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Introduction

These notes constitute a survey of the theory and practice of inequalities. While their
intended audience is high-school students, primarily present and aspiring participants of the
Math Olympiad Program (MOP), I hope they prove informative to a wider audience. In
particular, those who experience inequalities via the Putnam competition, or via problem
columns in such journals as Crux Mathematicorum or the American Mathematical Monthly,