rem)-s=s-(r-m)=sr-m=rs-m=r-(s-m)=r-(m-s).
(3) Every left R-module is automatically an (R, Z)-bimodule in a unique way:

(r-m)-n=(-m)+---+@r-m)=r-(m+---+m)=r-(m-n) for n € Zso,

n times n times

and similarly for n < 0. Likewise, every right R-module is automatically a (Z, R)-bimodule.

Example 2.8. For a ring R, the set of column vectors of length n, R", is a (M, (R), R)-bimodule. However,
if we take the natural left action together with the right action v- M = M7Tv discussed above, we do not get
a bimodule structure, since (M -v) - N = N¥ Muv generally differs from M - (v- N) = MNTv.

Sometimes, when we want to keep track of various module and bimodule structures, we may write some-
thing like g Mg to indicate that M is an (R, S)-bimodule, or gM to indicate that M is a left R-module.

2.1. Kernels, images, and exact sequences. To every homomorphism ¢ : M — N in R — Mod, the
kernel ker(¢) € M and image im(¢) < N are in R — Mod, and the inclusion maps are homomorphisms of

R-modules. It is surprisingly convenient to keep track of and compare these data in terms of exact sequences.

Definition 2.9. A sequence of R-modules and R-module maps of the form

dit1 d; di—1
—’Mz—l’szl—’

(possible infinite, possibly not) is a chain complex, or just complex for short, if d; o d;11 = 0 for all 7 or,
equivalently, im(d; 1) € ker(d;) for all i.

A chain complex is exact at M; if im(d;11) = ker(d;); it is exact if it is exact at every module that has a
map in and a map out.

Lecture of September 10, 2021
Example 2.10. Let A be a b x a matrix and B be a ¢ x b matrix of real numbers. The sequence of maps

R® i) Rb i R¢

is a complex if and only if BA = 0; equivalently, the columns of A are in the solution space (nullspace) of

B. Tt is exact if and only if the columns of A span the solution space of B.

Remark 2.11. e A sequence of the form M % N — 0 is exact if and only if ¢ is surjective.
e A sequence of the form 0 — M 1, N is exact if and only if f is injective.
e A sequence of the form 0 — M 2, N — 0 is exact if and only if h is an isomorphism.
e A sequence of the form 0 — M — 0 is exact if and only if M = 0.
Definition 2.12. o A left exact sequence is an exact sequence of the form
i

0->M5MS5 M
This means i is injective and M’ = im(i) = ker(g).
e A right exact sequence is an exact sequence of the form
ML mE M o
This means p is onto and im(f) = ker(p), so, M" = M /ker(p) = M/im(f). We denote M/im(f) =

coker(f) and call it the cokernel of f. Thus in a right exact sequence as above, M"” = coker(f).
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e A short exact sequence (SES) is an exact sequence of the form
0—>M5M2EM -0

Note that in a short exact sequence M’ =~ ker(p) and M"” =~ coker(¢). In particular, M” =~ M/M’.

We also say that M is an extension of M’ and M” if it fits in a short exact sequence as above.

Example 2.13. Let A be a b x a matrix and B be a ¢ x b matrix of real numbers. The sequence of maps
0—R* A RV 2, Re

is a left exact sequence if and only if the columns of A form a basis for the null space of B.

2.1.1. Presentations. Recall that a set of elements B in a module M is a free basis if every element of M
can be written as a (finite) R-linear combination of elements of B in a unique way, and a module M is a
free module if it admits a free basis (which almost never is unique, by the way). As mentioned before, a free
module is isomorphic to a direct sum of copies of the ring (considered as a module), which we may write as
R™ or R® for some index I'; such a free module has as a standard basis {ex }xea consisting the elements
that have a 1 in the A coordinate and 0 in each of the others. Free modules are also characterized by a
universal property:

If F free with basis B, then for any module M, and any function f : B — M, there is a unique module

homomorphism ¢ : FF — M such that the diagram commutes:

N
f *

B

M

i.e., any homomorphism is uniquely and freely specified by its values on the basis.

Note that a set of elements {my} en & M generates M if and only if the homomorphism
RN —> M
e\ = m)

is surjective. The kernel of such a map consists of the set of A-tuples (ry) such that »;,_, 7amy = 0; this is

called the module of relations on the elements {m}.

Definition 2.14. A presentation of a module M consists of a set of elements {m,} that generates M, and

a set of relations on {my} that generates the whole module of relations on {my}.
We can express the data of a presentation in terms of a right exact sequence. Namely, if {my}ca is a
generating set of M, and {(71)~} er generates the module of relations on our generating set, then
ROU L ROA L M 0

is a right exact sequence, where the standard basis of R®* maps to {my} and the standard basis of R®"

maps to {(rx)~}. Conversely, a right exact sequence of the form
RO — RO . M — 0

is equivalent to the data of a presentation.
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2.1.2. Split exact sequences. Given modules M’ and M”, we have the “trivial” SES
OHM’LM/@M”LM”HO

where ¢ is the canonical inclusion and 7 is the canonical projection. The following result gives equivalent

conditions for when a SES is equivalent to a split one.

Theorem 2.15 (The splitting theorem). Given a SES of left R-modules
0->M 5 ME M —o,

the following are equivalent:

(1) There is a commutative diagram where each vertical arrow is an isomorphism

i p

0 M’ M M 0

C

L ™

00— M — MoM'" — M'" ——0.

2) There is an isomorphism 6 : M = M @& M” such that oi =1 and w060 = p.

3) The map i has a left inverse g in R — Mod.

4)
)

5

(
(
(4) The map p has a right inverse j in R — Mod.

(5) There are maps q : M — M' and j : M" — M such that qoi = idpyy, poj = idy», and
toqg+jop=idy.

If these equivalent conditions hold, we call the SES a split exact sequence.

Proof. (1) < (2) follows by definition of commutative diagram.

(1) = (5): The main idea is that there are obvious splitting maps for the bottom SES. Define 7’ to
be the canonical projection «’ : M’ @ M”" — M’ (m',m") — m’ and /" to be the inclusion " : M" —
M @& M",m" — (0,m"). Notice that 7" 0 ¢ = idpr and o’ =idpw and ion’ + " op = idpremr.

Lecture of September 13, 2021

We can use this to set ¢ = 7' 06 and j = 0~ o ¢ and check
qo']: :W’OGOiIW/OL:idM/

poj =polfto =mod =idyw

iog+jop =ionof+0 1o op=0"to(@oion’+: opofhl)od
=0"to(on +1om)of =07t oidpyrgur 06 = idy.

(5) = (3, 4) is clear.

(3) = (2): Given such a g, define 8(m) = (g(m),p(m)). It is clear f o i = ¢ and 7o 0 = p. We will now
show that 6 is injective: if §(m) = 0 then p(m) = 0 so m € im(4) therefore m = i(m’) for some m’ € M’. But
now 0 = g(m) = ¢q(i(m’)) = m’ so m’ = 0 and thus m = 0.

We next show that 0 is surjective: (m/,m”) e M’ @ M". Since p is onto, then there exists some u € M so
thar p(u) = m”. Let m =i(m’) + v —i(q(u)). Then

0(m) = (q(i(m”)) + q(u) — q(i(q(w))), p(i(m")) + p(u) — p(i(q(u))))
= (m’ + q(u) — q(u),m" +0—0) = (m',m").

Therefore 6 is bijective, so it is an isomorphism.
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The proof that (4) = (2) is similar, and omitted. O

We can also use splittings to show exactness.

Proposition 2.16. Given a complex of R-modules of the form
0—M 5 MM -0,
if there are maps ¢ : M — M’ and j : M" — M such that qoi = idyy, poj =idyw, and ioqg+ jop = idyy,

then the complex is exact, and hence split exact.

Proof. Since i has a left inverse, it is injective, and since p has a right inverse, it is surjective. To show

exactness in the middle, let m € ker(p). Then
m = (iog)(m) + (j o p)(m) = i(g(m)) € im(i). 0

Remark 2.17. The proof in the previous example actually shows that, for any ring R, a SES whose right-most

term is free is split exact.

Example 2.18. Here is an example of a non-split exact sequence: Take R to be any (commutative) integral

domain and r € R any non-zero, non-unit element. Then, using that R is a domain, the sequence
0—>R5R—-R/r—0

is exact (where the second map is the canonical surjection). But it cannot by split exact: If it were, then
we would have an isomorphism R =~ R@® R/r of modules and so in particular there would be an ideal I of R
isomorphic as a module to R/r. But then I = 0 and since R is a domain, this could only happen if I = 0,
which would mean 7 is a unit.
For example
02357 —>7/2-0

is an exact, but not split exact, sequence of Z-modules.

Example 2.19. Suppose R = k is a field. Then every short exact sequence of R-modules
0->-W-oV-SV/IW—-0

splits.

2.2. Homomorphisms of R-modules.

2.2.1. Structure of Homg(M, N). In general, we write Hompg (M, N) for the set Hompr_noa(M, N) of R-
module morphisms between two left R-modules M and N.

It turns out that the set of homomorphisms between two R-modules has additional structure.

Proposition 2.20. Let R be a ring, and M, N be two left R-modules.
(1) Hompg(M, N) is an abelian group by pointwise addition, i.e.,

(a+ B)(m) := a(m) + B(m) a, € Homg(M,N), me M.
2) If R is commutative, then Homg (M, N) is an R-module via the action
(2) If : ;
(ra)(m) := ra(m) = a(rm) a € Homgr(M,N), r€ R, me M.

(3) More generally,
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o if M is a (R, S)-bimodule, then Hompg(M, N) is a left S-module by the action (sa)(m) = a(ms);
e if N isa(R,T)-bimodule, then Homp(M, N) is a right T-module by the action (at)(m) = a(m)t;
o if M is a (R, S)-bimodule and N is a (R,T)-bimodule, then Hompg (M, N) is a (S,T)-bimodule

by the previous two actions.

Proof. (1) is easy to check, and similar to what we checked with module endomorphisms.
Let’s consider (2): The first thing to note is that ra(m) = a(rm) by linearity of «. Let us check that the

map ra defined this way is an R-module morphism:
(ra)(m+m') =ra(m+m') =r(a(m) + a(m)) = ra(m) + ra(m’) = ra(m) + ra(m’)
(ra)(sm) = ra(sm) = rsa(m) = sra(m) = s(ra(m));
note that commutativity of R is essential here.

The distributive rules are straightforward, and ((rs)a)(m) = rsa(m) = (r(sa))(m), so (rs)a = r(sa).

For (3), let’s just focus on the first case. To see s« is R-linear, addition is similar to above, and
(sa)(rm) = a(rms) = ra(ms) = r(sa)(m).
Let’s check the associativity property for the action: given s,s’ € S,
(ss)a(m) = a(mss’) = s'a(ms) = (s(s'a))(m).
The other axioms are straightforward. ]

The bonus module structures in case (3) are often useful, even for commutative rings. However, for many

statements below we will just focus on cases (1) and (2) above for clarity.

Example 2.21. Let K be a field. Since K is commutative, Homg (K, K[z]) and Homg (K|[z], K) are K-
vector spaces. The polynomial ring K[z] is a (K, K[z])-bimodule. This gives Homg (K, K[z]) a K[z]-module
structure by postmultiplication: e.g., if a is the K-linear map such that a(l) = f(x), and g(x) € K[xz],
then g(z)a is the map that sends 1 to f(z)g(x). Likewise, Homg (K[z], K) a K[z]-module structure by
premultiplication: e.g., if o is the K-linear map such that a(z?) = v; € K , then za is the map that sends

ZEi to Yi+1-
Lecture of September 15, 2021
2.2.2. Hom as functors.

Definition 2.22 (Covariant Hom). Let R be a ring and M be an R-module. There is a covariant functor
Hompg(M,—): R—Mod — Ab
that maps each module A to Hompg (M, A), and each morphism A 2, B to the homomorphism Hompg (M, f)
=: fy of “postcomposition by f”:
Homp(M, A) —* > Homp(M, B)
g——"——">1foyg
M5 A M4 AL B

If R is commutative, then we consider Homp (M, —) as a functor from R —Mod — R—Mod by the same

rule.
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There are some things to check to verify that this is a functor.

Proof. We need to check that f, is a valid morphism in Ab, or in R — Mod in the commutative case. Given
g,h € Homg(A, B), we have

felg +n)(m) = f((g + h)(m)) = f(g(m) + h(m)) = f(g(m)) + f(h(m)) = fi(g)(m) + fx(h)(m).
If R is commutative,
fe(rg)(m) = f(g(rm)) = rf(g(m)) = (rfx)(g)(m).
We also need to see that these satisfy the functor axioms. We have (14)x(g9) = laog = g, so (14)x is the
identity map on Hompg (M, A). Given A % B ER C, and h € Homg(M, A),

(f9)x(h) = fogoh= fol(g«(h)) = f*(g*(h)) = (fx o g«)(h). O

Remark 2.23. If M is an (R, S)-bimodule, then consider Hompg (M, —) as a functor from R—Mod — S—Mod

by the same rule.

Definition 2.24 (Contravariant Hom). Let R be a ring and M be an R-module. There is a contravariant
functor
Hompg(—, M) : R— Mod — Ab

that maps each module A to Hompg(A, M), and each morphism A 2, B to the homomorphism Hompg(f, M)
=: f* of “precomposition by f”:
Homp (M, B) —* > Homp(M, A)
g—————>ygof
BS M AL B
If R is commutative, then we consider Hompg(—, M) as a functor from R — Mod — R — Mod by the

same rule.

There are some things to check to verify that this is a functor.

Proof. We need to check that f* is a valid morphism in Ab, or in R —Mod in the commutative case. Given
g,h € Hompg(A, B), we have

[H(g+h)(m) = (g + h)(f(m)) = g(f(m)) + h(f(m)) = f*(g)(m) + f*(h)(m).
If R is commutative,
fH(rg)(m) = rg(f(m)) = (rf*(g))(m).
We also need to see that these satisfy the functor axioms. We have (14)*(g) = gola =g, so (14)* is the
identity map on Hompg(A, M). Given A ENY; ER C, and h € Homg(C, M),

(fg)*(h) = ho fog=f*(h)og=g"(f*(h)) = (g% o [*)(h). O

Remark 2.25. If M is an (R, S)-bimodule, then consider Hompg(M, —) as a functor from R — Mod —
S°P — Mod by the same rule.

2.2.3. Ezxamples of Hom.
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Example 2.26. Let R be a ring. Then, by the universal property of free modules, since {1} is a free basis

for R as an R-module, the map

Hompg(R, M) MM

¢ ——¢(1)
is a bijection. Moreover, this is an isomorphism of abelian groups in general, and of R-modules in the
commutative case:
Yula+p) = (a+B)(1) = a(l) + 5(1) = Pu(a) + Yu(B)
dnr(ra) = (ra)(1) = ra(1) = 1 (@),
Even better, in the commutative case, the collection of isomorphisms ,; form a natural isomorphism

¥ : Hompg(R,—) = lr_moa. For this, we need to check that, given 8 : M — N, the following diagram

commutes:
8
Homp(R, M) ——> Hompg(R, N)

ld}M \LTZJN
B

M N.
Along either path, we get o — 5(«(1)), so this is indeed the case.

Lecture of September 17, 2021

Example 2.27. Similarly, if F = R®? is a free module, then Homp(R®*, M) =~ MO where M*A =
[Lica M by the map that sends a morphism to its tuple of values on the standard basis: as abelian groups,
and as R-modules in the commutative case.

We can interpret the right-hand side as the values of a functor: set F(M) = M** and for f : M — N,
set F'(f) to be the map given by f on each coordinate. Interpreted like so, the isomorphisms again form a

natural isomorphism.

Proposition 2.28. Let { My} ea be a family of R-modules, and N be an R-module. There are isomorphisms

of abelian groups
Homp(@ My, N) =~ H Hompg (M, N)

AeA AeA
Homp(N, [ | My) = | [ Homg (N, My)
AEA AEA

Moreover, these are isomorphisms of R-modules if R is commutative.

Proof. Since @, M) is the coproduct of {My}xea in R —Mod, we have a bijection for every R-module N

HomR(@AeA M)\,N) . H}\EA HOI’IIR(M)\,N)

¢i ((bOL,\).

We only have to observe that these maps preserve the abelian group and/or R-module structures. Similarly,

since [ [,cp M) is the product of {M)}sea in R — Mod, we have a bijection for every R-module N

HOIHR(N,H/\EA MA) e H)\EA HOHlR(N, M)\)

(b} (7‘(')\0(;5),

and one verifies the additivity / linearity of this map. ]
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Example 2.29. As an important special case of the previous example, if R is commutative, and R®" and
RO are free modules, then every R-linear homomorphism o : R®T — R®A is given by left multiplication

by the (possibly infinite) A x I matrix where the v column is the A-tuple (c(e))a.

Optional Exercise 2.30. Show that when R is not necessarily commutative, if we give Hompg(R®*, M) the
R-module structure via the (R, R)-bimodule structure on R® | the isomorphisms HomR(ReaA7 M) = M*A

are natural isomorphisms of R-modules.

Example 2.31. Let R be a commutative ring, and consider the module R/I for some ideal I. For every
module M, there is an isomorphism Hompg(R/I, M) = anny,(I), where annpy(I) is the set of elements m € M
such that I'm = 0.

Indeed, every R-module homomorphism from R/T is determined by the image of 1, so the map Homg(R/I, M) —
M of evaluation at 1 is injective. The image consists of the set of elements m € M for which the map r — rm
is well-defined; this is the collection of elements that satisfy I'm = 0.

Again, we can think of the right hand side as a functor F' : R — Mod — R — Mod where on objects
F(M) = anny(I), and on morphisms M %> N maps to the restriction of  to annys(I). This is a natural

isomorphism again.
Example 2.32. For a field K, the functor Homg (—, K) is exactly the “vector space dual” functor (—)*.
2.3. Exact functors and left exactness of Hom.
Definition 2.33. Let R, S be rings. A covariant functor F' : R—Mod — S—Mod is additive if the function
Hompg(M, N) —— Homg(F (M), F(N))
fr F(f)

is a homomorphism of abelian groups. Likewise, a contravariant functor G : R — Mod — S — Mod is

additive if the function
Homp(M,N) —— Homg(F(N), F(M))

f F(f)

is a homomorphism of abelian groups.

Additive functors preserve a number of basic properties, e.g., zero morphisms go to zero morphisms, and
the zero module maps to the zero module (since it’s characterized by the fact that its identity map is its

7ero map).
Optional Exercise 2.34. The covariant and contravariant Hom functors are additive functors.

Definition 2.35. Let F': R — Mod — S — Mod be an additive covariant functor.
e F'is right exact if whenever
M i) M N M" =0
is exact, then so is

F(p) F(MI/) -0

F(M') =% F(M)
(Recall F(0) = 0 since F' is additive.)

o F'is left exact if whenever
0—M 5 MM
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is exact, then so is
0 M’y 29 pory E2 por.

e Fis exact if it is both left and right exact.

Remark 2.36. An exact functor takes any SES to a SES.

Definition 2.37. Let G : R — Mod — S — Mod be an additive contravariant functor.

e (G is right exact if whenever
0—M 5 M2 M

is exact, then so is

G(p)

a2, gy €9,

G(M") — 0.
e (G is left exact if whenever
M5 ME M -0

is exact, then so is
G(i)

0 - a") E2, a(an) G(M).

e (G is exact if it is additive and both left and right exact.

Optional Exercise 2.38. The definitions above all stay unchanged if for each condition we start with

a short exact sequence. For example, a covariant additive functor F' is left exact if for every short exact

sequence

0 Al.p*. ¢ 0
of R-modules,

0 — () —2 F(B) — F(C)

is exact.

Remark 2.39. If F,G : R— Mod — S — Mod are naturally isomorphic additive functors, then F' is exact if

and only if G is exact. Indeed, given a short exact sequence
0—>M5M2EM -0
we obtain a commutative diagram

N @ F(p) »

ly ig ieﬁ
. G &) )
0 ——GM') —GM) — GM") ——=0
where 6,0, 6” isomorphisms. Then if the top row is exact, G(i) = 0F(i)(6') 7! is injective, G(p) = 6" F(p)6~—*
is surjective, and
rekerG(p) = ker(0"F(p)0~') — 07 '(2) eker F(p) < 0 '(z) e im F(i) — zeim(0F(i)(0")~") = im G (7).
Similarly for “left exact” or “right exact”.

Theorem 2.40. Let M be an R-module.

(1) The functor Homp (M, —) is left exact.
(2) The functor Hompg(—, M) is left exact.
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Lecture of September 20, 2021

Proof.

(1) Let

0-A5 B2 C

be exact. We need to show that

0 — Homp(M, A) 25 Homp (M, B) 2% Hompg (M, C)

is exact.

e i, is injective: Let f € Hompg(M,A) be nonzero, so f(m) # 0 for some m € M. Then

(2) Let

ix(f)(m) =i(f(m)) # 0 since 7 is injective, so i4x(f) € Hompg(M, B) is nonzero.

im(iy) € ker(py): Let g € Homg(M, B) be in the image of iy, so we can write g = i4(f) for
some f € Hompg(M, A). We have p,(ix(f)) =poio f=0.

ker(py) € im(i4): Let g € Hompr (M, B) be in the kernel of py, so pog = 0. Then, for every
m e M, g(m) € ker(p) = im(i). As i is injective, ¢ induces an isomorphism from ¢ to the image
of Ain B, so there is an R-module homomorphism ¢ : im(A4) — A such that i o q = 1)
Thus, we obtain an R-module map f :=qog: M — A such that i, (f) =iogog=g.

AL B2 oS0

be exact. We need to show that

* .
0 — Homp(C, M) 25 Homp (B, M) > Homp(A, M)

is exact.

e p* is injective: Let f € Hompg(C, M) be nonzero, so f(c) # 0 for some m € M. Then, since p is

surjective, there is some b € B such that p(b) = ¢, and hence p*(f)(b) = f(p(b)) = f(c) # 0, so
p*(f) # 0.

im(p*) € ker(i*): Let g € Hompg(B, M) be in the image of py, so we can write g = p*(f) for
some f € Hompg(M,C). We have i*(p*(f)) = fopoi=0.

ker(i*) < im(p*): Let g € Homp (B, M) be in the kernel of i*, so goi = 0. Thus, as g[im@) = 0,
we can factor ¢ = gom, where 7 : B — B/im(i) = B/ker(p) is the quotient map, and
g : B/im(i) — M. Note that, since p is surjective, writing p = p o w, the map p : B/im(i) =
B/ker(p) — C is an isomorphism, so there is a map j : C — B/ker(p) such that j o p is the
identity on B/im(i), so jop=jop=om =m. Set f = goj. We then have p*(f) =gojop=
gom =g. Thus g € im(p*). O

Example 2.41. Neither Hom functor is exact. For example, consider the short exact sequence

0727 —7/27 — 0.

If we apply Homy(Z/2Z, —) to this sequence, we get

0—0—0—Z/2Z — 0.

This is exact up until Z/2Z (which agrees with the left exactness), but not at Z/2Z. Likewise, apply
Homy(—,Z/27Z) to get

0 7/22 5 7/22. % 7.)27. — 0.

This is again exact up to the last Z/2Z, but not there.
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We can use left exactness to compute various Hom modules.

Example 2.42. Let R be commutative, and M be a finitely presented R-module with presentation
R™ A5 R — M — 0.
Then Homp (M, R) sits in a left exact sequence
0 — Hom(M, R) — Homp(R", R) 22228, fomp(R™, R).

We have Homp(R", R) is free with free basis given by the coordinate functions {e¥,... e*}; likewise for
Homp(R™, R) with basis {eF,... &} (we will write bars for basis elements in R™). In these bases, to
compute the jth column of the matrix, we have that e;‘ maps to e;‘A, and to compute e}‘A in terms of the
given basis (to find the entry in the ith row), we observe (efA)(€;) is Aji, so the map Homp(A-, R) is given
by AT.. We get a left exact sequence

0 — Hom(M,R) — R* 275 g™,

so Hom(M, R) = ker(AT).

2.4. Tensor products.
Lecture of September 22, 2021

2.4.1. Definition of tensor product.

Definition 2.43. For a ring R, a right R-module M, a left R-module N, and an abelian group A, a function
b:MxN—>A

is called R-balanced biadditive if the following conditions hold:
(1) b(m +m',n) = b(m,n) + b(m',n) for all m,m’ € M, ne N,
(2) b(m,n +n') = b(m,n) + b(m,n’) for all me M, n,n’ € N, and
(3) b(mr,n) = b(m,rn) for all me M, n,e N, and r € R.
Assume R is commutative and A is an R-module (not just an abelian group). Such a pairing b is called

R-bilinear if we also have

(4) b(mr,n) = b(m,rn) = rb(m,n) for all me M, n,e N, and r € R.

Conditions (1) and (2) alone are the biadditive part, and condition (3) is the balancedness. Condition (4)
says that the biadditive map b is an R-linear function in either argument if we fix the other one.

Example 2.44. (1) If R is any ring, the map f: Rx R — R, f(r,s) = rs is R-balanced biadditive, and
bilinear if R is commutative.
(2) For R commutative, an ideal I, and a left module M, the map f : (R/T)x M — M/IM, f(T,m) = Tm
is R-bilinear.
(3) For K a field, f: K™ x K™ — K given by the usual dot product is K-bilinear. Recall that we can
view K™ as a right M, (K) module via v- A = ATv and as a left M,,(K) module via A -v = Av.
With these structures, f is M, (K)-balanced biadditive. The balanced part is the least obvious one:

flw-Aw) = (ATv) - w=vTAw =v - (Aw) = f(v, A-w).
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We now define tensor products using a universal property.

Definition 2.45. Let R be a (not necessarily commutative) ring, let M be a right R-module, let N be a
left R-module.

An abelian group M ®g N together with an R-balanced biadditive map h: M x N — M ®g N is called a
tensor product of M and N if it has the following universal property: for any abelian group A and R-balanced
biadditive map b: M x N — A, there exists a unique abelian group homomorphism a : M ® g N — A such
that b = aoh.

M x N A

Lemma 2.46. If (X,h), (Y,k) are two tensor products for M and N, then there is a unique isomorphism
of abelian groups a: X —'Y such that k = o h.

Proof. The following diagram is a rough guide for the argument:

x-2-v-2.x

M x N

Applying the universal property of (X, h) with the R-balanced biadditive map k, we get a unique abelian
group homomorphism « above that makes its triangle commute; in particular, the uniqueness statement is
clear. Likewise, applying the universal property of (Y, k) with h, we get an abelian group homomorphism 3
that makes its triangle commute. Then, § o « is an abelian group homomorphism such that (8o «)oh = h,
and the identity map is another. By the uniqueness property of (X,h), 8 o « is the identity. A similar

argument shows that o o § is the identity too, so « is an isomorphism. O

Theorem 2.47. Let R be a (not necessarily commutative) ring, let M be a right R-module, let N be a left
R-module. Then a tensor product M ®gr N exists and is given by defining an abelian group M ®r N by

generators and relations as follows:

e The generators are all expressions of the form m ®@n forme M andne N.
o The relations are
(1) (m+m)@n=mn+m'@n for allm,m' e M andne N,
2) m®m+n)=mn+men’ for allme M and n,n' € N, and
(3) (mr)®n=m® (rn) for alme M, ne N, and r € R.
Equivalently, M ®gr N is the quotient

@(nz,n)EZMXN L - (m ® TL)
Y)

where
Y={m+m)@n)—mn-—m'@nfu{m@n+n)-—men—-—men}u{(mr)®@n—m®e (rn)}.

Further we define h : M x N — M Qg N to be the function h(m,n) = m Qn.
Then the pair (M ®gr N, h) defined above is the tensor product of M and N.
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Proof. Tt is immediate from the construction that h is R-balanced biadditive. Given a biadditive map
b: M x N — A, define b : ®(m,n)eMxN Z-(m®mn) — A to be the unique homomorphism of abelian groups

sending the basis element m ® n to b(m,n). Since b is biadditive, we have
b(m+m)®n—m@n—m' @n) = b(m+m',n) —b(m,n) —b(m',n) =0,
bm® (n+n')—m@n—m®n) = b(m,n+n') —b(m,n) —b(m,n') =0,

and

b((mr)®n —m® (rn)) = b(mr,n) — b(m,rn) = 0.
Thus b(< Y >) = 0 and so it induces a homomorphism of abelian groups
a: M ®R N — A.

It is evident from the construction that oo h = b. Since the image of B generates M ®4 N as an abelian
group, « is the unique homomorphism satisfying this equation.

If 8 is any abelian group homomorphism with § o h = b, we have f(m ® n) = B(h(m,n)) = b(m,n) =
a(m ®n). Since the elements of the form m ® n generate M ®z N as an abelian group, we must have
8= a. |

Note that the map induced by a biadditive map b sends m ® n — b(m,n).

Remark 2.48. In this explicit construction, every element is a sum of simple tensors (elements of the form

m ®n) but in general, not every element is itself a simple tensor.

Remark 2.49. While the construction of tensor products may feel easier to work with at first, it is important
to keep in mind that it is hard to tell when two combinations of simple tensors are equal. In general, when
we want to define a map from a tensor product, it is better to use the universal property, since we don’t
have to worry about well-definedness. However, to define a map into a tensor product, using the concrete

description is often easier.

Optional Exercise 2.50. In M ®r N we have Oy ® n = Opgnv = m @ Oy for each me M,ne N.
Lecture of September 24, 2021

Example 2.51. I claim Z/mZ ®z Z/nZ ~ 7./gZ where g = gcd(m,n).

Proof. Define a function
b:Z/mZ x Z)nZ — Z/gZ

by b(i,j) = ij. It is not hard to see that b is well-defined (exercise!) and Z-balanced biadditive. By the

universal property, it therefore induces a homomorphism of abelian groups
a:Z/mZ Qg 2/n7 — 7/9Z

such that a(i ® j) = ij.
Now define a homomorphism ¢ : Z — Z/mZ ®z Z/nZ by sending 1 to 1 ® 1. Notice that

P9)=9-1®1) =g®1=1®yg.
Recall that g = im + jn for some ¢, j € Z. So

gR1=mR®1+1Q®M=0®01+1®0=0+0=0.
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So, ¢ induces a homomorphism
B=¢:7/97 — Z/mZ Rz 7/nZ
with (i) =i ®1=1®]1.
We have a(3(i)) = a(i® 1) =i so that a o f = id
A typical element of Z/mZ ® Z/nZ has the form Y, i; ® j;. We have

aY i ®G) =) i i ®1 =Y ®
t t [
and so foa =id. |
2.4.2. Module structure of tensor product.

Proposition 2.52. (1) If R is commutative, and M and N are R-modules, then
(a) M ®r N is an R-module via the action

T'(Zmi@)ni)zzrmz ®n; = Zmz (rn;).

(b) The natural map h: M x N > M ®r N is R-bilinear.
(¢) For any R-module A and R-bilinear map b : M x N — A, there is a unique R-module homo-
morphism o : M @z N — A such that b=« o h.
(2) If M is an (S, R)-bimodule, and N is an R-module, then consider M x N as an S-module by the
action s(m,n) = (sm,n). We have
(a) M ®g N is an S-module via the action
s - (Z m; ®n;) = Z(smi) ® n;.
(b) The natural map h: M x N — M ®g N is S-linear.
(¢) For any S-module A and S-linear R-balanced biadditive map b: M x N — A, there is a unique
S-module homomorphism o : M @zr N — A such that b=« o h.
(3) If M is an R-module, and N is an (R, S)-bimodule, then consider M x N as a right S-module by
the action (m,n)s = (m,ns). We have
(a) M ®r N s a right S-module via the action

s - (Zmi®ni) :Zmi®(ms)

(b) The natural map h: M x N - M ®gr N is right S-linear.
(¢) For any right S-module A and right S-linear R-balanced biadditive map b : M x N — A, there
is a unique rTight S-module homomorphism o : M @ g N — A such that b= a o h.

Proof. Let’s consider case (2).

For (a), the first thing we need to show that the action of an element s € S on M ®g N is a well-defined
function. To do this, consider the map pus : M x N — A given by the rule pus(m,n) = sm ® n. We claim
that this is R-balanced biadditive. Indeed,

ps(m+m';n) = (s(m+m))@n=(sm+sm')@n=sm@n+sm @n = ps(m,n) + us(m',n),
similarly ps(m,n +n') = ps(m,n) + ps(m,n’), and

ps(mr,n) = smr®n = sm@rn = pg(m,rn).
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Thus, we obtain a well-defined map M ® g N — M ®g N that sends m®n — sm&@mn, and the given formula
follows. It is easy to check that this action satisfies the module axioms.

For (b), we already know this map is additive. To see that it is S-linear, we compute
h(s(m,n)) = h(sm,n) = sm®@n = s(m@n) = sh(m,n).

For (c), we know that since f is R-balanced biadditive map there exists a unique additive map « such
that b = o o h. We just need to show that this map is S-linear:
a(s(z m; ®mn;)) = a(Z sm; @n;) = Z alsm; ®@n;) = Z a(h(smi,n;))

= Zb(smi,ni) = S(Z b(mg,n;)) = S(Z alm; ®n;)) = s(a(Z m; @n;)).

Case (3) is quite analogous. Case (1) is a special case of (2): we consider M as an (R, R)-bimodule. The
extra equality in (a) follows from rm ® n = mr ® n = m ® rn. For (b) and (c), we note that R-bilinear is

equivalent to R-balanced biadditive plus R-linear with respect to the module structure given in case (2). O
We can take tensor products of maps as well.

Lemma 2.53. Let f : M — M’ be a homomorphism of right R-modules and g : N — N’ be a homomorphism
of left R-modules. There exists a unique homomorphism of abelian groups f ® g : M Qg N — M’ Qr N’
such that

(f®g)(m®n) = f(m)®g(n)
for allme M and ne N.

If R is commutative, this map is R-linear.

If M and M’ are (S, R)-bimodules, and f is also S-linear, then this map is an S-module homomorphism.
Proof. The function
M x N —— M ®gr N’
(m,n) —— f(m) ® g(n)
is R-balanced biadditive (and bilinear when R is commutative), so the universal property of tensor products

gives the desired R-module homomorphism, which is unique. In the bimodule case, S-linearity follows from

observing that the function displayed above is S-linear on the first argument. (]

Definition 2.54. Let R be a ring and M be a right R-module. There is an additive covariant functor
M ®g —: R—Mod — Ab

that on objects sends N to M ®pr N, and on morphisms sends f : N — N’ to the map 1/ ® f.
If R is commutative, we can consider M ®g — as a functor from R — Mod — R — Mod.
If M is a (S, R)-bimodule, we can consider M ®g — as a functor from R — Mod — S — Mod.

Proof. Well definedness of the maps comes from the lemma. Given A % B ER C, we have
Ay @ (fg))(m®a) =m® (fg)(a) = (1n @ f)(1n ® g)(mQa),

so (1 ® (fg)) — (1 ® f)(1ar ® g) vanishes on a generating set for M ®g A, and hence is zero. Similarly
for the identity property.
For additivity, we observe that

(I ®(f +9)(m®@n) =m®(f+9)(n) =m® f(n) + m@g(n) = (Iln ® f) + (1m ® 9))(m ®n),
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and since simple tensors generate, we have 1y @ (f +¢9) =1y @ f+ 1y ®g. O

Remark 2.55. We can equally well discuss —®g N : R°P — Mod — Ab (or other targets when we have more

structure akin to above).

Lecture of September 27, 2021

The key to unlocking more examples of tensor will be to prove that it is right exact.
Theorem 2.56. Let M be a right R-module. The functor M ®r —: R — Mod — Ab is right exact.

Proof. Let
ALBLC S0
be exact. We need to show that
M®r A2 M@r B %% M@pC —0
is exact.

e 1y ®p is surjective: Given ), m; ® ¢; € M ®g C, we can find b; € B such that p(b;) = ¢; for all 4
then (1p ®p) (D, mi ®b;) = >, m @ c;.

e im(1y ®1%) S ker(1p ® p): We have (1p ®p)(1yy ®) = 1y ® (pi) =13 ®0 = 0.

o ker(ly®p) € im(1y ®1i): From above, the map 1, ® p induces a surjection « : (M ®g B)/im(1y ®
i) > M ®p C that maps m ® b — m ® p(b). We will construct an inverse for this map.

Consider the map
p:MxC—— (M®gB)/im(1y ®1)

(m,c0) ———> m®b for some b with p(b) = c.
To see this is well-defined, note that if p(b) = p(b') = ¢, then p(b— ) =0, so b — ¥ = i(a) for some
a€ A, so

(m®b) — (mVY)=m®(b-V)=m®i(a) € im(ly ®1).

We then check p is R-balanced biadditive:

pm+m'jc)=(m+m)@b=mb+m' @b = pu(m,c) + u(m',c).
If p(b) = cand p(t/) = ¢, then p(b+ V') =c+ ¢, so

plmye+c)=m@b+b)=mb+meV = p(m,c)+ plm, ),
and, if p(b) = ¢, then p(rb) = r¢, so
wimr,c) =mr®b=m®rb= u(m,rc).

Thus, g induces an additive homomorphism 8 : M ®r C — (M ®g B)/im(1) ®i). By construction,
we have foa(m®b) = m®Yb for all simple tensors, and thus this is the identity map since simple
tensors generate.

Since « has a left inverse, it follows that « is injective, so im(1y; ® ) is equal to the kernel of
Im ®p. O

2.4.3. Ezxamples of tensors.
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Proposition 2.57. Let R be a ring. There is a natural isomorphism between RQr— and the identity functor
on R — Mod. In particular, for every R-module M, there is an R-module isomorphism R®gr M =~ M for
every (left) R-module M.

Proof. Note that R is an (R, R)-bimodule, so R®g M is again an R-module. Now,
RxM——M
(rym) ——rm

is biadditive (by distributive laws), R-balanced (by associativity module axiom), and R-linear, so it induces

a homomorphism of R-modules R ®pr M M M. By construction, ¢, is surjective. Moreover, the map

M- Rep M
mr———=1®m

is a homomorphism of R-modules, since
fua+d)=1®(@+b) =1®a+1®0b

fu(ra) =1® (ra) =r®a=r(1®a) = rfr(a).
For every m € M, oy fu(m) = (1 ® m) = Im = m, and for every simple tensor, fyronm(r ® m) =
fau(rm) = 1® (rm) = r ® m. This shows that s is an isomorphism.
Finally, given any f € Homg(M, N), since f is R-linear we conclude that the diagram

ROrM — > M
1®f f
R®N N
commutes, as r ® m — rf(m) either way, so our isomorphism is natural. ([l

Proposition 2.58. Let R be a ring, {Mx}rea be a family of right R-modules, N be a left R-module. There
is an isomorphism

0 (@%) ®r N = @ (My®r N)

AEA AEA
that sends (m;)ier @ n to (m; @ n)ier. This is an isomorphism of abelian groups in general, of R-modules
in the commutative case, of S-modules if each M) is an (S, R)-bimodule, and of right S-modules if N is an
(R, S)-bimodule.

Proof. Define

b: (@M) XN—’(‘B(M)\@RN)

AeA AeA
by
b((ma),n) = (mx®mn).
The map b is R-balanced biadditive in general, and linear with respect to the specified action in each of the

other cases. Thus, it induces a morphism ¢ of the specified type.
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To show ¢ is an isomorphism, we construct an inverse. For each ¢ we define a pairing

b)\tM/\XN—> ((—DM)\> ®RN

AeA

by by(z,n) = tx(x) @n, where 1) : My — (P, M) is the canonical inclusion map. Then by is R-balanced
biadditive in general, and linear with respect to the specified action in each of the other cases and hence
induces a morphism ¢; : Mx g N — (@, Mx) ®r N.

By the universal mapping property for coproducts the maps 1, A € A determine a morphism
@D:@(M)\@RN)H @M)\ ®RN.
AeA AeA
It is easy to see that both 1o ¢ and ¢ o1 are the identity maps by observing that they act as the identity
on simple tensors. O

Remark 2.59. The same property holds on the right side of the tensor.

Example 2.60. If F = R®A is a free module, and M is any R-module, then R®* @z M =~ M®A | and this

isomorphism is natural in M.

Example 2.61. As a special case, R®" ®p R®" is a free module on the basis {e, ®ey | (7,A) € T x A}.
Even more concretely, if K is a field, K" ®x K™ =~ K™*" is isomorphic to the collection of m x n matrices,

by the isomorphism that takes e; ® e; to the matrix that has a 1 in the 4, j entry and zeroes elsewhere. This

morphism then sends (a1, ..., am) ® (b1,...,by,) to [a;b;], the outer product of these matrices. Observe that

the simple tensors correspond exactly to the matrices of rank at most one.

Remark 2.62. Let R be aring, M be a right R-module, and N be a left R-module. We can compute M ®g N
by taking a presentation of M
RO 2 ROA L M 0

and tensoring with N to get
NOU , N®A L, M ®g N — 0,

so M ®g N is isomorphic to the cokernel of the map N®' — N®A induced by ¢. We can also compute
M ®g N by taking a presentation of M

RO= % B2 L, N 0
and tensoring with M to get
M®E - M® 5 M@z N — 0,
so M ®g N is isomorphic to the cokernel of the map M®" — MO induced by 1.

Example 2.63. Let R be a commutative ring, I an ideal, and M a module. There is an isomorphism
R/I®p M = M/IM. Indeed, if I = ({f,}), then we have a presentation

SO

mer W RiT@r M -0

is exact. The image of the first map is just M, so we obtain the isomorphism.

Lecture of September 29, 2021
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Tensor is not exact in general.
Example 2.64. Consider the short exact sequence
0237 —>7/27 -0
and apply — ®z Z/27. We obtain the complex

0-7/22% 7/22 5 7./27 — 0,

which is exact at the last two Z/2Z’s but not at the first one.
The following properties are also useful properties for computing tensors.

Optional Exercise 2.65. Let R be commutative and M and N be R-modules. There is an isomorphism
M R®r N=>~N Rr M.

Optional Exercise 2.66. Let R and S be rings. Let L be a right R-modules; M be an (R, .S)-bimodule,
and N be an S-module. Then (L®r M)®s N =~ L ®r (M ®s N).

An important case of the tensor functor is tensoring with a ring.

Definition 2.67. Let ¢ : R — S be a ring homomorphism. The functor
S®r—: R—Mod — S —Mod

is called the functor of extension of scalars from R to S.

Observe that S is an (S, R)-bimodule, so this functor does indeed return S-modules. By the discussion

above, extension of scalars turns an R-module into the S-module with the same presentation.

2.4.4. Hom tensor adjointess. The Hom and tensor functors are closely related.

Theorem 2.68. Let R, S be rings, and A be an (R, S)-bimodule, B be an S-module, and C be and R-module.

There is an isomorphism

Homp(A ®s B,C) =~ Homg(B,Hompg(A4, C)).

Moreover, these isomorphisms are natural in each argument.

Proof. Take
n: Homp(A ®g B,C) — Homg(B,Homg(A,C))

by the rule 1(¢)(b)(a) = ¢(a ® b). We check
The map 7(¢)(b) that sends a — ¢(a ®b) for fixed b is R-linear: addition is fine and

n(#)(b)(ra) = ¢(ra®b) = ¢(r(a ®b)) = ré(a®@b) = rn(¢)(b)(a)-
The map 7(¢) that sends b — ¢(— ® b) is S-linear: addition is fine and
n(¢)(sb)(a) = p(a® sb) = d(as ®b) = (sn(¢)(b))(a)-

Now take
u : Homg (B, Hompg (A4, C)) — Homp(A®s B,C)
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by the rule pu(¢)(a ® b) = 1(b)(a). We need to check that p(1)) is well-defined and R-linear: to do this we
check that the map A x B — C given by (a,b) — ¥(b)(a) is S-balanced biadditive and R-linear on the left
factor (omitted).

We then see that p and 1 are mutually inverse:
(on)(@)(a®b) =n(¢)(b)(a) = d(a®D)
(o p)(@)(b)(a) = u(¥)(a®b) = (b)(a).

What do the naturality claims mean? First, this is a natural isomorphism as a functor of A:

Homp(— ®s B,C) = Homg(B,Hompg(—,C)),

and likewise for B and C. We won’t write these out, but they are straghtforward. |
Hom-tensor adjunction has a nice consequence in terms of extension of scalars.

Definition 2.69. Let ¢ : R — S. There is a functor
Resy : S —Mod — R — Mod

called the functor of restriction of scalars that maps an S-module M to the R-module that is the same

abelian group as M with action r - m = ¢(r)m, and is the identity mapping on morphisms.

When ¢ is injective, this restriction is literally just restricting the action. Evidently, this functor is exact,

as it does nothing on the level of abelian groups, and exactness can be characterized there.

Proposition 2.70. Let ¢ : R — S be a ring homomorphism. Let M be an R-module and N be an S-module.
There is an isomorphism

Homp (M, Resg(N)) = Homg(S ®r M, N).

These isomorphisms are natural in M and in N.

Proof. Consider S as an (S, R)-bimodule, where the right action is through ¢. With this structure, Homg (.S, N) =~
Resy(N). Thus, this follows from Hom-tensor adjunction. O

Lecture of October 1, 2021

2.4.5. Multilinear maps. Let R be a commutative ring. Associativity of tensor implies that for any finite set
of modules M1, ..., M,, we can tensor them all together and it doesn’t matter how we group them.
Observe that for any R-modules M and N, if M is generated by mq,...,m, and N is generated by
ni,...,Ny, then M ®p N is generated by {m; ®n; | i=1,...,a;j =1,...,b}: we can write any element as
a sum of simple tensors, and write each simple tensor m ®@n = (3, rim;) ® (2 8;b;) = 25, ; 7is;(m; @ nj).
Likewise, by a straightforward induction on n, in My ®g - -+ ®r M,, every element is a sum of simple

tensors, and an R-linear combination of simple tensors of generators of the modules M;.

Definition 2.71. Let R be a commutative ring, and M,..., M,, N be R-modules. We say that a map

Y My x -+ x M, — N is multilinear or R-multilinear if it is R-linear in each argument: i.e., for each i,
W(my,...,rmg +mh, oo my) =rY(m, . my, e my) (M, . ml L my).

Note that when n = 2, this is just the notion of R-bilinear.



36 MATH 901 LECTURE NOTES, FALL 2021

Proposition 2.72. There is a multilinear map
h:Myx---x M, —> M Qg QrM,

that satisfies the following universal property: for any multilinear map 1 : My x -+ x M, — N, there is an
R-linear map o : M1 ®p --- Qr M,, > N such that 1 = a o h.

Proof. For the map h, we take h(mq,...,my) = mi1 ®---®m,. Then, if such a map « exists, we must have
a(my ® - ®my) = Y(m,...,my); since simple tensors generate, « is unique if it exists. For existence,
we can proceed by induction on n. For any fixed m, € M,, the map 1 is a multilinear map on the first
n — 1 arguments, so by the inductive hypothesis, we obtain an R-linear map M; ®p --- ®g M1 — N
that sends m; ® --- ® mp_1 — W(my,...,my). Since we have such a map for each m,, we get a map
My ®pr -+ ®r M,_1 x M, — N that we can check to be bilinear, and this induces the desired map. O

2.4.6. Tensor products of rings.

Proposition 2.73. Let A be a commutative ring, and R and S be commutative A-algebras. Then the tensor
product R®a S is a commutative ring, where the multiplication on simple tensors is given by (r®s)-(r'®s’) =

rr’ ® ss’.

Proof. We need to show that there is a well-defined map that corresponds to this formula for multiplication.
Note that the map
RxSxRxS——R®xsS
(rys,r',8') ———= 1’ ® ss’

is multilinear over A. Thus, we get a well defined map
RRuUSQI1RR®4S —— R®4 S
rR®sr' s ——— 11’ @ss’.

Thinking of R®4 S®4 R®4 S = (R®4 S)®a (R®4 S) and precomposing with the natural map from

product to tensor product, we get a well defined A-bilinear map
(R@A S) X (R@A S) ——= R®a S
(r@s,r®s)r——rr’ ®ss.

The bilinearity of this map translates into the distributive laws. Commutativity and associativity of mul-
tiplication can be checked on simple tensors, since these generate, and for each these follow from the same

properties in R and S. 1 ® 1 is an evident multiplicative identity. ([l

Optional Exercise 2.74. If R and S are commutative rings, then R ®y, S is the coproduct of R and S in
the category of commutative rings. Moreover, if R and S are commutative A-algebras, then R®4 S is the

coproduct of R and S in the category of commutative A-algebras.

Proposition 2.75. If A is a commutative ring, and R is an A-algebra, then A[xy,...,2,]®aR =~ R[x1,...,x,]

as rings.

Proof. Consider the map A[z1,...,z,] X R — R[x1,...,2,] given by (f(x),r) — rf(x). This is A-bilinear,
so we get an induced map on the tensor product. It is evidently additive, and also clearly multiplicative, so

it is a ring homomorphism.
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Consider the structure of A[xy,...,2,] as an A-module. Every element is an A-linear combination of

monomials in a unique way, so the monomials form a free basis. Similarly for R[z1,...,z,]. Thus, we have
Alzy,...,2,]®a R = (@Amo‘) Q4 R = @Rxa = R[x1,...,2n],

where the middle isomorphism is the extension of scalars isomorphism that sends z® ® 1 to z®, so this

isomorphism is the same map considered above; hence our map is an isomorphism. (|
Example 2.76. A[z]®4 A[z] = Az, y].

Proposition 2.77. If A is a commutative ring, R is an A-algebra, and S = Az, ..., x,]/I is an A-algebra,

then

o Rlzy,... 2]
R®a5= IR[xq,...,2p]

Lecture of October 4, 2021
2.5. Projective, injective, and flat modules.
2.5.1. Projective modules.

Definition 2.78. An R-module P is projective if given any surjective homomorphism of modulesp : N — N”
and a homomorphism f : P — N”, there is a homomorphism g : P — N such that pog = h. In other words,

given the solid arrows in the diagram
P

Ve
dg
ur

4 p
N—N'"—-0

in which the bottom row is exact, there exists at least one dotted arrow that causes the triangle to commute.
Proposition 2.79. Every free R-module is projective.

Proof. Suppose P is free with basis B and let a diagram as in the definition be given. Since p is surjective,
for each b € B, we can find an element n, € N such that f(b) = p(np). Since B is a basis, the assignment
b — ny extends uniquely to an R-module homomorphism ¢g : P — N. The triangle commutes since po g and

f agree on B. |
‘We will see soon that the converse is false.

Proposition 2.80. For a ring R and module P, the following are equivalent:
(1) P is projective,
2)
(3)

(4) every surjective R-module homomorphism p : N — P has a right inverse, and

(5) P is a summand of a free R-module; i.e., there is an R-module Q such that F = P®Q is a free
R-module.

the functor Hompg (P, —) is exact,

every short exact sequence of the form 0 - N’ — N — P — 0 is split,

Proof. Since Hompg (P, —) is left exact for any module P, Hompg(P,—) is exact if and only if it preserves
surjections. The definition of “projective” is just an unpackaging of the property that Hompg(P, —) preserves
surjections. The equivalence of (1) and (2) is thus essentially by definition.

The equivalence of (3) and (4) follows from the Splitting Theorem. Note that given an surjective map

p: N — P, we may form the short exact sequence 0 — ker(p) —» N & P — 0.
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Suppose (1) holds and p : N — P is onto. Applying the definition with f = idp and p = p gives an
R-linear map g such that po f =idp. So (1) = (4).

To see (1) implies (4), let p : N — P be surjective, and consider the identity map on P. By (1), the
identity map factors through p, so p has a right inverse.

Assume (3) holds. By choosing a generating set for P (e.g., all of P) we may find a surjection p : F — P
with F a free R-module. This map splits by assumption, and thus P @ ker(p) = F', so that (5) holds. So (3)
= (5).

Assume (5) holds. Say F' = P@®Q is free, and let a diagram as in the definition be given. Let 7 : F' — P
be the canonical surjection. Since F' is projective (by the example above), there is a h : FF — N so that
poh = fom. Define g: P — N to be hot where +: P — F sends z to (z,0). Then p(g(z)) = p(h(x,0)) =
f(m(x,0)) = f(x). So P is projective (i.e. (1) holds). O

Remark 2.81. The proof of (5) = (1) shows more than advertised: it shows that if P is a summand of

projective R-module, then P is projective.

Example 2.82. Let R = Z[+/—5] and let P be the ideal (2,1 + v/=5). We claim P is projective as an
R-module, but not free.

It’s not free since an ideal in an integral domain is free as a module if and only if it is principal (exercise).
And you should have seen in 818 that this ideal is not principal.

To prove it is projective I will prove it is a summand of a free module. Let

m:R* > P

be the map given by the row vector [2,1 + +/—5]; that is w(x,y) = 22 + (1 + v/—5)y, which is clearly onto.
Define j : P — R? to be the map

Jj(z) = (=2,32z/(1 + v/-=5)).
The target of j really is R? since for z = 2a + (1 + v/=5)3 we have

j(2) = (=2, (1 =vV=5)a + 3p) € R?,
using that 3-2 = (1 —v/—5)(1 4+ +/—5). We have
m(j(2)) = =22 + 3z = z;
that is, p is a split surjection with splitting j. It follows that
R? =~ P®ker(r),

and hence P is projective.

Example 2.83. Let
R =R[z,y,2]/(2® + y* + 2> = 1)
and let P be the kernel of the map
o Lo, R.
7 is in fact a split surjection, since 7 o j = idr where j(r) = (zr,yr, zr). This also follows because R is
projective. So we have
R*~P®R
and in particular this shows P is projective.

It’s not free; can you prove it? Tip: Hairy Ball Theorem.
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Lecture of October 6, 2021

The following technical result is sometimes useful:

Optional Exercise 2.84. Let R be a ring and {My}xea a family of R-modules. The coproduct (direct
sum) @, ., Ma of this family is projective if and only if each M) is projective.

2.5.2. Injective modules. Injective is the dual notion for projective.
Definition 2.85. An R-module FE is injective if given solid arrows as in the diagram
0— >N "o N
7/
f Ve
l %/ g
E

in which the top row is exact, there exists at least one dotted arrow that causes the triangle to commute.
Example 2.86. If K is a field, then K is an injective K-module. Given a diagram

0—>W —5V

e
¥

K

of K vector spaces, there is a splitting ¢ of i, and we can take f o ¢ as the desired map.

Example 2.87. Z is not an injective Z-module: there is no Z-linear map making the diagram commute

below

since such a map would send 2 to 1.

Proposition 2.88. The following are equivalent for an R-module E:

(1) E is injective,

(2) the functor Homg(—, F) is ezact,
(3) every short exact sequence of the form 0 > E — N — N” — 0 is split, and
(4) every injective R-module homomorphism of the form j : E — M has a left inverse.

Proof. As with the previous proposition, the equivalence of (1) and (2) is essentially by definition, since
Hompg(—, E) is left exact for any module F, so this functor is right exact if and only if it takes injections
i: N" — N to surjections Hompg(i, E) : Homg (N, E) - Hompg(N', E). Likewise, the equivalence of (3) and
(4) follows from the Splitting Theorem.

The proof of (1) = (4) is very similar to the analogous proof for the proposition involving projective

modules above: if F is injective and j : £ — M is an injective R-linear map, then

0*>E*]>M
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can be completed, and g o j = idg for any such completion.
Assume (4) and let a diagram as in the definition of “injective” be given. Form the module
E®N
{(f(n),=i(n")) | n" € N'}’
(This is called a pushout of E and N.) Let j : E — M be the map sending a to the class of (a,0) and let
h: N — M be the map sending n to the class of (0,7). Then the diagram below commutes

M =

i

N —— N

1

EH]-M

and T claim that j is injective. The former is clear by construction of M: given n’ € N, we have j(f(n’)) —
h(i(n')) = (f(n'),—i(n')) = 0 € M. If j(a) = (a,0) = 0 in M, then there is an n’ € N’ such that f(n’) = a
and i¢(n’) = 0. But ¢ is injective and hence a = 0.

By assumption (i.e. statement (4)), there is a map ¢ : M — E such that go j = idg. Define g : N - FE
asg:=qoh. Thengoi=qohoi=qojof=idgof=f.

This proves E is injective. (Il

Optional Exercise 2.89. If {My}sen is a collection of modules, then [[,., My is injective if and only if

each M) is injective.

Example 2.90. If K is a field and R is a K-algebra, then Homg (R, K) is an injective R-module. Indeed,
Homp(—, Homg (R, K)) —> Homg(R®g —, K) —> Homp (—, K), which is exact, since K is an injective

K-vector space.

Example 2.91. Suppose R is an integral domain and FE is an injective R-module. The F is divisible: for
every x € ' and r € R\ 0, there is a y € E such that x = ry. To see this, just apply the definition to the

diagram

Theorem 2.92 (Baer’s criterion). For any ring R, an R-module E is injective if and only if every diagram

of the form represented below in solid arrows

0—=J—>R

where J is an ideal of R and ¢ is the inclusion map, can be completed by some dashed homomorphism g to

a commutative diagram.

Proof. One direction is immediate from the definition.
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Suppose each diagram as in the statement can be completed and let a diagram

0——= N —'»

as in the definition of “injective” be given. For simplicity of notation, we may assume i is the inclusion
of a submodule N’ of N into N. We need to show that given an R-map g : N’ — E, there is an R-map
g: N — E such that g|n = f.

Consider pairs (M, h) such that N € M € N and h : M — E is an R-map such that h|y, = f. Let S
be the collection of all such pairs, and partially order it by (M, h1) < (Ms, ho) if and only if M7 © Ms and
ha|ar, = hi. The set S is non-empty since (N’ f) belongs to it.

Let us show S satisfies the hypotheses of Zorn’s Lemma. Suppose {(M;, h;)}ier is a totally ordered subset
of §. Then M := UM, is a submodule of N (since the collection is totally ordered) and the function
h: M — E defined as h(m) = h;(m) for any i such that m € M; is a well-defined R-map (again, since the
collection is totally ordered). So (M,h) € § and (M, h) = (M;, h;) for all i.

By Zorn’s Lemma, S has a maximal element (M, h). It suffices to prove M = N. If not pick z € N\ M
and let T'= M + Rz. I will show h can be extended to T, arriving at a contradiction:

Set I = {re R|rze M}. The map R 5 T (sending r to tz) restricts to a map I —> M by definition of

I, and so we have a commutative square

By assumption the map « : I — E given as the composition I %> M 2, B extends to a map :R — FE. This

=

M ——

gives a diagram

=
N,

in which the inner square and the outer quadrilateral both commute. I claim there is an R-map v : T — FE
(the dashed arrow in the diagram) causing both triangles to commute. It is given abstractly by the fact that
the square in this diagram is a push-out. Define v : T — E by v(m + rz) = h(m) + B(r) for m € M and
r € R. T leave it to you to prove v is well-defined (note that m + ra can equal m’ + 'z without m’ = m and
r =r') and an R-map. Granting this, we clearly have v|y; = h. So (M,h) < (T,v) in S, a contradiction. It

must be the M = N, and so we have proven F is injective. O

Lecture of October 8, 2021

Corollary 2.93. For a PID, E is an injective R-module if and only if it is divisible.
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Proof. We already proved one direction (for any domain). Assume F is divisible. By Baer’s Criterion and

the fact that every ideal in R is principal by assumption, we just need to show every diagram of the form

can be completed, where r is any element of R. If r = 0, we may take g = 0. If » 0, then let f(r) =z € E.
Since F is divisible there is y € E such that z = ry, Now define ¢ : R — F by g(u) = uy and notice
that (go¢)(r) = g(r) = ry = x = f(r) hence got = f for any element of (r) since this is true for the

generator r. ([l
Example 2.94. Using the above criterion, Q, Q/Z, and C* are injective Z-modules.
Not every divisible module is injective.

Example 2.95. Let K be a field, R = K[z,y], and Q = K(x,y) be the fraction field. Since @ is divisible,
Q/R is as well. However, Q/R is not injective.

Let I = (x,y), and consider the map f : I — Q/R given by f(azx + by) = a[%]. To see that this is well
defined, note that if ax + by = cz + dy, then (a — ¢)xz = (d — b)y, so y|(a — ¢), as K[z,y] is a UFD; then
flaz + by) — flcx + dy) = (a — c)[%] = 0. It is easy to see that f is R-linear.

We claim that f cannot be extended to g : R — Q/R. Indeed, given an extension g, write g(1) = [¢]
with a,b € R and a/b in lowest terms (which makes sense since R is a UFD). Note that b cannot be a unit,

since then a/b € R, so [¢] = 0, so g is the zero map and hence f is the zero map, which it is not. We have

0= f(y) =g(y) =yg(1) = y[{], so 4* € R. Thus bly in R, so without loss of generality, b = y. We also have
[1] = £(2) = g(x) = 2g(1) = 2 B

[4]; which means that “=** € R, so y|(1 — ax), which is a contradiction.

Note that every R-module admits a surjection from a projective R-module: there is a surjection from a

free module. The dual statement is true for injectives as well.

Proposition 2.96. Let M be an R-module. There exists an injective module E and an injective homomor-
phismi: M — E.

Proof. First, we deal with the case that R = Z.
Observe that if Zz is a nonzero cyclic group, there is a nonzero additive map M — Q/Z: map z to [1/n]
for some n that divides the order of z if finite, or to an arbitrary [1/n] if infinite. Now, for an arbitrary

abelian group A, for any nonzero x we have
0—>Zx—A— A/Zz — 0

exact, so since Q/Z is injective, we can extend any map from Zz — Q/Z to a map from A. For every nonzero
a € A, fix an additive map ¢, : A — Q/Z and let ¢ : A — [[,c4oQ/Z be given by ¢(x) = (da(x))aca~o-
By construction this is an injective homomorphism, and Q/Z is an injective module.

Now let R be arbitrary, and M be an R-module. Considering M as an abelian group, there is an injective
abelian group D and additive map j : M — D by the case above. By left exactness of Hom, there is an
injection Homgz (R, M) Ix, Homgz (R, D). This map is R-linear:

rjx(@)(s) = r(ja)(s) = ja(sr) = j(ra)(s) = jx(ra)(s).
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Furthermore, there is an injection M =~ Hompg(R, M) € Homy (R, M). Put together, we obtain an R-linear
injection M — Homgz(R, D).
It remains to see that Homy(R, D) is an injective R-module. But

Homp(—, Homyz(R, D)) —> Homgz(R®g —, D) — Homy(—, D)
is exact, so this is the case. O
2.5.3. Flat modules.

Definition 2.97. An R-module N is flat if for every injective homomorphism of right R-modules M ER M,
the induced map M ®r N I8, M'®pg N is injective.

Since tensor is right exact, a module N is flat if and only if — ®g N is an exact functor.

Optional Exercise 2.98. Given a family of R-modules {M)}xea, @, M) is flat if and only if every M) is
flat.

All projectives are flat.
Theorem 2.99. Every projective R-module is flat.

Proof. First, recall that — ® g R is naturally isomorphic to the identity functor, and thus exact. This shows
that R is flat, and thus any free module, being a direct sum of copies of R, must also be flat. Finally, every
projective module is a direct summand of a free module. Direct summands of flat modules are flat, so every

projective module is flat. O

Proposition 2.100. If R is a commutative ring, and S is any multiplicatively closed set, then ST'R is a
flat R-module.

Proof. You showed on the homework that the functor —®pz S~! R is naturally isomorphic to the localization

functor, which is exact. O

3. SIMPLICITY, SEMISIMPLICITY, AND REPRESENTATION THEORY

3.1. Group rings and representations. We will take a brief aside to discuss an important class of exam-

ples of modules.
3.1.1. Representations.

Definition 3.1. Let G be a group. A representation of G over a field K is a K-vector space V equipped
with a group homomorphism p : G — Autg (V). More generally, a representation of G over a ring R is an
R-module V equipped with group homomorphism p : G — Autg(V). We may also say that G acts linearly
on V.

One often simply says that V' is a representation of G if the homomorphism p is understood.

Remark 3.2. We can think of this data in a number of different ways.

(1) Given a representation (V] p), the map

GxV \%4

(g,m) ——=g-v:=p(g)(v)

satisfies the properties
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(a) e-v =

b) ghoomg- (o)

(€) g-(v+w)=(g-v)+ (g9 w)
(d) g-rv=r(g-v),
In particular, the first two conditions say that G acts on V in the sense of group action on a set, and
the last two say that the action of any element is by an R-linear map. Conversely, any such function
¥ yields a representation (V p).

(2) If V. = R™ is free, then Autg(V) =~ GL,(R), where GL,(R) is the group of n x n invertible
matrices with entries in R. By a slight abuse of notation, we will say that a group homomorphism
G — GL, (V) is a representation of G.

Example 3.3. (1) For any group G, and any R-module V| there is the trivial representation p : G —
Autr (V) where p(g) = 1y for all g € G. In this action, every element acts trivially on M.
(2) Any representation on V = R is determined by specifying a group homomorphism p : G —
Autp(R) = R*.

For example, if G = C,, = {g) (the multiplicative cyclic group of order n) and R = C, there are
n possible such homomorphisms, determined by p(g) = e where 0 <k <n—1.

Another important example of a rank 1 representation is the sign representation of the symmetric
group S,, given by the group homomorphism which assigns to each permutation its sign, regarded
as an element of the arbitrary ring R.

(3) The symmetric group S,, acts on a free R-module with basis by, ..., b, by permuting coordinates:
p(0)(b;) = by(i). For a concrete example, S3 acts on R?, where, for example (132) - (a1, a2,a3) =
(az,as,ay).

(4) Let G = Ds,, symmetries of the equilateral polygon on n vertices. Then G acts linearly on V = R?
by rotations and reflections. If G is generated by r (rotation by 27/n) and [ (reflection about the
y-axis), then the associated group homomorphism p : G — GL2(R) maps

cos(2m/n) —sin(27/n) 0 -1 0
/)n — = .
sin(2r/n)  cos(2w/n) P 0 1
(5) Let R = K be a field,V = K?, and let G = (K, +). We see that the assignment
1 0
maﬁcuw>mw=b J

is a representation. In particular, if K = IF,, this is a representation of C,,.

Definition 3.4. If p: G —> Autg(V) and w : G — Autg(W) are R-linear representations of G on V and W
respectively then a G-equivariant map from V to W is an R-module homomorphism f : V — W such that

flgv) = gf(v) for all v e V. Equivalently the following diagram commutes:

f

— W

v
#(9) l l't/)(g)
v f

— W

Definition 3.5. If p: G — Autg(V) is a representation, a submodule W < V' is G-stable if p(g)(W) € W
for all g € G.
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Example 3.6. For G = S,, acting by permuting a basis as above, {(\,...,A) | A€ K} and
{An, o ) [ A+ -+ A, =0}
are stable subspaces.

Example 3.7. For G = (K, +) acting on K2 as above, {(0,\) | A € K} is a stable subspace.

Proposition 3.8. Fix a group G and a ring R. The collection of left R-linear representations of G and

G-equivariant maps between them forms a category which we will denote Repr(G).

Lecture of October 13, 2021

3.1.2. Group rings and modules.

Definition 3.9. For any ring R and group G, we define the group ring R[G] as follows: As a set, R[G] is
the free left R-module with basis G; that is,

R[G] = {Z rqg | g = Og for all by a finite number of g’s} )
g

We define addition as module addition; that is,
(ngg> + (Z shh> = 2 (ry+syp)f.
g h feG

Multiplication is the unique pairing that obeys the distributive laws and is such that R is a subring, 1rG is

a subgroup of (R[G]*, ), and every element of R commutes with every element of G. In general, we have
(Z rgg> . (Z shh> = 2 Z rgsn | f-
9 h feG \ (g,h)eGxG
gh=
where the inner sum is over pairs of group elements whose product is f.

Remark 3.10. As a matter of notation, the element 1gg will be written as just g and the element reg as
just r, so that we will regard G and R as subsets of R[G]. They overlap in the one element 1zes which will

be written as just 1.

Remark 3.11. When R is commutative (in particular when R is a field), R[G] is an R-algebra called the
group R-algebra of G.

Optional Exercise 3.12. For any ring R and G = C,,, prove there is a ring isomorphism
R[C,] = R[z]/(2" — 1).

Proposition 3.13 (Universal Mapping Property of group rings). Let R, A be rings and G a group. Given a
ring homomorphism v : R — A and a group homomorphism f : G — (A*,-), such that for everyr € R,ge G
we have that 1(r) and f(g) commute in (A,-), there is a unique ring homomorphism « : R[G] — A such that

alp =t and a|g = f. Explicitly, « is given by

a (Z 7‘g9> = urg) f(9)-
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Proof. Most of this follows from noticing that R[G] is a coproduct. Indeed, we can vie R[G] as an internal
direct sum R[G] = @ e
each g € G set up an R-module homomorphism f, : Rg — A by mapping f,(rq9) = ¢(r4)f(g). Then the

Rg and hence it is the coproduct for the family {Rg}4ec where each Rg =~ R. For

definition of coproduct gives a unique R-module homomorphism
a: R[G] = (P Rg — A such that a|g, = f;.
geG

From the way we defined the maps f, we can deduce that o|r = ¢ and a|¢ = f and

a (Z rgg> = >, ulrg)f(9).

It remains to check that this map is in fact a ring homomorphism, i.e. it preserves multiplication. This can
be done using the formula for a above and the fact that «(R) and f(G) commute in A. O

Remark 3.14. If we assumed that A is an R-algebra in the proposition above, then we would not need the

commutativity condition as ¢(R) is in the center of A so it commutes with everything.

Lemma 3.15. Let R be a ring, V a left R-module, and G a group. There is a bijection

of G on'V

R-linear representations R[G]-module structures on V
<> .
(extending given action of R)

Moreover, if V. and W are representations, then v : V. — W is G-equivariant if and only if it is R[G]-

linear.

Proof. Given an R[G]-module structure on V, for every g € G, there is a map my : V' — V given by v — g-v.
We have mgy(rv) = g(rv) = rg(v) = rmg(v), so my is R-linear. Moreover, the map p : G — Endg(V') that
sends g — m, preserves multiplication and identity: p(gh)(v) = ghv = g(hv) = p(g)p(h)(v) and p(e)(v) = v.
Thus, we obtain an R-linear representation p : G — Autg(V).

Conversely, recall that a module structure on an abelian group is equivalent to a ring homomorphism to its
endomorphism ring over Z. Given a representation p : G — Autg(V) by considering Autr (V) < Endz(V)
we get a group homomorphism f to the unit subgroup of Endz(V). The action of R on V gives a ring
homomorphism ¢ : R — Endz (V). For r € R and g € G, we have

(f(g) o u(r))(v) = fg)(rv) = p(g)(rv) = rp(g)(v) = (u(r) o f(9))(v)

for all v € V. Thus, by the universal property, we get a well-defined ring homomorphism R[G] — Endz(V),
and hence an R[G]-module structure, which is easily seen to follow the formula above.

We leave the final claim as an exercise. O

Remark 3.16. We can think of these bijections as yielding mutually inverse functors F : Repyr(G) —
R[G] —Mod and F~!: R[G] — Mod — Repy(G).

3.2. Simple modules and finite length modules.

3.2.1. Simple modules. Now we proceed to discuss some smallness conditions on modules. The first key

notion is that of a simple module. Simple modules are the atoms in module theory.
Definition 3.17. An R-module M is simple if there are no nonzero proper submodules of M.

Lemma 3.18. Let M be a nonzero R-module. The following are equivalent:
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(1) M is simple
(2) Rm =M forallme M\ 0
(3) M =~ R/I for some mazximal left ideal I.

Proof. If M is simple, and m # 0, then 0 # Rm < M implies Rm = M, so (1) implies (2). Conversely, if
0# NG M, and m € N is nonzero, then Rm is nonzero and contained in N, hence not equal to M, so (2)
implies (1).

For a left ideal I, the submodules of R/I are in bijective correspondence with the left R-submodules of
R that contain I, i.e., the left ideals that contain I. It is then clear that if I is a maximal left ideal, then
R/I is simple, so (3) implies (1). On the other hand, if M is simple then it is cyclic (since (1) implies (2)),
so M = R/I for some left ideal I, and if I G J for some proper left ideal .J, then 0 # J/I G R/I; thus (1)
implies (3). O

Example 3.19. (1) If K is a field, a K-vector space is simple if and only if it is 1-dimensional. Moreover,
if R is a K-algebra, then any R-module that is 1-dimensional as a vector space is a simple R-module
as well.

(2) If R is commutative, then an R-module M is simple if and only if M is isomorphic to a field.

(3) Let R = R[Da3,], and V be the natural 2-dimensional representation by reflections and rotations.
Then V is a simple R-module, since there are no Dy, -stable subspaces.

(4) Let K be a field, or more generally a division ring, and let R = M, (K) = Endg (K™). The module
M = K™ of column vectors is a simple R-module Indeed, if v = (a1,...,a,) # 0, say a; # 0; then
a;lEijv =e; € M, and since M is generated by the standard vectors e;, M = Rwv.

Lemma 3.20 (Schur’s Lemma). Let R be a ring, and M, N be two simple R-modules. Then every nonzero

R-module homomorphism ¢ : M — N is an isomorphism. In particular, Endg(M) is a division ring.

Proof. For the first assertion, let f : M — N be R-linear and nonzero. Then ker(f) # M, so ker(f) = 0 by
simplicity, and im(f) # 0, so im(f) = N.
For the second, recall that Endg(M) is a ring. If f € Endg(M) is nonzero, then by the first part, it is an

isomorphism, so it has a two-sided inverse in Endg(M). O
3.2.2. Finite length modules. Given a short exact sequence
0>-A—->B->C-0

we may think of the middle module B as built out of A and C'; we call B an extension of A and C. Suppose

that a module has a finite sequence of submodules
O=MycMycMyc---cM,=M

we call such a sequence a filtration. Then M; is an extension of My and M;/My, M, is an extension of
M; = My/My and My/Mj, and so on. We might think of M as built from M;/My, My/M;, ..., M,/ M,_1
like so.

A module has finite length if it can be built from finitely many simple modules in this way.

Definition 3.21. A module M has finite length if it has a filtration of the form
O=MycMicMyc---cM, =M

with M;1/M; simple for each i; such a filtration is called a composition series of length n. We say a

composition series is strict if M; # M; 1 for all ©. Two composition series are equivalent if the collections



48 MATH 901 LECTURE NOTES, FALL 2021

of composition factors M, 1/M; are the same up to reordering. The length of a finite length module M,
denoted ¢(M) , is the minimum of the lengths of a composition series of M. If M has does not have finite

length, we say that M has infinite length, or /(M) = o0.
Example 3.22. Let K be a field and V = K?2. Then any filtration of the form 0 € W < V where W is a

line through the origin is a strict composition series.

Remark 3.23. Let
0-AS5BLHC—0

be a short exact sequence. Given filtrations / composition series / strict composition series
A, : 0=AgcAicAyc---cA,=A

and
C.: 0=CocCicCyc---c(C,=C

we can make a filtration / composition series / strict composition series of B by
0 =i(Ao) Ci(A1) Si(Az) S+ Si(Ay) =i(A) =p ' (Co) S p H(C1) Sp (Ca) =+ S p 1 (Cy) = B.

Conversely, given a filtration / composition series / strict composition series of B that contains (L) as
a term, we can obtain filtrations / composition series / strict composition series of A and C by applying
i~! to the terms up through i(L) and applying p to the terms from i(L) on. However, not every filtration /

composition series of a module will contain a fixed submodule as a term.
Theorem 3.24 (Jordan-Holder theorem). Let M be a module of finite length.
(1) If L € M is a proper submodule, then ¢(L) < ¢(M).
2) If L <€ M is a nonzero submodule and M = M /L, then £(M) < {(M).

(2)
(3) Any filtration of M can be refined to a composition series.
(4)

All strict composition series for M are equivalent, and hence have the same length.
Proof. If m := ¢(M), consider a strict composition series of M of length m, say
M, : O:MO;MlgMg;Ct-u;Msz.
(1) Consider the filtration
L, : O=MynLcMynLEcMysnL<---C M, nL=L.

By the Second Isomorphism Theorem, its composition factors satisfy
MiginL Miy1n L Mg L+ M,
MinL  (Mygg1nL)nM; — M; '

The right hand side is a submodule of M, 1/M;, which by assumption is simple, so our filtration is
in fact a composition series of length n. Then for any 7 either
M;s1n L ~0 or M;x1nL N Mi+1.
M;nL M;nL M;
We claim that the latter case does not hold for all ¢: if it did, we would have 0 = My = My n L,

and inductively M; 1 n L = M;; for all ¢ and in particular for i = m — 1, we have M = M n L,

contradicting that L is proper. Thus, for some 4, the first case holds. We can then skip that ¢ and
obtain a composition series of length less than n, so ¢(L) < m.
Lecture of October 20, 2021
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Consider the filtration
Mo+L M +L M, + L
- c c c " =

M, : 0 T S—7 .- C 7 =M.
The factors satisfy
(Mi+1 + L)/L - Mi+1 + L - Mi+1 + (Ml + L) - MH—l
(M; +L)/L ~— M;+L M; + L T My n (M + L)’

and since M; € M;1 n (M; + L), these are quotient modules of the simple module M;1/M;, so this
is a composition series. Then for any ¢ either
(Mia+L)/L _ 0 or M;tq ~ M
(M; +L)/L Mig1n(M;+L) — M;
We claim that the latter case does not hold for all ¢: if it did, we would have then M; 1 n(M;+L) =
M; for all i, so

My +L L+ M LM,
My (L + M) n Mija M;
for all ¢, and hence L =~ (L + My)/My = (L + M,,)/M,, = 0, contradicting that L # 0. Thus, for

some ¢, the first case holds, and we can skip that i to obtain a composition series of length less than

n, so {(M) < m.
We proceed by induction on length again. Given a filtration of M, we can suppose that there is some

nonzero proper submodule L in the filtration, since otherwise we could just take any composition
series. Then L and M has length less than M. The filtration up to L can be refined to a strict
composition series by the induction hypothesis, and the filtration from L to M taken mod L can be
refined to a strict composition series for M; pulling back as in the remark above, we get the strict
composition series we want.

We show by induction on m that for any module of length m, all of its strict composition series are
equivalent. Assume that (M) = m. If m = 1, the claim is clear since we are dealing with a simple

module. Suppose that
N.I OZNO;]\G;;N”:M

is another strict composition series for M, son = m. If N,,_1 = M,,_1, then since £(M,,_1) < m—1
the two composition series we have for M,, 1 are equivalent by induction, so the two given series
are equivalent.

If Ny—1 # M,,—1, since M/M,,_; is simple, M,,_1 is not properly contained in N,,_1, so the
image of M,,_1 in M/N,_; is nonzero, so equals all of M, which means that N, + M,,_1 = M.
Set K = N,,_1 n M,,_1. By the second isomorphism theorem, we then have

M _ Mmfl +Nn71 ~ anl

Mm—l Mm—l K
and similarly M/N,,_y =~ M,,_1/K, and both of these modules are simple.

Fix a strict composition series for K:
K, : O=KogK1;Cé---;Kk=K
and extend to a strict composition series for M., _1:

K:Z OZKQ;Klg"';KkZK;Mm_l.
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Since we also have the strict composition series
Megim—1: 0=MoGM GM2 G-+ G My,

of length m —1, we must have that k = m—2 and K, is equivalent to Me<,_1. Thus, the composition
factors of Me<,n—1 are those of K plus one copy of M,,,—1/K =~ M/N,,_1.
Now,
K!: 0=K¢GK1SG- GKnao=KGN,
is a strict composition series for N,,_1, so n = m. Then, K/ is equivalent to the strict composition
series
Ne<n—_1: 0=NoGN1 GG Ny

Thus, the composition factors of Ne<,,—1 are those of K plus one copy of N,,_1/K =~ M /M, _1.

It follows that the composition series M, and N, are equivalent. O

Example 3.25. (1) If K is a field, then a K-vector space of dimension n is a K-module of length n.
(2) If Ris a K-algebra, and M is an R-module that as a K-vector space has dimension n, then ¢(M) < n,
since the vector space dimension of a proper submodule is strictly smaller.
(3) The ring R = K[z] does not have finite length as a module over itself.

(4) Z/p™ has length n as a Z-module, with strict composition series
O e.-cp)<=Z/p"
3.3. Chain conditions.

Definition 3.26. We say a poset (P, <) satisfies the ascending chain condition or ACC' if every totally
ordered nonempty subset of P has a maximum element. Similarly, (P, <) satisfies the descending chain

condition or DCC if every totally ordered nonempty subset of P has a minimum element.

Remark 3.27. For a poset (P, <), the following are equivalent:

(1) Every totally ordered nonempty subset has a maximum element (i.e., P has ACC)
(2) Every totally ordered subset indexed by N, p; < ps < p3 < --- has a maximum element (i.e.,
3k i pk = pr1 =)
(3) Every nonempty subset of P has a maximum element.
Indeed, (3) = (1) = (2) is clear. Given a totally ordered nonempty subset with no maximum, one can
inductively keep choosing larger elements and obtain a countable such subset, so (2) = (1). If any totally
ordered nonempty subset of P has a maximum element, then the same property holds for any nonempty

subset @ of P, so by Zorn’s Lemma, such a () has a maximum element. The analogous equivalences hold
with DCC.

Note that the condition (3) asserts that any nonempty subset of P has an element that is maximal within

the subset, not maximal within P.

Definition 3.28. Let R be a ring and M be an R-module.
(1) We say that M is Noetherian if the poset of submodules of M partially ordered by containment has
ACC.

(2) We say that M is Artinian if the poset of submodules of M partially ordered by containment has
DCC.
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We say that R is left Noetherian if R is Noetherian as a left R-module; i.e., the poset of left ideals
of R under containment has ACC.
We say that R is left Artinian if R is Artinian as a left R-module; i.e., the poset of left ideals of R

under containment has DCC.

If R is commutative, left ideals and right ideals are the same, so we will just say R is Noetherian or

Artinian.

Example 3.29. (1) A division ring D is both left Noetherian and left Artinian.

(2)

(5)

If R is a PID but not a field (e.g., R =Z or R = K|x]), then R is Noetherian but not Artinian. To
see R is Noetherian, note that any ideal is of the form I = (p{* ---p;*) for some irreducible elements
p; and positive integers e;. An ideal contains [ if it corresponds to a product of the same irreducibles
with smaller or equal multiplicities; there are only finitely many of these so an ascending chain must

stablilize. To see R is not Artinian, take some irreducible p and take the chain
P20 20°) 20" 2

A polynomial ring in infinitely many variables is neither Noetherian nor Artinian: there is an as-

cending chain
(x1) ; (w1, 2) ; (21,2, 23) ; (w1, 22,23, 24) ;
and take a descending chain as in the last example.

Z[3]
The Z-module M = 7

, where Z[%] is the subring of Q generated by Z and %, is Artinian but not

Noetherian. Suppose that N € M is generated by {[%]}, where each ay is odd (we can write any

element in Z[%] like so). Observe that for each A, there are integers s, ¢ such that say + 2™ =1,

1 1
SO 5[%] = [QT)\:I Thus, N is generated by {[QTA]} Thus, the submodules of M are M itself, 0,
L
and M; = 2" for i > 0. We have 0 ;Cé M, ; Mo ;Cé .-+ 50 M is not Noetherian. However, any

descending chain is either always equal to M, or else has some M; as a term, and there are finitely

many submodules of such an M;, so must stabilize.

The subring of M»(Q) given as
0
{[“ 1 | an,b,ceQ}
b ¢

is left Noetherian but not right Noetherian.

Optional Exercise 3.30. Let 0 > M’ — M — M” — 0 be a short exact sequence. Then M has ACC
(resp DCC) if and only if M’ and M” have ACC (resp. DCC).

The Noetherian condition is intimately tied to finite generation.

Proposition 3.31. Let M be an R-module. Then M has ACC if and only if every submodule of M is
finitely generated.

Proof. Suppose that N < M is not finitely generated. Then we can construct an ascending chain of sub-

modules of M given by setting Ny = 0, and N;;; = N; + n;41 for some n;,1 € N\ N;; we can do this since

each N; is a finitely generated submodule of IV, so is not equal to N.



52 MATH 901 LECTURE NOTES, FALL 2021

Now suppose that every submodule of M is finitely generated. Given a countable ascending chain of

submodules

MicMycMs< My<---
let N = (J,,ey My; this is a submodule of M. Take a finite generating set {ni,...,n;} for N. For each
i=1,...,t, we have n; € M; for some j. Since there are finitely many n;’s there is some M; that contains
them all. But then M; = N, so the chain stabilizes (i.e., achieves a maximum element). ]

Proposition 3.32. Let R be left Noetherian. Then a module is finitely generated if and only if it is left
Noetherian. In particular, in a left Noetherian ring, every submodule of a finitely generated module is finitely

generated.

Proof. For the first statement, the “if” implication holds in general without the hypothesis on R. For the
other implication, observe that there are short exact sequences

0->R"'S5R'S>R—0

for all n > 0. So, by the exercise above and induction on n, every finitely generated free module is Noetherian.

Now, if M is finitely generated, there is a short exact sequence of the form
0-K—->R'-M-—0

so by the exercise above again, M is Noetherian.
The second statement follows from the first as a submodule of a Noetherian module is Noetherian, again

by the exercise. O
Now we tie these chain conditions to length.
Proposition 3.33. A module M has finite length if and only if it is both Noetherian and Artinian.
Proof. Assume that M has finite length. Suppose that M is not Noetherian. Then there is a chain
My G M G My G ---

Since each M; is a submodule of M, its length is finite, and is a nonnegative integer. Then ¢(My) < (M) <
(M) < --- < 4(M), which yields a contradiction. The argument that M is Artinian is similar.

Now assume that M is both Noetherian and Artinian. We will construct a composition series for M. We
can assume that M # 0. Consider the collection of proper submodules of M. This is nonempty, so has
a maximal element M' by the Noetherian hypothesis. We must have M/M?! is simple, or else there is a
module in between M! and M. Using Noetherianity again, if M! # 0 (we’re done otherwise), there is a
maximal proper submodule of M?'; call it M?2. This process yields a descending chain with simple quotients,
and this must stop (i.e., yield M? = 0 for some i) by the Artinian hypothesis. Thus, there is a composition
series for M. O
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Lecture of October 25, 2021

3.4. Semisimple modules. We now study an important condition that is somewhat orthogonal (yet some-
what related) to our chain conditions. The condition of finite length, and to some extent the Noetherian and
Artinian conditions, were related to how a module is made out of building blocks, or how big it is in terms
of its pieces. The condition of semisimplicity says that a module is composed of basic building blocks in the

simplest possible way.

Definition 3.34. For any ring R, a left R-module M is called semisimple if it is a (possibly infinite) direct

sum of simple modules. The empty direct sum is allowed, so that the 0 module is considered to be semisimple.

Example 3.35. Let M be a finitely generated Z-module. Then by the FTFGAG, M is isomorphic to
7" ®Z/p7* @ --- @ Z/per for some r = 0, n > 0, primes p; and positive integers e;. Such a module is

semisimple if and only if r = 0 and e; = 1 for all 3.

Example 3.36. Every module over a division ring D is semisimple because any such module has a basis,

hence it is a free module.

Lemma 3.37. Let D be a division ring and set R = M, (D) for some n = 1. I claim R is semisimple as a

left module over itself.

Proof. For each 1 < i < n, let I; denote the subset of R consisting of matrices whose only nonzero entires
belong to the i-th column. The rules for matrix addition and multiplication show that I; is a left ideal (i.e.,
a left submodule) of R. Moreover, there is evident bijection between I; and D™ (column vectors) and this
bijection is an isomorphism of left R-modules. We proved D™ is simple as an R-module and hence so is I;.

Finally, R is the internal direct sum of Iy,..., I,:
because each matrix X is uniquely a sum of the form X; + --- + X,, with X, € M;. O

Optional Exercise 3.38. Let {M)}xca be an infinite collection of nonzero modules. Then @, , M, is not
finitely generated.

Remark 3.39. As a consequence of the above exercise, a module is a finitely generated semisimple module if
and only if it is a finite direct sum of simple modules. In this case if we write M = M1 ®--- @ M,, as a sum

of simple modules, there is a strict composition series
OCMl CM1®M2C CM1@®Mn_1 M
so M has finite length, namely length n, and the composition factors are the modules M;.

Proposition 3.40 (Krull-Schmidt for semisimple modules). Let M be a finitely generated semisimple mod-

ule. Given two direct sum decompositions as simple modules
M=M® - @®M,, =N, @®---®N,,
then m = n, and there is a permutation o such that My ;) = N; for all i.
Proof. Follows from the previous remark and the Jordan-Holder theorem. (|

Theorem 3.41 (Equivalent conditions for semisimple modules). For any ring R and left R-module M, the

following are equivalent:
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(1) M is semisimple,

(2) every submodule of M is a summand; i.e., for every submodule N of M there is a submodule N’
such that M = N @ N’ is the internal direct sum of N and N',

every injective R-map i : M’ — M 1is split has a left inverse,

every SES of the form 0 — M’ — M — M" — 0 is split ezact,

every surjective R-map p : M — M" has a right inverse.

—~ o~
QU =~ W
~— N

Proof. The equivalence of (3), (4), and (5) is given by the Splitting Theorem.

(2) = (3) holds since given an injective map ¢ as in (3), we have by (2) that ¢(M’) is a summand of M,
hence there is a projection homomorphism 7 : M — 4(M’) that splits the inclusion of the summand into
M, that is 7|;ar) = idiary. Now i : M" — i(M’) is an isomorphism so we may consider the R-module
homomorphism =% : i(M’) — M’ and set ¢ : M — M’ to be ¢ = i~ ox. Then

1 1

goi=1itomoi=14ilomumoi=141"oi=idy.

(3) = (2) holds since we can split the inclusion N — M and thus also the SES
0—>N-—>M-—M/N—-DO.

Therefore the Splitting Theorem yields M = N @ s(M/N) where s denotes the splitting of the quotient map
M — M/N.

The hard part is proving (1) < (2). (1) = (2) Assume (1), so that M = @yea M) for some collection
of simple submodules M), and let N € M be any submodule. (It is important to note that it does not
necessarily follow that N is a sum of some subcollection of the M)) . Consider the collection S of subsets T
of A such that N n Mt = 0 where we define Mr := ®)erM). View S as a poset by inclusion. It is nonempty
since J = (J belongs to S. If {T',} is a totally ordered subcollection of S, let I' = u,T',. I claim Mrn N = 0.
If not, there is a nonzero element (m.) € Mr n N. But since m, = 0 for all but a finite number of 7’s and
since the collection of I',,’s was totally ordered, there is some « such that (m,) € Mp, n N, a contradiction.
We may thus apply Zorn’s Lemma to get a maximal I" € S.

I claim M is the internal direct sum of N and Mr. We have N n Mt = 0 since I" € § and so it suffices
to prove N + Mp = M. Since M = }},_, My, the latter is equivalent to proving that My < N + Mr for all
A € A. If this fails for some A, then since My n (N + Mr) is a proper submodule of M), which is simple,
and hence My n (N + Mr) = 0. But then N n (Mr ® M,) =0 (if n € N and n = m + m/, with m € Mp
and m’ € My, then m' =n —m som’ = 0 and n = m, and then n = 0.) So, I' U {\} is a member of S that
strictly contains I'; a contradiction. It must be thar M = N & Mr.

Lecture of October 27, 2021

(2) = (1) Now assume that every submodule of M is a summand. We proceed in three steps:

(i) We claim that every submodule T" of M inherits this property; i.e., every submodule of T' is a summand
of T. For say U < T is a submodule. By assumption on M, we have M = U @V (internal direct sum)
for some V. Since U < T, it follows that T = U + (V. n T). (Given t € T, we have t = u + v for some
uelUweV.SinceUcT,v=t—ueVnT.) SinceUn (VnT)=0,thisshows T =U(V nT).

(ii) We claim that every nonzero submodule T of M contains a simple summand. Pick 0 # z € T and
apply Zorn’s Lemma to show that there is a maximal submodule U of T with respect to the property that
x ¢ U. We have T = U@ W by (i) for some W s 0. If W is not simple, then W contains a nonzero,
proper submodule W7 and hence, by using (i) again, we get that W = W; @ W, for some proper nonzero
submodule W.
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These properties implies that (U@®W7) n (U@ W) = U. One containment is clear. If v belongs to the left
side, then v = u+w; = v +ws. It follows that wy —ws = u—u' e UnW =0 and so w; = wy € Wi nWy =0,
and hence wy = wy = 0. So, either z ¢ U@ W; or z ¢ U @ Wy, and either way we reach a contradiction to
the maximality of U.

(iii) Let ¢ be the set of all simple submodules of M, and let

F ={Qc ¥ | for all distinct wg,w1,...,wt € Qwo N (w1 + -+ +w) = 0}

Equivalently, the module generated by the modules in  their direct sum. The set % is partially ordered
by inclusion. It is nonempty, since & € # (or some singleton is in there by (ii)). Given a chain {Q,} in &,
U, Q0 is again an element of .7, so there is a maximal element in .%; call it Q. Let U be the direct sum
of Q.

We claim that U = M. By hypothesis we have M = U@V for some V. If V = 0 we are done. Otherwise
by (ii) (and (i) again) we have V' = S@V” for some simple submodule S. But then QuU{U} € .%, contradicting
maximality of 2. O

Corollary 3.42. If M semisimple, so is every submodule and quotient module of M.

Proof. Say N € M is a submodule. By the claim marked (i) in the proof of Theorem every submodule
of N is a summand, and hence N is semisimple by Theorem (2) = (1).
Given a surjection M — P, it splits by Theorem [3.41] so that P is isomorphic to a submodule of M,

namely the image of P under the splitting map. Hence P is semisimple by the case already proven. O
A major source of semisimple modules comes from group rings.

3.5. Semisimple rings and the Artin-Wedderburn theorem.

3.5.1. Semisimple rings.

Definition 3.43. A ring R is left semisimple if R is semisimple as a left module over itself. R is right

semisimple if R is semisimple as a right modules over itself.

Remark 3.44. Recall that submodules of R are left ideals and the simple ones are the minimal (nonzero) left
ideals. So, R is left semisimple if and only if R is the internal direct sum of some collection of minimal left
ideals I;:

R=@I,

jeJ
Moreover, R is f.g. as a module over itself, and so this must be a finite direct sum. So, R is left semisimple
if and only if R decomposes as an internal direct sum of the form R = I; ®- - - @ I,,, for some finite collection

Ii,..., I, of minimal left ideals.

Example 3.45. For any n > 0 and division ring D, the matrix ring M, (D) is left semisimple. This was

shown earlier. It is also right semisimple.

Example 3.46. If R = K; x --- x K; is a finite product of fields, then each K; is a simple R-module, and

R is the direct sum of these, so R is (left) semisimple.

Proposition 3.47. For a ring R, the following conditions are equivalent:
(1) R is a left semisimple ring.

(2) Ewvery left R-module is semisimple.
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(3) Every SES of left R-modules is split.

(4) Ewvery injection i : M' — M of left R-modules splits.
(5) Fuvery surjection p : M — M" of left R-modules splits.
(6) Ewvery left R-module is projective.

(7) Every left R-module is injective.

Proof. The equivalence of (2)—(5) follows from Proposition The equivalence of (4) and (7) follows from
the characterization of injective modules in Proposition and the equivalence of (5) and (6) follows from
the characterization of projective modules in Proposition m The implication (2) = (1) is obvious.

Now for (1) = (2): Assume (1) and let M be any left R-module. It follows from the definition that an
arbitrary coproduct of semisimple modules is again semisimple, and so the free module @, R is semisimple
for any indexing set A. By choosing a generating set of M , we may find a surjection of the form p :
@®rR — M. By Corollary it follows that M is semisimple since it is a quotient of a semisimple module
M = @®pR/ ker(p). O

Lecture of October 29, 2021

Proposition 3.48. Let R be a left semisimple ring and write R = 11 ® --- @ I, as an internal direct sum

with I, . .., I, minimal left ideals. Let Jy,...,J, be a complete list of representatives of isomorphism classes
as left R-modules taken from the list I, ..., I, ; so, for each i with 1 < i < m, there is a unique j with
1< 7 <1 sothat I; = J; as left R-modules.

Then every R-module is isomorphic to J?Al @ ® I for some index sets Ay, ..., A,.

If M is finitely generated, M is isomorphic to Jl@e1 @ - DI for a unique list eq, . .., e, of nonnegative

integers.

Proof. If M is finitely generated there is a surjection R* — M. Using Proposition this surjection splits,
so that R" = M@®N for some N, and each of M and N is semisimple and finitely generated. So M = ®;_; M;
and N = @;_;N; with M;, N; simple. Clearly R" is isomorphic to a finite direct sum of copies of the J;’s,
and so the result follows from the Krull-Schmidt Theorem for semisimple modules.

In the general case, we know that M is a direct sum of simple modules; if some simple summand N of M

is not isomorphic to one of the J;, then N is a finitely generated counterexample to the f.g. case. O

In short, if R is left semisimple, and we know the simple decomposition of R itself, then we have a complete
classification of all R-modules: they are just direct sums of the simple summands of R!

Much of the interest in semisimple rings arises from the following:

Theorem 3.49 (Maschke’s Theorem). If K is a field and G is a finite group such that char(K) does not
divide |G|, then the group ring K[G] is left semisimple.

Proof. Let i : N — M be any injection of left K[G]-modules. It suffices to prove that there is an K[G]-linear
map p : M — N such that poi = idy. By restriction of scalars along the inclusion K € K[G], we may
regard ¢ as a K-linear map between K-vector spaces. As such it admits a K-linear splitting f : M — N
(since K is semisimple). There is no reason that f will be K[G]-linear, but we can modify it so that it
becomes so: Define p: M — N by
plm) = & 3, 0 lam).
geG
Note that the formula makes sense since |G| is invertible in K by assumption.
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Then p is still a K-linear map (since f is K-linear and the group action is K-linear). For any h € G we
have
Z g~ f(ghm) = Z hx™" f(zm) = hp(m),
|G| geG ‘G‘ zeG
where the second equality is given by identifying x with gh. These conditions ensure that p is K[G]-linear.

Finally,
pli Zg*1f gi(n |G| > g7 flign)) |G‘ dig! an = iy Zn—n
gEG geG geG gEG
where the second equality uses that i is K[G]-linear and the third one uses that f o7 = id. ]

Remark 3.50. The proof actually shows that K[G] is semisimple provided K is and |G| is invertible in K.

Example 3.51. The group ring R = F,[C,] does not satisfy the hypotheses of Maschke’s theorem, since the
order of the group is zero in the field. In fact, Fp[C,] is not semisimple: let V = ]Ff, be the Cp, = (g) repre-

1 0 0
; L.e., as a F,[C)]-module, we have g- U= ® | Weclaim that U = is
Ano 1 b a+b b

the unique nonzero proper submodule of V. Let W < V be a nonzero submodule and suppose that U # W

sentation g" — l

a
Then, there is some element v = lbl € W with a # 0. Then v and gv are linearly independent, so we must

have W = V. It follows that V is not semisimple: it is not simple since 0 ;Cé U g V, but V is not a direct

sum of simple modules.

Let G be a finite group and K a field. The representation of G corresponding to K[G] viewed as a
left module over itself can be described explicitly as following: As a K-vector space, K[G] has G as a
basis: K[G] = @geck - g. G acts on this vector space by permuting the basis via left multiplication:
h- (X, ¢99) = 2, cg(hg). This is sometimes called the (left) regular representation of G.

Corollary 3.52 (Corollary of Maschke’s Theorem). If G is a finite group and K is a field such that char(K) ¢
|G|, then every K -linear representation of G is a direct sum of irreducible representations, and every finite
dimensional representation is uniquely a finite direct sum of irreducible ones.

Moreover, every irreducible representation arises as a summand of the left reqular representation.

Example 3.53. Let G = C'5. We can use Maschke’s Theorem and the theory of semisimple rings so far to
classify every representation of G over R or over C (or more generally over any field of characteristic not
equal to 3). In any case, the left regular representation V' of Cj is the three-dimensional representation with

basis {1,g,¢%} such that g-1=g,9-9g =99 -9°> =1, i.e.,

0 0 1
g— (1 0 0
01 0

in this basis. Also in any case, the subspace W spanned by 1 + g + g2, which is the vector (1,1,1) in these
coordinates, is a 1-dimensional G-stable subspace, so a simple subrepresentation. Moreover, this is the trivial
representation, since this vector is fixed by g. Then V /W obtains the structure of a representation. We can
take 1 + W,g+ W as a basis for V/W,and g- (1+ W) =g+ W,and g- (g+ W) =g*>+W =—-1—g+ W,

i.e., in our coordinates,
0 -1
I
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A G-stable subspace must correspond to an eigenvector of g (which is equivalently an eigenvector of g—1).
The characteristic equation of this matrix shows that the eigenvalues are precisely the primitive cube roots
of unity.

If K = R (or more generally if there are no primitive cube roots of unity), then the 2-dimensional
representation V /W we just found is simple since there are no stable subspaces. If K = C (or more generally
if there are primitive cube roots of unity), let w be a primitive cube root of unity. The 2-dimensional

2

representation V /W has w and w?® as eigenvalues, and there are corresponding eigenvectors, so V/W is a

direct sum of two 1-dimensional stable subspaces T, T” such that g -t = wt for all t e T and ¢ - t’ = w2t for
all t' € T".

Lecture of November 1, 2021

We conclude that every real representation of Cj is isomorphic to a direct sum of copies of the trivial
representation and copies of V/W. That is, for any such representation U, there is a basis of U, {e4}aca,
{e}, €5} pen, such that g - e, = eq, g€ = €, and g - e = —ejy — €.

We conclude that every complex representation of Cj3 is isomorphic to a direct sum of copies of the trivial

representation, T, and 7”. That is, for any such representation U, there is a basis of U, {eq}aca, {e’ﬁ}geg,

"

{eg}vec, such that g-e, = eq, g 6;3 = wefﬁ7 and g - ez =el.

3.5.2. Artin-Wedderburn Theorem. We will now give a classification of all left semisimple rings. To start,

we collect some examples.
Lemma 3.54. If R and S are left semisimple, so is the product ring R x S.

Proof. Say we have internal direct sum decompositions R=11®---PI,, and S = J; D --- D J, involving
minimal left ideals. Then for all a and b, I, x {0} and {0} x J, are minimal left ideals of R x S and they

determine an internal direct sum decomposition of R x S. (|

Example 3.55. The previous lemma and Lemma [3.37show that for any integer m > 0, list of division rings

Dy, ..., D,, and positive integers nq,..., N, the ring
R = Maty,, (D) x -+ x Maty,, (D)

is left semisimple.
The Artin-Wedderburn Theorem asserts that the last example accounts for all examples!

Theorem 3.56 (Artin-Wedderburn Theorem). Let R be a left semisimple ring. Then for some m = 0,

positive integers ny, ..., Ny, and division rings D1, ..., D,,, there is a ring isomorphism
R = Mat,, (D) x --- x Mat,,, (D).

Moreover,

(1) m is the number of isomorphism classes of simple left R-modules.

(2) Say My, ..., M,, are simple modules forming a complete set of representatives of these isomorphism
classes. Then, after reordering, D; =~ Endg(M;)°P and

(3) n; is the number of times summands isomorphic to M; occur in the decomposition of R into a direct

sum of simple left modules.

Moreover, the data (m;na,...,nm;D1,...,Dy) is unique up to a permutation of {1,...,m} and isomor-

phisms of division rings.
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Example 3.57. We saw before that the module decomposition in terms of simple modules is R[C3] = WU,

where W is the one-dimensional trivial representation, and U is the 2-dimensional representation given by

g— l(l) _ﬂ On the other hand, as rings,
R[C3] = R[g]/(g° = 1) = R[g]/(9 — 1) x R[g]/(¢* + g+ 1) =R x C.

To reconcile these decompositions by the Artin-Wedderburn Theorem, one can check that Endge, (W) =
R and Endgjc, (V/W) = C.

We have Endg[c,j(W) = R. To compute the endomorphism ring of V//W, observe that an R-linear
endomorphism of V /W is R[Cs]-linear if and only if it commutes with the action of g. We can write any R-

0 -1
linear endomorphism of V /W as a 2 x 2 matrix; for it to commute with g means it commutes with L 1 .

-1
a b0 -1 _ 0 —1|]a b _ b+c —a—b+d
c d|l|1 -1 1 —1||e d| |d—a+c -b—c ’

so the matrices we seek are of the form

e R P R e

Any pair of matrices in this set commutes (since the two vectorspace generators do) so they form a commu-

We have

tative ring and hence a field by Schur’s Lemma; any matrix in this collection is algebraic over the subring of
scalar matrices (since both generators are). It follows that this collection of matrices is isomorphic as a ring

to C.
Lecture of November 3, 2021

Lemma 3.58. Let M be an R-module. The map

Endg(M®") —2~ Mat, (Endg(M))
P [Tri?mj]i,j
is a Ting isomorphism, where v, and w denote the natural inclusion and projection maps.

Proof. It is clear that this map is additive, as each ¢; and 7; is. Observe that m;¢; is the identity on M if
i = j, and the zero map otherwise and that 1yen = >}, tx7.

The map
Endp(M®) << Mat, (Endg(M))
i bt Ty < [ajli

is a two-sided inverse for O:

C(O(¢) = C([mige;liy) = Zbiﬂi¢bjﬂj = (Z bm)qﬁ(Z 1jTj) = ¢, and

O ([ jliN)ke = O ticvi jmi ke = (D icvs jm)ee = Y \(whti)evi j(mwiee) = ke
i,j i,J 0,J
To see that © respects multiplication, we have

[OW)O()]i; = D (mitbwk) (mrbry) = mitbr; = O(P)i ;- 0

k
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Optional Exercise 3.59. Let D be a division ring. Then Endya,, (p)(D™) = D°P, where D™ is the simple

module of column vectors.

We now come to the main theorem regarding semisimple rings

Proof. Since R is left semisimple, we have R >~ I @ --- @ I; with each I; is simple (in fact a minimal ideal).
Group by isomorphism to rewrite this as R =~ Mfa"l @ @®ME" with each M; simple, n; > 1, and such
that M, is not isomorphic to M; for all 7 # j. We compute the endomorphisms of both sides:

m

(@mE T M) = [THomp(mE™ [T ME™)
J

i=1 j=1 i

EndR (R)

[
s
Q
8
s

)

I
s
s
o
e}
=)
=
£
®
E

) ®n,;
M)

= [ [Homp(ME", ME™)

3

= [ [Endr(MP™) = [ [ Mat,, (Endg(M;)).
i=1 i=1

Above the second line follows from the first by properties of Hom, the third follows because Schur’s
lemma gives that Hompg(M;, M;) = 0, and consequently HomR(Ml@"",Mj@nj) = 0, when ¢ # j. The final
isomorphism is the previous lemma.

On the one hand, we have Endg(R) = R°P by a problem from the homework. On the other hand, applying
Schur’s Lemma again, D} := Endg(M;) is a division ring for all .

Combining these gives

R°P =~ Mat,,, (D}) x -+ x Mat,,, (D)

and hence, also by a homework problem, we have
R =~ (Maty, (D}) x -+ x Mat,, (D},))” = Mat,, (D1) x -+ x Mat,,, (D)

with D; := (D})°P = End(M;)°P.

This shows that given a decomposition of R as a left semisimple module, there is a ring decomposition
as a product of matrix rings over division rings, and the data of division rings and matrix sizes is related to
the data of simple modules and multiplicities by the formulas (1)—(3). We just need to prove uniqueness.

Say we are given an isomorphism of rings R ~ H?=1 Mat,, (Q;) for some division rings @1,...,Qk. Then
since Maty, (Q;) decomposes as a direct sum of ¢; copies of N; := Qf, and N; is a simple Maty, (Q;)-module,

hence also a simple R-module, we have a semisimple R-module decomposition of R as
MP"@... o ME" = R= NP @...@ NO*.

By Krull-Schmidt, we must have m = k, and after a permutation, M; =~ N; = Qi@ti and n; = t; for each 1.
Moreover, we have
D; ~ EndR(MZ,)OP = EndR(Ni)Op_

We recall that N; =~ Q?m, with the natural column vector action from Mat,,(Q;), and the trivial action

from the other factors. Thus,

Endp(N;)*P = Endytat,, (0. (Q@F™) = @i,
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using the exercise above. O
Corollary 3.60. A ring is left semisimple if and only if it is right semisimple.

Proof. The claim is equivalent to showing R is left semisimple if and only R°P is, which in turn follows from
just one of the implications. If R is left semisimple, then R =~ [], Mat,, (D;), so R°? = [ [, Mat,,, (D;)°?
[, Mat,,, (D??) so R°P is left semisimple.

O

Henceforth, we just say that R is semisimple if it is left semisimple.

3.6. Applications to representation theory. Let us start by restating the Artin-Wedderburn theorem
in the context of group rings.

Theorem 3.61 (Artin-Wedderburn for group rings). If G is a finite group and K is a field such that

char(K) 1 |G|, then there is an isomorphism of rings
K[G] = Maty, (D) x -+ x Maty, (D),

where Dy, ..., Dy, are division rings. Furthermore, each D; contains K (up to isomorphism) as a subring
of its center and the above isomorphism is K -linear. In particular, dimg (D;) < o0.

Moroever, we have:

(1) m is the number of irreducible k-linear representation of G (up to isomorphism),

(2) the D;’s are the opposite rings of the endomorphism rings of these representations,

(3) the n;’s give the number of times each irreducible representation occurs in the decomposition of the
reqular representation of G,

(4) the numbers ny - dimg(D1), ..., Ny, - dimg(D,,) give the dimensions of these representations, and

(5) ni-dimy(Dy) + -+ + nZ, - dimg(D,,) = |G].

Proof. This mostly follows from Artin-Wedderburn and Maschke’s Theorem. What needs to be noted is
that each division ring here contains a copy of K in its center. Indeed, we recall that each D; is given as the
opposite ring of Endgq (M;) for some simple module M;. For A\ € K, we have the map M; X, M; which

commutes with any K[G]-linear map from M; to itself. O
Lecture of November 5, 2021

Corollary 3.62. Let G be a finite group, and K be a field such that char(K) 1 |G|. Then G is abelian if and
only if K[G] is isomorphic to a product of fields.

Lemma 3.63. Let G be any group and K any field. Given two group homomorphisms p1,p2 : G —> K* =
GL,(K), the associated K|[G]-modules My and My are isomorphic if and only if p1 = ps.

Proof. Suppose that o : My — Ms is an isomorphism of K |[G]-modules. Identifying M; = My = K as vector
spaces, we have a(k) = ck for some ¢ # 0. Then,

cp1(9)(k) = api(g)(k) = pa(g)a(k) = p2(g)(ck) = cpa(g)(k)
for all k € K, so p1(g)(k) = p2(g)(k) for all k € K. O
Proposition 3.64. If D is a division ring that contains R in its center and dimg (D) = 2, then D = C .

Proof. Pick x € DNR. Then R G R[z] € D, and since R[z] is an R-vectorspace, we must have R[z] = D for
dimension reasons. Thus D is commutative and is a field. Since D is a finite extension of R, it is algebraic,
so RS D < C, and we must have D = C. O



62 MATH 901 LECTURE NOTES, FALL 2021

Example 3.65. Let £ = R and G = S3. We find all the simple modules over the ring R[S3] or, equivalently,
all irreducible R-linear representations of S3. We also find the Artin-Wedderburn decomposition of R[Ss].

The one dimensional represenatations are given by group homomorphisms of the form S3 — R*, and any
such map factors as

Sz — S3b - R*.

Note that S5 = S3/A3 =~ Oy and there are two group homomorphisms Cy — R*, sending the generator
to either 1 or —1 (the only elements of R* of order 1 or 2). This gives two representations: M; = R with
Ss acting trivially and Ms = R with S35 acting by the sign representation. These are not isomorphic by the
previous lemma.

We have that 1 = dimg(M;) = ny -dimg(D;) so n; =1 and dimg(D;) = 1, and likewise 1 = dimg(M>) =
ng - dimg (D3) so ne = 1 and dimg(D2) = 1. So, the Artin-Wedderburn decomposition starts as

R[S3] 2 RxRx---.

Note that there are no further factors of R, since we found all of the one-dimensional simple modules.

Recall also that S3 acts on R? by permuting the basis (corresponding to the group homomorphism S3 —
GL3(R) sending a permutation to its associated permutation matrix). The subspace M3z = {(a,b,c) € R? |
a+ b+ c = 0} is a subrepresenation of R?® of dimension 2. We claim it is irreducible: Say 0 # (a, b, c) € Ms.

By applying a permutation and scaling appropriately we obtain an element of the form (1,x,—1—x) € M3
and hence (1,—1 — x,2) € M5. Adding these gives (2,—1,—1) € M3 and hence (—1,2,—1) € M3. The latter
two are linearly independent and so must span Ms. This proves (a,b,c) generates Mz as a left R[Ss]-
module and hence that Mjs is simple. Note that M3 is not isomorphic to either M; nor My by dimension
considerations.

We have that 2 = dim R(M3) = ng - dimg(D3), so there are two possibilities.

(1) One possibility is n3 = 1 and dimg(D3) = 2, in which case D3 =~ C, so the Artin-Wedderburn
decomposition reads as
R[S;] RxRxCx S

for some S. We must have dimg(S) = 2. We know that S cannot have any one-dimensional simple
modules (since we already accounted for all of the one-dimensional simple modules for R[S3]), so S
cannot be R x R. Then, for dimension reasons, we must have that S =~ D, with dimg(D,) = 2, so
S =~ C. But then

R[S;] 2 RxRxCxC

would be commutative, which it is not, as S3 is not abelian.
(2) The other possibility is ng = 2 and D3 = R. We obtain the AW decomposition
R[S3] = R x R x Mata(R).

(Alternatively, we could compute the endomorphism ring of M3 and see that it contains only scalars.)
We have found the AW decomposition of R[S3]. As a consequence, we have identified all of the irreducible

real representations of Ss.

3.6.1. Algebraically closed fields. When working over an algebraically closed field, the Artin-Wedderburn

Theorem takes a simpler form.
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Corollary 3.66 (Artin-Wedderburn for group rings over algebraically closed fields). If G is a finite group
and K is an algebraically closed field such that char(K) 1 |G|, then there is an isomorphism of rings

k[G] = Maty,, (K) x --- x Mat,, (K).
Moroever, we have:

(1) m is the number of irreducible K -linear representation of G (up to isomorphism),
(2) the D;’s are the opposite rings of the endomorphism rings of these representations,
3) the n;’s give the number of times each irreducible representation occurs in the decomposition of the
J
reqular representation of G,
(4) the n;’s also give the dimensions of these representations, and
(5) n+---+n2 =|G|.

Proof. The point is that in this setting, for each irreducible representation M;, D; = End g[q(M;)°P is equal
to K. Let 6 € Endgg)(M;). In particular, 6 is a K-linear endomorphism of the finite dimensional vector
space M;. Since K is algebraically closed, 6 has an eigenvaluse, say X\. Then 6 — Al,,, is a K[G]-linear
endomorphism of M; that is not injective, so by Schur’s Lemma is must be 0. Thus, 6 = A1y, . ]

Lecture of November 8, 2021

Example 3.67. Let k = C and consider the alternating group G = A4 of order 12. We find all the simple
modules over the ring C[A4] or, equivalently, all irreducible C-linear representations of A4. We also find the
Artin-Wedderburn decomposition of C[A4].

As before we start by finding 1-dimensional representations given by group homomorphisms of the form
A4 — C*. Any such map factors as

Ay —» AP = C3 - C*

and thus there are three nonisomorphic 1-dimensional representations given by p; : C3 = {gy) — C*, p;(g) =
e%, with ¢ = 0,1,2. Note that py corresponds to the trivial representation. Also p; and ps make essential
use of the fact that we are working over C as opposed to, say, R where there are no primitive cubic roots
of 1.

With respect to the Artin-Wedderburn decomposition we have so far
C[A4] = C x C x C x Maty,(C) x --- x Mat,, (C).

where ns, ..., n, = 2 because we have already found all the 1-dimensional representations (n; = 1) above.
Counting dimensions we obtain

m

12=1+1+1+ ) n’

i=4
It is easy to see there is only one solution: m = 4 and n4y = 3. Hence there is a unique up to isomorphism
C-linear irreducible representation of A4 which is a 3 dimensional C-vector space.

To exhibit such a representation, let A4 act on V = C* by permuting the standard basis elements and

thus any vector in V. The subspace W < V given by
W ={(a,b,c,d) | a+b+c+d=0}

is an Ay-stable subspace. This is an irreducible representation: if v € W ~ 0, after permuting and scaling,

we can write v = (1,z,y,—1 —z — y). We also have (1,—1 —z — y,z,y) and (1,y,—1 — x — y,x) in {v), so
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the sum (3,—1,—1,—1) € (v). Then (—1,3,—1,—1) and (—1,—1,3,—1) are also in {(v), and these are three

linearly independent vectors, so we must have (v) = W.

Remark 3.68. Let’s consider what the Artin-Wedderburn Theorem says about complex representations of
finite abelian groups: the group ring must be a product of copies of C, so every irreducible representation is
one-dimensional. Thus, every representation is a sum of one-dimensional representations. Concretely, this
means that there is a basis in which every group element acts as a diagonal matrix.

This special case actually just follows from basic facts in linear algebra. Let p : G — GL,(C) be a
representation. Then every g € G has finite order, so g¥ — 1 for some k. This implies that the matrix p(g)
satisfies p(g)* = I, so its minimal polynomial divides z* — 1. This polynomial splits into distinct linear
factors over C, so p(g) is diagonalizable for every g € G. (So far, we’ve only used that G is finite.) Now,
since g is abelian, we have gh = hg for all g,h € G, so p(g)p(h) = p(h)p(g); i.e., the matrices commute.

Commuting diagonalizable matrices are simultaneously diagonalizable; i.e., there is a basis as above.

Proposition 3.69. Let G be a finite group. The number of one-dimensional complex representations of G
(up to isomorphism) is |G®P|. Thus, in the Artin-Wedderburn decomposition of C[G], there are ezactly |G2P]
copies of C.

Proof. We have that Homgp(G,C*) =~ Homap(G®?,C*), and by the discussion above, there are |G2|

distinct one-dimensional representations of G2P. ]

Proposition 3.70. For any finite group G, the number of irreducible complex representations (up to iso-

morphism) is equal to the number of conjugacy classes.

Proof. We have

C[G] = Mat,, (C) x --- x Mat,,, (C)
and m is the number of irreducible complex representations up to isomorphism. A key point is that the
center of the right side is CI,,, x --- x CI,,, , which has dimension m as a complex vector space. Since this
ring isomorphism is C-linear, it induces a C-linear isomorphism of the centers, and thus we just need to show
that dimc(Z(C[G])) is equal to the number of conjugacy classes.

Let (4, ..., C} denote the conjugacy classes of G (i.e., the orbits for the action of G on itself by conjuga-
tion). For each i set z; = 3 . g € C[G]. Thenforallz € G, rzzl = YgeCs zgr~! = 2; and it follows that
zi € Z(C[G]). Since that z;’s are sums of disjoint subsets of a basis of C[G], they are linearly independent.
Now say Zg cqg belongs to the center. Then for each z € G,

chxgx_l = .L“(Z cgg)r ! = chg
g 9 9

and it follows that ¢, = ¢;, whenever g, h are conjugate. This proves that Z(C[G]) is spanned by z1,. .., 2.
We conclude that h = dim¢(Z(C[G])) = m. O

Lecture of November 10, 2021

4. HOMOLOGICAL ALGEBRA

Homological algebra is the study of homology - a measure for the nonexactness of chain complexes which

we shall define below.
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4.1. The category of chain complexes of R-modules. Let’s define “chain complex” carefully.

Definition 4.1. For a ring R, a chain complex of left R-modules is a pair consisting of

e a family of left R-modules indexed by Z, {M,}icz
e a family of R-module homomorphisms {d; : M; — M;_1}iez such that d;_1 o d; = 0 for all 4, i.e.,
ud2 — 077 .
Such a pair is usually written as (M,,d) or (M,,d™) or just M,. The map d (really, the family of maps) is
called the differential of the chain complex. We may say that the homological degree of M; is i.

Example 4.2. Infinitely many of the modules M; in a chain complex could be zero of course. So, for
example, a short exact sequence
0— My —> M; — My —0

will be regarded as a chain complex with M; = 0 for all ¢ ¢ {0, 1, 2}.

Example 4.3. For those who have taken (or will take) a course in algebraic topology, given a topological
space X, we form a chain complex Co(X) := Co(X;Z) over the ring Z, called the singular chain complex

associated to X, as follows.

e Define C,, (X) to be the free Z-module with basis given by the set of all continuous functions A™ — X

where A" is the standard topological n-simplex:

A" :={(ro,...,rp) ER™ | 1y > 0727"i =1}.

For n < 0, Cp(X) := 0.
e The map d,, : Cp,(X) — C,—1(X) is the unique homomorphism of abelian groups sending a basis
element g : A™ — X to > ,(—1)'g o af where af : A""! — A™ is the map (rg,...,7p—1) —
(Foy .oy 7im1, 0,74y ooy Pie1).
Since the singular chain complex associated to X is huge (the modules C,, are usually not finitely gener-
ated), in practice it is more convenient to work with X being a simplicial complex (union of simplices) and

C.(X) being the simplicial chain complex of X. This complex has
Cp(X) = the free Z module with basis given by the n-dimensional simplices of X

and dy, : Cp(X) - Cp—1(X) is given by sending

d"({’f‘o,...7’l“n_1}): (—l)i{To,...,fi,...77“n}

-

1=0

where the hat indicates removing one vertex to get an n — 1-dimensional simplex.

For a very concrete example, let’s take X to be the following (hollow) triangle

1

/N

2— 3.
This gives the simplicial chain complex

Co(X): 02,73 4, 73 Do,
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where the maps d; = 0 for ¢ # 0 and the map d; is given by the following matrix
1 1 0
di=|-1 0 1
0 -1 -1
with respect to the ordered bases {1,2}, {1, 3}, {2, 3} and {1}, {2}, {3}. Here {i} denotes the map {i} : A® —» X
which maps A to the vertex i of X and {i, j} denotes the map {i,5} : Al — X which maps A! to the edge
[4,7] of X.

Definition 4.4. A chain map from one chain complex of left R-modules (M,,d") to another (N,,d") is a
family of left R-module homomorphisms f; : M; — N;, for i € Z, such that d¥ o f; = fi_1 0dM for all i. We
often write a chain map as just f : (M,,d™) — (N,,d"), or even just f: M, — N,.

Pictorially, a chain map is a commutative diagram of the form

— My — M, — M,y —— -

N

> 4V N; Ni_q

in which both rows are complexes and all squares commute.

Example 4.5. Straightforward examples of maps between chain complexes include:
e the identity map idyy, : (Mo, dM) — (M,,dM), f; = idp,
e the zero map 0 : (M,,d™) — (N,,dV), fi =0

Example 4.6. If f: X — Y is a continuous map between topological spaces, there is an induced chain map
fr 1 (Ce(X),d) = (Cu(Y),d) between associated singular chain complexes defined by composition with f in

the evident way.

Example 4.7. Consider the complexes (M,,d™), (N,,dN), (N.,dN") of Z-modules given by

1
~1 [1 1}

M, = 0 Z VA Z 0,

N, = 0 7z L7 0 0

N/ = 0 0 7z -7 0

where we consider the last column to be homological degree —1. The map f : (No,d") — (M,,dM) given by

1
fo=1, fi = lol is not a chain map, since the square with f; and fy does not commute: one composition in

’ 1
the 0,1 square is zero and the other isn’t. However, the map f : (N.,d"') — (M,,d™) given by f; = ol

fo = 1 is a chain map; the 1,2 square has both compositions zero, and the both compositions in the 0,1
square are multiplication by 1 on Z. Also, the map f : (M,,d™) — (N.,d") given by fo =1, f; = [1 0]

is a chain map.
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Proposition 4.8. For any ring R, chain complexes and chain maps of left R-modules form a category,

written R — Comp .

Proof. We need to give a rule for composing morphisms and check that it satisfies the axioms. Of course,
composition will take place degree-by-degree. We should check that a composition of chain maps is a chain
map, and that composition is associative. Let f : (L.,d*) — (M,,d™) and g : (M,,d™) — (N,,d"V) be

chain maps. Then
(g0 Fidiyy = gifidiy = 9idity fivr = A 1gim1 fivn = da(g 0 i
Associativity of composition follows directly from the same fact for module maps. O

Lecture of November 12, 2021
The category R — Comp has many similarities to R — Mod. These similarities are axiomatized in the

definition of abelian category, which we won’t pursue here. Rather, let’s just notice a few.

Remark 4.9. e Given any two chain maps f,g : (M., d™) — (N,,d"™), the sum (f + g); = f; + g; is a
chain map. Under this operation, the set Hompg_comp((M.,d™), (N.,d")) is an abelian group.
e There is an initial and terminal “0 object”: the chain complex consisting entirely of 0 modules with
0 differential.
e For any two elements in R — Comp, the product and coproduct exist, and are given by isomorphic
objects. Namely, for chain complexes (M,,d™),(N,,d") the product is the chain complex (M, ®
N.,d™ @ d") for which the modules are M; @ N; and the differential is

M| o

dM @adN =
l 0 |d¥

] M; ® Ny — M; 1 ® N;1.

We also call this the direct sum of these complexes.
e We can also talk about the kernel and cokernel of a chain map:
— the kernel of f : (M,,d™) — (N,,d") is the complex (K,,d") with K; = ker(f;) and d¥ =
diy| k.-
— the cokernel of f : (M,,d™) — (N,,d") is the complex (C,, d¥) with C; = coker(f;) and d is
map induced by d on the quotient modules C; — C;_;.

Example 4.10. Let’s return to the complexes of Z-modules from before. We can compute Hom g comp ((Ne, dV), (M,, dM)).

b
For a chain map f, we need to specify fo = [a] and f; = [ ] The commutativity of the square forces
c

—a

b
l “ ] = l ], so we conclude that this hom group is Z.
c

Let’s also compute a direct sum: (N, @ N.,dN @ dN') is the complex

0 Z Z

We can define exact sequences in R — Comp.

Definition 4.11. A short exact sequence of chain complexes is a sequence of chain complexes of chain maps
of the form
0— (M, d)— (M. d) — (M,,d") >0
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that is an exact sequence of R-modules in each degree. Pictorially, a short exact sequence of chain complexes

is a commutative diagram

/ /
'4>Mi+14>Mi4>Mi714>"'

— My — M, —— M;  —— -

0 0 0
in which each row is a complex and each column is a short exact sequence of modules. (One might add
horizontal arrows between the 0 modules along the top and the bottom, but they are redundant and just

add clutter.)

Example 4.12. Returning to our same running examples, there is a short exact sequence

1
0 0 z Z 0
1 1
1 0
-1 1 1}
0 Z 72 7 0
1 [0 1]
1
0 z z 0 0

4.2. Homology.

Definition 4.13. Given a chain complex M, = (M,,d) of left R modules, its homology is the sequence of
left R-modules indexed by Z defined by

ker(d; : M; — M;_1)

im(dit1 @ Mip1 — M,;)

for i € Z. We also give names to the modules in the numerator and denominator above

H'L(M.) = HI(M.,d) =

Z; :=ker(d; : M; — M;_1) is called the module of i-cycles

B; :=1im(d;41 : M1 — M,;) is called the module of i-boundaries.

Remark 4.14. A chain complex M, is exact if and only if H;(M,) = 0 for all 4.
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Example 4.15. For a module M, we write M[0] for the complex with M[0]; = 0 for all i # 0 and

M]J0]o = M. The differential is (necessarily) the 0 map in each degree. The homology modules of M][0] is
H;(M[0]) = 0 for i # 0 and Ho(M][0]) = M.

Example 4.16. The homology of a complex with just two nonzero modules located in degrees 0 and 1,

0> My My 0 -

is H;(M,d) =0 for all i # 0,1, Hy(M,d) = coker(dy) and Hi(M,d) = ker(dy).
Example 4.17. If (V,,d) is a complex of K-vector spaces, then, by the rank nullity theorem
dimg H;(Ve,d) = dimg (V;) — rank(d;41) — rank(d;).

Example 4.18 (Homology groups in topology). The homology of the singular chain complex Co(X) of a
topological space X are known as the homology groups of X.

Let’s compute the homology groups of the simplicial complex X from Example where the relevant
chain complex is

0 O (X)) =7 Oy (X)) =78 50— -

)

To compute the homology let’s perform row reduction on the matrix of the differential d;:

110 110 110 100
10 1 | el gy oq g | Retfenfb g g | G2 g g
0 -1 -1 0 -1 -1 00 0 000

The row and column operations amount to performing changes of basis on the free modules Cy(X) = Z*
and C1(X) = Z3. The last matrix above gives a new description for the differential d; with respect to the
ordered bases {1,2},{1,3} — {1,2} — {2,3},{2,3} and {1}, {1} + {2}, {1} + {2} + {3}. We now see that

Hy(Co(X)) = ker(dy) = Z({1,3} —{1,2} = {2,3}) = Z
) = oty = DO+ DO+ 3 o

lle

Z({1} + {2} + {3}) = Z.

Now suppose that Y is the simplicial complex obtained by filling in the triangle X with a 2-dimensional
simplex. Then C,(Y) is

0 (V) =Z B0 (X) =7 L Cy(X) =72 > 0> -

3

T
where dy = [1 -1 1] with respect to the bases {1,2,3} and {1,2}, {1, 3}, {2,3}, i.e. im(ds) = Z({1,2} —

{1,3} + {2,3}).
From the computations above we see that ker(dy) = Z({1,3} — {1,2} — {2,3}). Hence H1(C.(Y)) =0
since ker(d;) = im(dz) and H3(C,.(Y)) = 0 because ds is injective.
The topological significance of the computations above is that
e the rank of Hy measures the number of connected components: both for X and for Y there is one
connected component and Hy = Z has rank one;
e the rank of H; measures the number of 1-dimensional “holes”: X has one such hole (X is homotopic
to the circle S') and H;(Ce(X)) = Z but Y has no such holes and H;(C.(Y)) = 0;

e the rank of Hy measures the number of 2-dimensional “holes” etc.
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Definition 4.19 (Induced map in homology). Given a chain map f : (M,,d) — (N,,d) for each i write
H;(f): H;(M,) — H;(N,) for the map induced by f in the following manner: given z € ker(d; : M; — M;_1),
we define H;(f)(Z) = f(2).

Remark 4.20. The function H;(f) is indeed a well-defined R-linear map: Note, first of all, that for z €
ker(di : Mz - i—l) we have dl(fz(z)) = fi_l(dz(z)) = fz—l(o) = 0, and hence fz(Z) € ker(di : Nz - Ni—l)-
Thus, we have a well-defined element f;(z) of H;(N,). Moreover, if Z = g in H;(M,) for elements y, z €

ker(d; : M; — M;_1), then y — z = d%l(w) for some w € M;,1. It follows that

fily) = fi(z) = fily — 2) = fi(d}1(w)) = d¥ 1 (fis1(w)),

since f is a chain map, and hence f;(y) = fi(2) holds in H;(N,). This proves H;(f) is well-defined. It is

easy to see that it is an R-module homomorphism.
Lecture of November 15, 2021
Definition 4.21. A chain map f : M, — N, is a quasi-isomorphism if H;(f) is an isomorphism for all i € Z.

Example 4.22. The chain map

O<—-0OCO
o= N
-
=
-

2/22 —— 0 —— ---

is a quasi-isomorphism.

Example 4.23. Admitting a quasi-isomorphism is stronger than having isomorphic homology in each degree.

Consider the complexes

2

M, 0 —> Z/47 ALY/ 0

2

N. 0 ——> 7/27 7./27. 0.

Observe that Hy(M,) = {[2]4) = Z/2Z, Ho(M,) = {[1]2) = Z/27Z, H1(N,) = {[1]2) = Z/2Z, and Hy(N,) =
{[1]2) = Z/27Z. There is no chain map f : M, — N, for which H;(f) is an isomorphism, since f;([2]4) = 0,
so Hi(f) = 0. Likewise, there is no chain map f : N, — M, for which Hy(f) is an isomorphism, since
2fo([1]2) = 0 implies fy([1]2) € {[2]4) and hence Hy(f) = 0.

Next we promote homology to being a functor.

Lemma 4.24. For each fized i, H;(—) is an additive functor
H;(—): R— Comp — R — Mod.

Recall that this means H;(f o g) = Hi(f) o Hi(g9), Hi(id) = id, and H;(f + g) = Hi(f) + Hi(g)-
Proof. These follow easily from Definition O

However, the homology functors are not exact.
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Example 4.25. Consider the following short exact sequence of complexes K-vector spaces (where each row

is a complex, and the vertical maps are chain maps)

M. 0 0 K¢ 0

M. 0 Kb — =5 Kb 0
=

M 0 Kb 2 Ke 0

Then applying Hy yields

K*—0——=0

and applying H; yields
0 —— 0 —— ker(p) = K

Note that neither of these is exact.
4.2.1. The long exact sequence of homology.

Proposition 4.26 (Snake Lemma). For a ring R, suppose

i p

M M M 0
PE
0 N L N N

is a commutative diagram of left R-modules such that each row is an exact sequence. Then there is an exact
sequence of the form

g

ker(f") — ker(f) LR ker(f") LN coker(f") ER coker(f) LR coker(f").

which can be visualized in relation to the previous diagram as follows

ker f/ ——— ker f ker f”
l ! L
M M M

f/i fJ/ f//\L
N’ N N”

b

coker f/ —— coker f —— coker f”

The map 0 is called the connecting homomorphism, as is given as follows: For m” € ker(f"), pick m e M
such that p(m) = m”. Then qf(m) =0 and hence f(m) = j(n') for a element n’ € N’'. Set

o(m) =n’ + im(f’) € coker(f").
Moreover, if i is injective and if q is surjective they lead to an exact sequence

il

0 — ker(f'") — ker(f) LR ker(f") 2, coker(f") ER coker(f) & coker(f") — 0.
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The map ¢ can be illustrated as follows:

m
ker(f) ker(f) ker(f")
mre—+4———>=m"
YL 1 M M
nkE—---—---=->n
N N N
n' +im(f’)
coker(f") coker( f) coker(f")

Proof. One needs to show many things.

e Well-definedness of i| and p|, specifically the fact that the images of these maps land in ker(f) and
ker(f") respectively:

To show this for i|, consider u € ker(f’). Then i|(u) = i(u) and f(i(u)) = j(f'(v)) = j(0) = 0 by
the commutativity of the given diagram. Thus i|(u) € ker(f) as desired. The same argument works
for p|.

o Well-definedness of j and g, specifically independence of coset representative.

To show this for g, consider n — 72 € im(f). Then we have g(n) — q(n) = ¢(n — 1) € ¢(im(f)) =
17 (im(p)) < im( ) yields that gn +im(f)) = g(n) +im(f") = g((n)) +im(f") = g(@i +im(/)). The
same argument works for .

e Exactness at ker(f):

It is clear that im(i|) € ker(p|). If m € ker(p|) = ker(f) n ker(p), then m = i(m’) for some

m’ € M', and j(f'(m’)) = f(i(m')) = f(m) = 0, and since j is injective, f'(m’) = 0, so m’ € ker(f’).
e Exactness at coker(f):

It is clear that im(j) € ker(q). If fi € ker(q), then g(n) € im(f”), so there is some m” such that
qg(n) = f"(m”). We can write m” = p(m) for some m € M. Then g(n) = f"(p(m)) = q(f(m)) so
q(n — f(m)) = 0. Thus n — f(m) = j(n') for some n’ € N, so i = j(n').

Lecture of November 17, 2021

o Well-definedness of ¢:

First, given m” € ker(f”), p is surjective, so we can write p(m) = m”. Then 0 = f"(p(m)) =
q(f(m)), so n = f(m) € ker(q) = im(j), and hence we can choose n’ such that j(n') = n.

To see that d(m”) is independent of the choice of m occurring in its construction, suppose m; and
mo satisfy p(m1) = m” = p(ms), and let nf,n, be the unique elements satisfying j(n}) = f(m1)
and j(nb) = f(mz). Then p(m; —ms2) = 0 and hence by exactness of the top row, there is a m’ such

that i(m’) = m1 — ms. By the commutativity of the left square we get

J(f(m)) = fi(m') = f(ma) = f(m2) = j(ny) = j(ny) = j(n} —nj).
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Since j is injective, it follows that f'(m’) = n] — nj and hence that n} + im(f’) = n} + im(f’). So,
we have proven ¢ is a well-defined function.

The fact that ¢ is R-linear follows from noting that if p(m) = m/ and p(mg) = mj, then we have
p(rmy +me) = rm{ + m4, and likewise with j.

e im(p|) = ker(0):

If m” € ker(f") satisfies m” = p(z) for some x € ker(f), then in the construction of ¢ we may
take m = x and it follows that f(m) = 0 and hence d(m') = 0. This proves im(p|) < ker(f”). If
d(m") = 0, then, using the same letters as in the construction of ¢, n’ = f/(m’) for some m’ € M.
Then p(m — i(m')) = p(m) = m” and f(m — i(m')) = f(m) — jf'(m’) = 0, which proves that
m” € im(p|). This proves the other containment.

e im(0) = ker j:

For m” € M”, write d(m”) = n' 4+ im(f’); then, in the construction, j(n') = n € im(f), so
im(0) < kerj. If j(n' + im(f’)) = 0, then j(n') € im(f), so write n = j(n’) = f(m). Then
F1(p(m)) = a(f(m)) = qG(w)) = 0, 50 p(m) € ker(f"), and (p(m)) = n’ + im(f) by definition,
which proves that n’ + im(f) € im(?).

e Exactness at ker(f’) and coker(f”) given exactness at M’ and N”:
Clear, since the restriction of an injective map is injective, and the map induced on a quotient by

a surjective map is surjective. |

Example 4.27. Given an m x n matrix A and a prime p, write A for the reduction of A modulo p. In
general, there may be solutions of Av = 0 that are not of the form v = w for any w such that Aw = 0. We

can use the Snake Lemma to understand the difference: there is a chain map of short exact sequences

0 /SR S 0
.
0 zm > 7zm s 0,

which by the snake lemma yields an exact sequence
0 — ker(A) % ker(A) — ker(A) 2 coker(A) 2 coker(A) — coker(A) — 0.

This gives a short exact sequence

— m — ker(A) — im(J) — 0,
so the image of the connecting map measures how many solutions mod p do not come from solutions in Z.
We also have an isomorphism im(d) = ker(coker(A) 2> coker(A)).

The connecting homomorphism is given by the formula d(v) = [%Af}], where 0 is a lift of v: any vector in

Z whose coordinates are representatives for the coordinates of v.
Lecture of November 19, 2021

Theorem 4.28 (Long exact sequence in homology). If 0 — M, ERY VREN M! — 0 is a short exact sequence
of chain complezes of left R-modules, then there is a long exact sequence of left R-modules of the form

()

- — H;(M]) ), H;(M,) H), H; (M) iR i1 (ML) HinaG) Hia(p)

H;_1(M,)

also often drawn as



74 MATH 901 LECTURE NOTES, FALL 2021

- —— H;(M,) H;(M.)
T Hp (M) —— Hi (M) — Hi (M)
(’71,1//

%‘ 1"
H (Mo) (M.) - i—Q(Mo)

i—2 > i—2

H;(M]) —

)

T Ho(M) ———= Ho(M.) —— Ho(MY)...

where the map 0; is defined as follows:

Given z € ker(d; : M| — M!_,), since p is onto, we may find a w € M; such that p;(w) = z. For any
choice of such a w, we have p(d(w)) = d(p(w)) = d(z) = 0 and hence, by the exactness in the middle of the
original s.e.s., there is a unique u € M[_; such that j(u) = d(w). We have jd(u) = d(j(u)) = d(d(w)) =0
and thus, since j is one-to-one, u € ker(d;—1). We set 0;(Z) =u € H;—1(M!).

Proof. The theorem follows from several applications of the Snake Lemma:

e First we note that for any n, we have a commutative diagram

0 M, M, M 0
ld/{\zl/ ldﬁl ld%”
0 M’:lfl Mnfl M;,’{,I 0,

so by the Snake Lemma we get exact sequences
0= Zn(M,) = Zn(M.) — Zn(M]))
M, /By (M) = My /B (M) — M;//Bn (M) — 0.
e Next we observe that since the boundaries B,, are contained in the kernel of the differential d,, and

since the image of d,, is contained in Z,,, the universal mapping property of the quotient gives that

the differentials d,, for the three complexes induce vertical maps as follows

M,/ Bn(M{) —— M,/Bp(Ms) —— M}/Bp(M]) —0

— ’ —_ — "
J{ aM i a l aM

0 —> Zy_1(M)) Zn1(My) —— Z, 1 (M)

e observe that the kernel of d,, is H,, and the cokernel of d,, is H,_; therefore the Snake Lemma

applied to the diagram in the previous bullet point yields a six term exact sequence
Hn(M:) - Hn(M-) - Hn(M:/) i nfl(M:) - anl(MO) - anl(M:/)

Comparing the description of ¢ given by the Snake Lemma and the description of @,, above one sees

that these maps are the same. O

Corollary 4.29 (Two out of three exactness). If 0 - M, — M, — M. — 0 is a short exact sequence of
chain complezes of left R-modules and if any two of the three complexes are exact, then the third complex is

also exact.
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Proof. Recall that a complex is exact if and only if all its homology modules are equal to 0. Now if two
of the three given complexes are exact (say M, and M. are exact for concreteness), it means that in the
long exact sequence in homology we have two zeros surrounding each of the homology modules of the third

complex (M) as follows:

. Hi(p) OEL# i—l(M:) H;—1(j) 0 Hia(p)

The presence of the 0 homology modules implies that ¢; = 0 = H;_1(p), and the exactness yields H; 1 (M]) =
ker(H;_1(j)) = im(0;) = 0 for any ¢ € Z. Thus M, is exact. O

Example 4.30. Let M, be a chain complex. We can make chain complexes Z,(M,), B,(M,) with differential

zero. Then we obtain a short exact sequence of complexes
0 — Zo(M.) 1> M, % BJ[-1](M.) — 0,

where d is given by the differential on M,:

(The [—1] after B, is to keep track of the fact that the homological indices are off by 1.) We compute the

long exact sequence of homology:

Hy (d) 0

> Ho(Zo(M) 29, hy(,) Ho(BJ-1](M.)) & Hy 1(Zu(M.)) — -+

Since Z.(M,) and B.[—1](M.,) have zero differential, the homology modules are just the modules of those
complexes. The map H;(j') maps a cycle to its homology class in H;(M,). The map H;(d) takes a homology
class, and applies the differential to a representative, which yields zero since a representative is a cycle, so
this is the zero map. The connecting map is just the inclusion map of the boundaries into the cycles. Thus
the long exact sequence is

s Hpi1 (M) S Bo(M.) — Zn(M.) — Hp(M) % By (M) — -+,

which breaks into short exact sequences

0 - Bp,(M.) = Z,(M,) —» H,(M,) — 0.
Here is an application.

Proposition 4.31. Let F' be an exact functor and M, be a chain complexr. There are isomorphisms
H,(F(M,)) ~ F(H,(M,)) for allneZ.
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Proof. Write j!. : Bp(M,) > Z,(M.), j" : Z,(Ms) — M,, and j oj! = j, : B,(M,) — M, for the inclusion

n

maps. We have a short exact sequence
0 — B, (M) 25 Z,(M,) — H,(M.) — 0,

and hence also ‘
0 — F(By(M.)) —2% F(Z,(M.)) — F(H,(M.)) — 0.

Observe that the differential d,, : M,, — M,,_1 can be written as d,, = j,od,,, with d : M,, — B, _1(M,).

Apply F' to the short exact sequence of complexes
0 Zo(M) L M, & BJ-1)(M.) — 0,

to get

ie.,

F(in) F(d,)
0 —— F(Z,(M.)) — F(M,) — > F(B,_1(Ma)) — 0

0 F(d,) 0
Fjn-1) F(d,_1)
0—— F(Zn—l Mo)) - F(Mn—l) - F(B7L—2(Mo)) —0

Take the long exact sequence of homology:

Hn (F(d))

= F(Z, () 2T g, (R0 F(By 1(M.)) % F(Zp 1(M.)) = -+

As F(d) is the differential on F'(M,), the map H, (F(d')) is zero. We claim that the connecting morphism
is F(j/,_1). Indeed, for b e F(B,-1(M.)), take m € F(M,) with F(d},)(m) = b. Then

F(dp)(m) = F(jn-1)(b) = F(jn1)(F(jp-1) (),

so d(b) = F(j;,_1)(b). Thus, the long each sequence in homology reads

F(i,)

© = Hyr(F(M.)) = F(By(M.)) =% F(Zy(M.)) — Hy(F(M.)) = F(Buoa (M.)) = -+

which yields short exact sequences

F(in

0 = F(Bu(M.)) = F(Zn(M.)) — Hy(F(M,)) — 0.

Thus, we obtain isomorphisms F(H,,(M,)) =~ H,(F(M,)). O

4.3. Homotopy of chain maps.

Definition 4.32. Suppose M, and N, are two chain complexes of R-modules and f,g : M, — N, are two
chain maps joining them. We say f and g are homotopic (or sometimes chain homotopic), written f ~y;pc g,

if there is a family of R-maps h; : M; — N,y 1, i € Z, such that

ANy ohi+hiiod =fi—gi
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for all ¢. (Succinctly, dh + hd = f — g.) Such a family of maps {h;}icz is called a chain homotopy joining f

to g. A chain map is called null-homotopic if f ~ype 0.

Here is a picture of a chain homotopy

c—— My ——> M; —— M; 4 —— -

A

+—> Njyg —— N, —— N, —— --- .

The squares commute but the triangles do not. Rather, the sum of the two compositions in each rhombus

e —> 0
e —> o
occuring in this diagram is equal to the difference of f and g.

Example 4.33. If f,g: X — Y are continuous maps between topoogical spaces that are homotopic in the
sense of topology, then the induced maps on singular chain complexes fy, g : Co(X) — Co(Y) are chain

homotopic.

Example 4.34. I claim the chain map pictured below is null homotopic:

0 0 Z 0
I N
0 757 0

The main point of chain homotopy is given by the following result:

Proposition 4.35. Homotopic chain maps induce the same map on homology: If f and g are chain maps
from (M,,d™) to (N,,dN) and they are homotopic, then H;(f) = H;(g) for all i.

In particular, a null homotopic map induces the 0 map on homology.

Proof. We prove the second assertion first. Suppose f is null-homotopic. For any i, let Z € H;(M) be a
class represented by an element z € ker(d; : M; — M;_1). Since f is null-homotopic, there is a h such that
dVh + hd™ = f. So f(z) = dV(h(z)) + h(d™(z)) = d¥(h(z)) since d(z) = 0. This gives f(z) € im(d) and
hence f(z) = 0 in H;(N.).

If f ~hipe g, then f — g is null-homotopic, so that H;(f — g) = 0, by what we just proved. Since H; is
additive, we have 0 = H;(f — g) = H;(f) — Hi(9g). O
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Example 4.36. The converse of this proposition is false. For example, the chain map of Z-modules pictured

as

0 0 7.)27. 0

ok

s 0 —= ZJA7 — 2~ 7)47. 0

induces the 0 map on all homology groups, but it is not null homotopic. Indeed, the only possible homotopy
would be 0 in all degrees except one, in which it would be a map hq : {(Z/2Z) — Z/AZ. The only possibilities

for hg are the 0 map and the map of multiplication by 2, but neither works.

Lecture of November 22, 2021
4.4. Projective and Injective Resolutions.

4.4.1. Free and Projective resolutions.

Definition 4.37. Let M be an R-module. A free resolution of M is a chain complex F, of free R-modules
Y N DN Ny AN 2 RN B
along with a map 7 : Fy — M such that the augmented complex
B AN N N N NN NN, ) R T

is exact. Similarly, a projective resolution is a complex of projective modules that satisfies the same condi-

tions.

In particular, a free or projective resolution of M is a chain complex such that H;(P,) = 0 for ¢ # 0 and
Hy(P,) =~ M.

Free resolutions always exist:
Lemma 4.38. Every R-module admits a free resolution.

Proof. Let M be an R-module. There is a surjection 7 from a free module F, onto M (given by mapping
a free basis of a free module to a generating set for M). Then, ker(r) € Fj is a module, and there is a
surjection 7y from a free module F onto ker(7); let dy : Fy — Fy be the composition of 71 and the inclusion

map. Take a surjection from a free module onto ker(d;), and continue like so. ]

A free or projective resolution can be thought of as an approximation of M by free/projective modules
via a sort of inclusion/exclusion method: A crude approximation of M is a free module Fy that surjects onto
it. Such an approximation is too big, so we want to subtract the kernel of 7, and we take a free module that
surjects onto the kernel for F} &, Fy. But we might consider this as subtracting too much, since F}; may
properly surject onto, so be bigger than, the kernel. And so on.

They need not be unique.

Example 4.39. For a ring R, a free resolution of the free module R is 0 - R — 0, with the map 7 : R LR

1
1 11
We could also take 0 - R —— R? — 0, with the map 7 : R?> —

R.



MATH 901 LECTURE NOTES, FALL 2021 79

Example 4.40. Let K be a field, and R = K[z, y] be a polynomial ring over K. Take M = R/(x,y). There

r y
is a surjection 7 : R — M. The kernel of 7 is generated by = and ¥, so we can take d; : R? L—L R.
We need to find the kernel of dy: if zf + yg = 0 in R, then xf = —yg, and since R is a UFD, we have

Y

f =1yh,g = —xh for some h € R. Thus, ker(d;) = R - , 0 we can take

as a free resolution.

Example 4.41. Let K be afield, and R = K|z, y]/(zy). Take M = R/(z). There is a surjection 7 : R — M.
The kernel of this is generated by (z), so we can take d; : R = R. The kernel of this consists of the elements

killed by = in R, which is (y), so we can take dg %> R. It’s now clear this keeps repeating:
+>R5RLRS5RL RS R—0.
4.4.2. Injective resolutions.

Definition 4.42. For a ring R and R-module M, an injective resolution of M is complex of the form

dt d?

0> B0 g, g

(with E° in homological degree zero) such that each E? is injective for all 4, together with an R-map M 4 Bo
such that the augmented sequence

dt d?

0 M5 oL, pr 4, g2 &

is an exact complex.

Remark 4.43. The notation above follows cohmological indezring, in which we write a complex
.HMQE,MlLMO&M_lb,M_zH.H

as
a4t

—2 d_ 0
SN 2L NP EL N0 N N2,

where N* = M_, and d* = d_;.

Lecture of November 29, 2021

Injective resolutions also exist.
Proposition 4.44. Every R-module admits an injective resolution.

Proof. Given a module M, by a result above we can find an injective R-linear map j : M — E° with E°
injective. Let N = coker(j) = E°/im(j) and apply this result again to obtain a injective R-module map
N — E' with E! injective. Let E° — E! be the composition of E° — N — E!. Then we have a l.e.s
0 - N — E' — E?. Repeating this process (by taking the cokernel of E' — E? and injecting it into an

injective R-module, etc.), we build a (possibly never-ending) injective resolution of M. O

Example 4.45. Let us find an injective resolution of Z as a module over itself. We have the evident

embedding Z — Q and we know Q is injective since it is divisible. The cokernel is Q/Z, which is injective
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since it too is divisible. Thus

is an injective resolution of Z.

Example 4.46. Let’s find an injective resolution of Z/nZ as a Z-module. We have

0—Z/nZ —Q/Z — E' -0 — -

where E' is the quotient of Q/Z by the subgroup generated by 1/n + Z. In other words E' = > J:%_l. Then

E' is divisible and hence injective.

Definition 4.47. Let M and N be R-modules, and P, and (), be two complexes such that P, = 0 and
Q; = 0 for all i < 0. Suppose we have maps Py = M and Qy - N. We say that a chain map f: P, — Q,
lifts an R-module map f: M — N if the diagram of complexes

PQ $ Q.
P l J/ q
f
M —— N
commutes. Equivalently, such a map is a lift if the diagram

Py Py Py oM 0

RN

q

Q2 Q1 Qo M 0

commutes.

Similarly, in cohomological notation, if P* and Q® be two complexes such that P’ = 0 and Q = 0 for all
i < 0 and we have maps M & P? and N 5 QO, we say that a chain map f : P* — Q° lifts an R-module
map f : M — N if the diagram of complexes

P f Qc
p

Tq
f
M —— N

commutes.

Theorem 4.48. Let M and N be R-modules, f : M — N an R-module homomorphism. Consider two
complezes

P.: —>P2—>P1—>P0—>0—>0—>

Q. = = Q= Q> Qp—>0—-0— -
with maps Py 2> M and Qo 2 N. Suppose that P; is projective for all i and that the augmentation of Q.,

5> Q1> QLN -0,

s exact.
Then there is a lift f : Po — Q. of f. Moreover, f is unique up to homotopy: if ' : Ps — Q. is another
lift of £, then f ~ppe f.
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Proof. For existence, as illustrated below,

dy ar
P P L .p—r oM 0
| | |
| | |
| fa I f1 I fo f
| | |
Y d2Q Y d? Y q
Q2 Q1 Qo N 0,

we need to construct maps f; : P; — Q; for i > 0 such that ¢f, = fp and d?ﬁ = fi_ldf for i = 1. To

construct fo, we merely use the definition of projective and the diagram

Py

ifo 7
0// lfp
%

Qo —— N ——0.

Suppose we have constructed maps fo, ceey fn for some n = 0 so that dZQﬁ = fi_ldf for 1 < <n. (When
n = 0, the condition is vacuous.) Then dgfndfﬂ = fn_ldfjdfﬂ =0, so im(fnde) S Z,(Q.) = Bn(Q,),

using exactness of (),. Use the definition of projective again with the diagram

Pn+1
Hf'rH»l - - s P
< Frndy 41
e
£ 49

n+1
Qn+1 . Bn(Q-) —0
to construct fnﬂ such that dg 1 fn+1 = fndf holds too. This proves existence.
Lecture of December 1, 2021
For uniqueness, suppose f " is another such chain map. Observe that f - f’ is a chain map from P, — @),
that extends the zero map from M to N. Thus, it suffices to prove that if f : P, — Q, is a lift of the zero

map, then f is null-homotopic. That is,

P P Py M 0
v v
_ h ’ _ ho 7 _
far d i, d fo 0
v v
s 47 £ dy q
Q2 (@) Qo N 0,

we need to show there are maps h; : P, — @;41 for ¢ > 0 such that dgrlhi + h;_1df = ﬂ forall i > 0. (In
the latter equation, when ¢ = 0 we have h_; = 0.)
Since g o fo = Op = 0, the image of fy is contained in ker(gq) = im(d?) = By(Q.) and so since Py is

projective, considering the diagram

%/d?
@1 —— Bo(Q.) — 0.

there is a map hg : Py — Q1 such that d? o hg = go as needed.
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We will proceed inductively again. When we separate out the “new part” in the null-homotopy equation,
we get dgﬂhn = fn — hn_1dY | so we want to use the projective lifting property to the map on the right;
to do that, it should be in the image of the differential through which we want to lift it. Hence, we will be
interested in showing that the image such a map consists of boundaries.

So, as part of the base case of our induction, we observe that
df (fi = hod?) = dP fi = dPhodf = fodf — dPhod} = dPhod} — df hodf =0,

so im(fi — hodf) = Z1(Q.) = B1(Qu).
Suppose maps hy, ..., h, have been constructed for some n > 0 with dgﬂhn + hp1db = fn, and that

im(fn+1 - hndﬁ.t,_l) < Bn+1(Qo)-
Since P, 1 is projective, considering the diagram

Pn+1
P 7| -
- frt1—hnd, 1
b
£ 49

n+2
Qn+2 4; Bn-‘rl(QO) - 0;

there is a map hyp11 : Ppy1 — @Qpnio such that dg+2 ohpi1 = fn+1 — hndfﬂ. Then
dg+2(fn+2 - hn+1d5+2) = fn+1d5+2 - dg+2hn+1d5+2 = (fn+1 - dg+2hn+1)d5+2 = hndﬁ-&—ldr‘i&-Q = 0.

Again using exactness of ()., we see that im(f,HQ — hanfH) C Bp12(Q.). Thus, by induction, we can

construct such a map h. O

Definition 4.49. Given two chain complexes (M,,d) and (N,,d), a chain map f : M, — N, is called
a homotopy equivalence, written f : M, — N,, if there is a chain map g : N, — M, such that both

compositions are homotopic to the identity map: f o g ~pipc idy and go f ~pepe idas.

Remark 4.50. If f : M, — N, is a homotopy equivalence, then f is a quasi-isomorphism. Indeed, using
Proposition [4.35| we see that H;(f)oH;(g) = H;(fog) = Hi(idn) = idp, () and Hi(g)o Hi(f) = Hi(go f) =
H;(idpr) = id g, (n,)-

Example 4.51. Let M be an R-module and let
> P >P—>P—>0—----

along with 7 : Py — M form a projective resolution of M. We may interpret this as an example of a

quasi-isomorphism: The map 7 induces a chain map
m: Py — MJ0]

which is the map 7 in degree 0 and (necessarily) the zero map in all other degrees. (By abuse of notation,

we call the chain map 7 too.) Here is a picture of the chain map =

P, P, Py

B

0 0 M
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On homology we have H;(P,) = 0 for all ¢ # 0 and H;(M[0]) = 0 for all ¢ # 0, so that H;(w) is an

isomorphism, vacuouly, for all i # 0. In degree 0, the map
Ho(ﬂ') : HQ(P.) i Ho(M)

is the isomorphism 7 : coker(do) = Pp/im(do) = Py/ker(m) = M induced by m. So 7 is indeed a quasi-
isomorphism.

However, I clam that 7 is not a homotopy equivalence in general. If it were, there would be a chain map
g: M — P, such that m o g ~pgpe idps (and also for the other composition). Note that the chain map g is
really just a map go : M — Fy. Let h be a homotopy realizing 7 o g ~p¢pe idas. Since M = M[0] is only
nonzero in degree 0, h has to be the zero map. It follows that m o g = idy; and hence the composition

M2 P55 M

is the identity. That is, M is isomorphic to a summand of Py and hence M itself is projective. But, of course

M is an arbitrary module so it need not be projective.

Corollary 4.52. Any two projective resolutions of the same module are homotopy equivalent: if p : Cy —> M
and q¢ : Q. = M are two projective resolutions of a module M, then there is a homotopy equivalence

g: Py = Q. such that the triangle diagram of chain complezes

commutes. (Equuialently, g is a lift of the identity map on M.) Moreover, g is unique up to homotopy.

Proof. Applying the previous result to the identity map on M gives a chain map g : P, — @, such that
q o g = p. Moreover, g is unique up to homotopy by the uniqueness clause of the previous result.

By interchanging the roles of P, and (), we get a chain map f : Q. — P, such that po f = ¢q. The
composition f o g is a chain endomorphism of P, such that po fog = p. Since we also have poidp, = p, the
uniqueness clause of the previous result gives that f o g is homotopic to id¢,. Similarly, g o f is homotopic
to ido, - ]

T’ll skip the proof of the following two statements. Both the statements and the proofs are given by
flipping the orientation of all the arrows involved in the previous two statements and proofs.

Theorem 4.53. Let M and N be R-modules, f : M — N an R-module homomorphism, and i : M —> E*
and j : N => F* injective resolutions. Then there is a lift f : E* — F* of f, and such a lift is unique up to
homotopy.

Corollary 4.54. Any two injective resolutions of the same module are homotopy equivalent via a chain map

that is unique up to homotopy.

Optional Exercise 4.55. If g is a homotopy equivalence, and F is an additive covariant functor, then F(g)

is a homotopy equivalence.
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4.5. Derived functors.

Definition 4.56. Let R and S be rings and F' : R — Mod — S — Mod be a right exact covariant functor.
For each j > 0, we define a functor L;F' : R — Mod — S — Mod as follows:
For every R-module fix a projective resolution PM LM, M, and for every R-module homomorphism

f:M — N, fix a chain map f: PM — PN lifting f.

e On objects, for an R-module M, we set L; F'(M) := H;(F(P,)).
e On morphisms, for f: M — N, we set L;F(f) := H;(F(f)).

We call L; F' the jth left derived functor of F'.

Lecture of December 3, 2021
In fact, this definition is not well defined! However, it is well-defined up to natural isomorphism, and we

follow the standard abuse of notation by calling it “the” derived functor rather than “a” derived functor.

Proposition 4.57. Let R and S be rings and F : R—Mod — S —Mod be a right exact covariant functor.
The functor L; F is well-defined up to natural isomorphism; i.e., for two choices of projective resolutions and

lifts of maps, there is a natural isomorphism between the functors resulting from the definition.

Proof. For every R-module fix two projective resolutions PM 22, M and QM 5 M, and for every
R-module homomorphism f : M — N, fix chain maps f : PM — PN and f' : QM — QN lifting f. Set
L;F(M) := H;(F(PM)) with L;F(f) := H;(F(f)) and Ly F(M) := H;(F(Q))) with L} F(f) := H;(F(f")).

For any module M, there is a homotopy equivalence ga; : PM Zhee, QM that lifts the identity map on
M. Then F(eys) : F(PM) — F(QM) is a homotopy equivalence, and hence a quasi-isomorphism; i.e., we
define our natural isomorphism 7 via ny = H;(F(enr)).

Let f: M — N be a morphism. We need to show that the square

Ly E(f)
L;F(M) ——=L;F(N)

nmM \L lﬂN
LiF(f)

J

L/ F(M) > L/ F(N)

commutes. To do so, consider the square of chain maps:

PJV[ f PN
eMm J{ \L eN
f/

QY —Ql.

This does not necessarily commute, but f’ ogny and gy © f both lift f: since

M am M f/ N
P. Q. Q.

\L Pm J{ qm \L qN
Moyt N

commutes, we have that f’ o gpr lifts f, and similarly for the other composition. By homotopy uniqueness

of lifts for projective resolutions, we have f’'oenr ~pipe en o f. Since additive functors preserve homotopies,
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we have F(f' o ear) ~nipe F(en o f) Homotopic maps induce the same map on homology, so we have
H,(F(f") o Hj(Fem)) = Hi(F(f' o enr)) = Hy(Flen o f)) = H;(F(en)) o H;(F(f)).
This is exactly the commutativity of the square. (Il

Optional Exercise 4.58. Let R and S be rings and F': R — Mod — S — Mod be a right exact covariant
functor. Then LL; F is additive.

Here is the key example of a left derived functor.
4.5.1. The Tor functor.
Definition 4.59. For a ring R, right R-module N and left R-module M, we define
Torf (N, M) :=L;(N ®g —)(M)

to be the j-th left derived functor of the functor N ® g — : R — Mod — Ab. So, for each j, Torf(N, M) is
an abelian group. When R is commutative, N ® g — can be viewed as taking values in R — Mod and hence

Torf(N, M) is an R-module; analogously when N is a bimodule.
Explicitly,
Tor®(N, M) = Hy(--- 295, N @ p, 188, N @, p 1NCL, N gy py 0 — )

where P, = M is a projective resolution of M.
Lecture of December 6, 2021

Example 4.60. Let’s compute TorJZA(N7 Z/nZ) for any Z-module N and integers n > 1, and j.
We have the projective resolution - -+ — 0 — Z - Z(— Z/nZ) — 0 of Z/nZ and so Torf(N, Z/nZ) is the
homology of the complex
0> N@zZ % N, Z -0

(where the two nonzero terms lie in degrees 0 and 1). This complex is isomorphic to the complex
0> N5HN-0

and hence
Tord(N,Z/nZ) = N/nN = N ® Z/nZ,

Torf(N,Z/nZ) ~ ker(N & N) = {z € N | n-z = 0},
and
Torf(N, Z/nZ) = L;F(Z/nZ) = 0
for all j ¢ {0, 1}.
Note that Tor!'(N, Z/nZ) is the n-torsion submodule of N — this explains the notation Tor.

Example 4.61. Let R = k[z,y] for a field k and let M be an R-module. Let’s compute TorX (M, R/(z,y)).
The kernel of the canonical surjection R — R/(x,y) is the ideal (z,y) and from before we saw how to resolve

(x,y) freely. This gives the resolution

R — R/(x,y) — 0.
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It follows that Torf (M, R/(z,y)) is the homology of the complex

-y
-~-HOHMLM@2MMHOH

So Torf (M, R/(z,y)) = {m € M | zm = 0 = ym}. The module Tor?(M, R/(x,v)) is a bit more complicated:
It consists of pairs (m,n) in M @ M such that xm + yn = 0, modulo the “obvious” pairs that satisfy this

condition, namely those of the form (—yt,xt) for some t € M.

Returning to the general situation of a right exact covariant functor F, let’s compute a “formula” for the
Oth left derived functor Lo F(M).

Proposition 4.62. For any covariant right exact functor F' and R-module M, there is a natural isomorphism
LoF (M)~ F(M)

In particular,
Torf(N,M) ~ N@r M

for all right R-modules N and left R-modules M .

Proof. Let P, <> M be a projective resolution for M. Since P; 2 Py £ M — 0 is right exact, so is

F(P) 29 ppy) 22 p(ar) — 0.
The homology in degree 0 of F(P,) is the cokernel of F(P;) Fld), F(Py), which is isomorphic to F(M) via
Ho(F(p)).
The check of naturality is left as an exercise. O

The following proposition is a first justification of the idea that derived functors measure the failure of

exactness.
Proposition 4.63. If F is an exact covariant functor, then L;F =0 for all i > 0.

Proof. If P, is a projective resolution of a module M, then P, %> M — 0 is exact, and so is F'(P,) o), F(M).
Thus, H;(F(F.)) = 0 for i > 0. O

A large part of the magic of Tor comes from the following fact, called balancedness of Tor. For every

R-module M, there is a right exact functor
—Q®gr M : R°®* — Mod — Ab.

We can take the left derived functors of this; let’s say

/R
%

Tor', (—, M) :=L;(— ®r M).

Then Balancedness of Tor states that for every right R-module N and every left R-module M, there is an
isomorphism Tor (N, M) = Tor’ZR (N, M). Concretely, if P, is a projective resolution of M and @, is a
projective resolution of N, then

Hi(Pe ®@r N) = H;(M ®r Q).

Maybe we’ll prove this later if we have time.
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4.5.2. Right derived functors.

Definition 4.64. Let R and S be rings and F' : R — Mod — S — Mod be a left exact covariant functor.
For each j > 0, we define a functor R7F : R — Mod — S — Mod as follows:

M
For every R-module fix an injective resolution M “— E3,, and for every R-module homomorphism
f:M — N, fix a chain map f : E}, — E% lifting f.

e On objects, for an R-module M, we set R'F(M) := H/ (F(E%;)).
e On morphisms, for f: M — N, we set RIF(f) := HI(F(f)).

We call RIF the jth right derived functor of F.

Definition 4.65. Let R and S be rings and G : R—Mod — S —Mod be a left exact contravariant functor.
Recall that such a functor turns right exact sequences into left exact sequences. For each j > 0, we define a
functor R’G : R — Mod — S — Mod as follows:

For every R-module fix a projective resolution PM LM, M, and for every R-module homomorphism

f:M — N, fix a chain map f : PM — PN lifting f.
e On objects, for an R-module M, we set RIG(M) := H/(G(PM)).

e On morphisms, for f: M — N, we set RIG(f) := HI(G(f)).
We call RIG the jth right derived functor of F.

The following summarizes properties analogous to those worked out carefully above for right exact covari-

ant functors:

Proposition 4.66. Let R, S, F', and G be as in the definitions above.

e The functors R'F and R'G are well-defined up to natural isomorphism.
e We have canonical isomorphisms ROF(M) =~ F(M) and R°G(M) =~ G(M).
e If F or G is exact, R"OF =0 or R®°G = 0, respectively.

4.5.3. The Ext functor.
Definition 4.67. For a pair of left R-modules M and N, we define
Ext) (M, —)! = R’Hompg (M, —)
and
Extg%(—7 NI = R'Homp(—, N).
Both Extg%(M ,N)! and Extg%(M , N)I! are abelian groups in general and R-modules when R is commutative.

There is a balancedness statement for Ext as well: for every pair of R-modules M and N, Extgz(M ,N)T =
Ext%(M, N)!L. Then one just writes

Ext}, (M, N) := Ext), (M, N)! = Ext’, (M, N)!L.

For now we’ll keep the superscripts.
Lecture of December 8, 2021

Example 4.68. Let’s compute Ext}(Z/mZ, Z/nZ)! and Ext}(Z/mZ, Z/nZ)".
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For the latter, we start with the free resolution ---0 — Z > Z(— Z/mZ) — 0 of Z/m and apply
Homy(—,Z/nZ) to obtain

-« 0 « Homgy(Z,Z/nZ) <~ Homy(Z,Z/nZ) < 0
which is isomorphic to
w0« Z/nZ < 7/nZ 0.
The two nonzero homology modules are both isomorphic to Z/gZ where g = ged(m,n). So
Z/9Z i=0,1
0 1> 2.

Ext}(Z/mZ, Z/nZ)'T ~

For the former, we will use the following fact: For any integer j there is a short exact sequence

T»—>1/n

0 Z/j7 =" Q/Z L Q/Z — 0.

This holds since Q/Z is divisible and the kernel of multiplication by j is {? | 0 < i < j— 1}, which is
generated by 1/7

In particular, we have an injective resolution
0—7Z/nZ —Q/Z5Q/Z—0— -
of Z/nZ. Applying Homy(Z/mZ, —) gives
0 — Homg(Z/mZ,Q/Z) = Homgz(Z/mZ,Q/Z) — 0 — --- .

Now, the only elements of Q/Z have have order a multiple of m are the elements % +Z for 0 < j <m, and

they form a cyclic subgroup of order m. It follows that
Homgy(Z/mZ,Q/Z) ~ Homy(Z/mZ,Z/mZ) =~ Z/mZ
and that the previous complex is isomorphic to
- 0—Z/mZ " Z/mZ —0 — -

This gives

, Z/gZ i=0,1
Extl(Z/mZ,Z/nZ)" = /9

4.6. Long exact sequence of a derived functor. Our next goal is to explain how we can use derived
functors to extend a left exact or right exact sequence obtained from a functor into a long exact sequence.

The technical ingredient we need is a method to lift short exact sequences to resolutions.

Lemma 4.69. Let
0-A4LBL%C 0
be a short exact sequence.
Then there exist projective resolutions PA — A, PP — B, P¢ — C and lifts P2 ER PB, pB LR PE such
that )
0— PALL pB 9, pC

is exact for all 1.
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Likewise, there exist injective resolutions A — E%, B — Ey, C — E and lifts £ R Es3,, E%, 9, E?,
such that )
0— By 15 B 25 BL -0
is exact for all i.

Proof. Start with any projective resolutions for A and C, PA — A and PS¢ — C. For all i, set PP := PA®PFL

for all 7, ﬁ . PA > PA @ PE to be the inclusion map, and §; : PA @ PY — PE to be the projection map.

K3

Clearly
0 pA L, pB I, po g

is exact for all 7.

We need to construct differentials (including an augmentation) on P? that make P? — B an exact

complex and f and § chain maps. Since P¢ is projective and g : B — C is surjective, we can lift

0 P PP F§ 0
7/
paA \L 7 7 ipc
7
y
0 Al .l ¢ 0,
so gy = pc. Set pp : PP(= Pé“@POC) — B tobe fps®~.
Then the diagram commutes:
0 pp Lo pp ®. po 0
pAl l ipc
0 At .p_*.¢ 0:

the left square is clear, and for the right
pcgo(u, w) = po(w) = gy(w);  gpe(u, w) = g(fpa(u) +v(w)) = gy(w).
By the Snake Lemma,
coker(pa) — coker(pp) — coker(pc) — 0

is exact, so pp is surjective. Also,
0 — ker(pa) — ker(pp) — ker(pc) — coker(A)

is exact, so
0 — ker(pa) — ker(pp) — ker(pc) — 0
is.
We can now proceed inductively on i (precisely, that we have constructed d?, ..., d? such that H;(PF) = 0
for i = 0,...,4, the maps f and § are chain maps up through the ith spot, and that the ith induced maps
on cycles also form a short exact sequence), at each step applying essentially the previous case to

fiv1 Ji+1
A B C
0 P P P 0

A
di+1l \Ldgil

0 —= 7,(Pf) —L= z,(PB) > 7,(PC) —= 0.
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The injective case is similar. O

Theorem 4.70. Let
0-A4LBL 00

be a short exact sequence.

(1) Let F: R—Mod — S —Mod be a covariant right exact functor. Then there is a long exact sequence
s LiFA) B L ) BP9 L p0) 2 L F(A) — - — LiF(O) 2 Fa) 29 pBy 29 pe) - 0.

(2) Let F: R—Mod — S —Mod be a covariant left exact functor. Then there is a long exact sequence

RF(f)

0 FA) 29 pB) 29 po) 2 RIF(4) - - — RITIF(0) 225 Rip(4) BEY, pip(p) 2EY, pipo) - ...

(3) Let G : R — Mod — S — Mod be a contravariant left exact functor. Then there is a long exact

sequence

0 &(C) 29 aB) CY% @A) 2 RIGO) - - — RTIG(A) 25 Rig(0) 299 rigB) B9V, Rig(a) -

Proof. For (1), take projective resolutions P/* — A, PE — B, PY — C and lifts P,A - PB P.B 2, P¢ such
that )

0— PA L, pB I, pC
is exact for all . Observe that these sequences are all split exact, since PiC is projective. Then

0 - F(PA) EYiy ppBy 99, ppcy - g

K2

is split exact for all 4, as well. That is,
0— (P 2 F(PP) 22 F(PE) - 0

is a short exact sequence of complexes. We obtain a long exact sequence in homology. Applying the
definitions, this is exactly the long exact sequence above.

(2) and (3) are similar. O

We apply these to Ext and Tor.

Theorem 4.71. Let
0-ALBL oS0

be a short exact sequence of R-modules.

(1) For any right R-module N, there is a long exact sequence

TorE (N, f) Torf(N,g)
—_—t —_—

-« — Torf{(N, A) Tor(N, B) Tor (N, C) Tor/* (N, A) —

11—

S TorB(N,0) 2 Nor A Y2, Nep B Y2, N @R C — 0.

(2) For any R-module M, there is a long ezact sequence (thinking of Ext as Ext!)

Hompg (M, f)

0 —Homp (M, A) Homp(M, B) 22229, yom n(M, €) 25 Exth (M, A) —

Exth (M, f) Exth (M,g)
—_— —_—

- o Bxtis (M, C) 225 Bxti, (M, A) Exth (M, B) Exth(M,C) —
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(3) For any R-module M, there is a long exact sequence (thinking of Ext as Ext'!)

HOmR(f,M)
_—

0 —>Homp(C, M) 222092 o p(B, M) Homp(A, M) 25 Ext},(C, M) — ---

O0i—1

C o Bt (A, M) S Extiy (O, M) 2R,

Exti (B, M) 2220,

Extl (A, M) — ---
In particular, the long exact sequences give us the correction term for failure of left exactness of Tor /
right exactness of Ext: they are given by connecting maps in the corresponding long exact sequences.

Here is an application of the long exact sequence.

Proposition 4.72. Let R be a ring, and M be an R-module. The following are equivalent:
(1) M is projective.
(2) Extia(M,N) =0 for alli > 0 and all R-modules N.
(3) Exty(M,N) =0 for all i > 0 and all R-modules N.

Proof. If M is projective, then Hompg (M, —) is exact. Hence, its (nontrivial) right derived functors all vanish,
as shown above.

If Extg (M, N) = 0 for all i > 0, we claim that Hompg (M, —) is exact. Indeed, given a short exact sequence
0-A4LBL 0

the long exact sequence of Extzé(M ,—) starts

Hompg (M, f) Homp (M
_ _

0 — Homp(M, A) Homp (M, B) 9, Homp(M,C) — Extl (M, A) — - .

By assumption, we then have that

Hompg (M, f) Hompg(M,g)
_ _

0 —» Hompg (M, A) Hompg (M, B) Homg(M,C) — 0

is exact. Thus, Hompg (M, —) is an exact functor, and M is projective. O

Remark 4.73. In this argument, we showed that M is projective if and only if Ext”%(M, N)! = 0 for all N;
no balancing of Ext was used. Note that if M is projective, we clearly also have Ext>0(M ,N)IT =0 for all

N, since we can take a projective resolution for M that only lives in degree 0.

Lecture of December 10, 2021

Similarly,

Proposition 4.74. Let R be a ring, and M be an R-module. The following are equivalent:
(1) N is injective.
(2) Exth(M,N) =0 for alli > 0 and all R-modules M.
(3) Exth(M,N) =0 for alli > 0 and all R-modules M.

Here is a slightly more subtle fact.

Proposition 4.75. Let L and N be R-modules. If Ext}{(N,L) = 0 then every short exact sequence of the
form

X.: 0-LLML NS0
splits.

Proof. Recall that X, splits if and only if there is some ¢ : M — L such that qf = 11; equivalently,
17, € im(Homp(f, L)). Consider the long exact sequence of Ext%(—, L):

Hompg(g,L)
—_

0 — Homp(N, L) Homp(M, L) 222D Homp(L, L) & Exth(N, L) — - .
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From the assumption, we have ¢ = 0, so Hompg(f, L) is surjective, and the claim follows. O

4.7. Balancing Tor and Ext. Our last goal is to balance Tor and Ext. We’ll just deal with Ext, but Tor

is similar.

Definition 4.76. Given a module M and a projective resolution P, — M, we denote by Q;(M) the i — 1

module of cycles of the exact complex (augmented resolution)
> P> P —-PFP—->M—-0.

We call this the ith syzygy module of M.

The modules ; (M) depend on the choice of projective resolution (but there is a uniqueness type statement

given by Schanuel’s Lemma). Note that Q¢(M) = M and that for all ¢ > 0 we have a short exact sequence

Similarly, given an injective resolution M — E*®, we define the cosyzygy modules Q¢(M) , and have
Q°(M) = M and
0— Q(M)— E; > QM) — 0.

Lemma 4.77. (1) Let F be a right exact covariant functor. Then for alli = 0 and all j > 0 there are
isomorphisms
L F (i1 (M)) = Ly F(Q(M)).
Hence, LiF (M) = L1 F(Q—1(M)) for all k > 0.
(2) Let F be a left exact covariant functor. Then for all i >0 and j > 0 there are isomorphisms
RIF(QTH(M)) = RITLF(QY(M)).
Hence RFF(M) = RYF(QF1M) for all k > 0.
(3) Let G be a left exact contravariant functor. Then for alli = 0 and j > 0 there are isomorphisms
RIG(Qir1 (M) = RIFIG(Q:(M)).

Hence RFG(M) = R'G(Qy,_1 M) for all k > 0.

Proof. Take the long exact sequence of L; F' from the short exact sequence above. We get
oLy F(P) = Lja Qi(M) — L1 (M) — L F(P) — -+ -

For j > 0, we have L;F(P;) = 0 since P; is projective (so it is a projective resolution of itself). The
isomorphisms follow.

The other cases are similar. O
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Lemma 4.78. Given a commutative diagram with each row and column exact of the form

0 0 0
0 % M —2 = N coker(a)
0 L M N 0
b d
0 L’ M ‘ N" coker(c)
coker(b) 0 coker(d)

we have coker(a) = coker(b) and coker(c) = coker(d).

Proof. Since M surjects onto N and onto M”, we have
im(c) = im(M - M” - N") = im(M — N — N") = im(d),

so coker(c) = coker(d).

We can apply the Snake Lemma to the bottom two rows to get
M’ % N’ — coker(b) — 0

exact, so coker(c) = coker(b). O

Theorem 4.79. Let M, N be R-modules. Then Ext’y(M, N)! ~ Ext, (M, N)!. (Le., R"Homp(M, —)(N) =
R™(Hompg(—, N)(M)).

Proof. For n = 0, we have Homg (M, N) for both sides.
Fix a projective resolutions P, — M and injective resolution ) — N. We have the short exact sequences
0— Qi (M) P L) -0
for all i = 0. Apply Homp(—, E?) yields a short exact sequence
0 — Homp(Q(M), E9) 25 Homp(P,, E) 25 Homp (Qisr (M), E) — 0.
From the functor Hompg(—, Q7 (N)) we get the long exact sequence
0 — Homp((M),Q7 (V) 25 Homp (P, 97 (N)) 25> Homp(Qis1 (M), 7 (N))
— BExtp(2%(M), Q7 (N)) — Extp (P, Q(N)) — -

Note that the last term is zero, since P; is projective.

Now, we also have the short exact sequences
0— QI(N) L BT S QItH(N) =0,
which yield short exact sequences

0 — Homp(P;, ¥ (N)) 25 Homp(P;, E7) <% Hompg (P, QI +1(N)) — 0
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and long exact sequences

0 — Homp (4 (M),Q7 (N)) 2% Homp((M), B) <> Homp(Q; (M), ¥ (N))
— BExth(Q;(M), Q7 (N)) — Extr(Qi(M), E?) — - .
Again, the last term here is zero.

Thus, there is a diagram with exact rows and columns:

0 0 0
o e e |

0 —> Hompg(Qs(M), 2 (N)) — Homg(P;, ¥ (N)) —— Hompg(Qit1 (M), (N)) —= Exth(Q:(M), Q2 (N))'! —=0
RE " VRE . VRE

0 — Hompg(Q4(M), ) —— Hompg(P;, B) — > Homg(Qi11(M), E?) 0
Jos . o ) o

0 — Hompg(Q:(M), QT (N)) = Hompg(Pi, ¥ (N)) Z> Hompg Qi1 (M), Q¥ HH(N)) — Exth(Q:(M), ¥ H(N) —0

| | |

Ext(Q:(M), 27 (N))! 0 Exth(Qi1 (M), 2 (V)
/ {
0 0

Furthermore, this diagram commutes, as in each square the two maps are given by precomposing and
postcomposing by the same pair of maps.

From the lemma, we see immediately that
Extp(Q: (M), (N)) = Extp(Q;(M), Q7 (N),
so taking ¢ = j = 0, we have
Extp(M,N)! =~ Extp(M, N)T.
We also have
Ext (i1 (M), ¥ (N))T = Exth(Q(M), 27+ (V)"
so combined with the previous isomorphism,
Exty (Qis1(M), Q7(N)) = Extp(Q:(M), Q7 (N)),
and inductively
Extp, (Qn—1(M), Q°(N))" = Extp(Q0(M), 2" H(N))
for all n. Thus,
Ext (M, N)" = Exty(Qn—1(M),Q°(N))" = Exty(Qo(M), Q" (N))!
=~ Extk(Qo(M), Q" Y(N))! = Exth (M, N)™.
Thus, the isomorphism holds for all n. O
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(—)*, ] Endg (M),

1A: E EndAb ,

1, [ im(¢), [16

A-algebra, [4] ker(¢),

A-algebra homomorphism, E| ITxea X, @

A— Alg, [ rMsg, [16]

A—cAlg, [ ex;[[1

B;, [63 f®g,[30

F — G,[[@ f®g,[0

G-equivariant map, [44] f*,

G-stable, [{4] faes

G2b, memn, m

K — Vect, B (left) regular representation of G,
K — vect, 3|

M®g —, [0 abelian category, [67]

M, (R), abelianization, [T]]

R-balanced biadditive, ACC,

R-bilinear, @ acts linearly,

R-linear map, additive,

R-multilinear, [35] arrows, 2

R — Comp, [57] Artinian,

R — Mod,[§ ascending chain condition, [50]
2:;) bimodule,

ROr. boundaries, @

VE, category, [I]

Zi,[68 category theoretic, [6]
GLn(R), chain complex, [T6] [65]

Homp (=, M), cohmological indexing, [77]
Hompg(M, ), cokernel, [T6] [67]

Ob, [I] commutative A-algebra, [4]
[Txea X, EI commutative diagram,
(M), complex,

Ab,[2 composition, 2]

Fid, [f composition series, 7]

Grp, |2| connecting homomorphism, @
PO(P), contravariant functor, [I0]
Ring, 3] contravariant Hom functor, 2]
Set, 2 coproduct, [7]

Sets, [ covariant functor,

Top, [3] covariant Hom functor,
cRing, [I0] cycles,

Cont(X,R), |1

Homp (M, N), DCC, 0]

Hompg (M, f descending chain condition, [50]
Hompg(f, M), diagram, [f]

Home (A, B) , differential,

Resgy, @ direct sum, @

E x 9, El divisible,@

¢op, dual, [6]
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dual vector space, E opposite category, [5]
opposite ring, [T4]

epic, [

epimorphism, |§| pointed sets, @
equivalent, @ presentation, E

exact, [T6] 2] product, [6]

extension, [I7] 7] product category, [f
extension of scalars, projective resolution, @

pushout,
filtration, @

finite length, [I7] quasi-isomorphism, [70]
flat,

forgetful functor,
free basis,

free module,

free resolution,
full subcategory,

relations, E
representation, [43]
restriction of scalars, [35]
right exact, 23] 4]

right exact sequence,
right inverse, |§|

right module,

right semisimple,
ring, [3]

identity functor, ring homomorphism, El
identity morphism,
initial, [6]

injective, [39]

injective resolution, [77]

homological degree,
homology,

semigroup, [3]
semigroup homomorphism, |§|

semisimple, @
SES, [I7]

short exact sequence, [I7] [67]

sign representation, [44]

kernel, [67] simple, [46]

inverse, [0]

isomorphism, [6]

Krull-Schmidt, (3] simple tensors,
singular chain complex,
left R-module, [3] source, [2]
left Artinian, @ split exact sequence,
left exact, @ @ standard basis, E
left exact sequence,@ strict, [47]
left inverse, [f] subcategory, [5]
left module homomorphism, El
left Noetherian, target, [2
left semisimple, tensor product, m
length, tensor product of maps, [30]
terminal, [6]
Maschke’s Theorem, trivial representation,
monic, [6]
monoid, vector spaces, [3]

monomorphism, |§|
morphisms,
multilinear,

natural isomorphism,
natural transformation,
Noetherian,

objects,
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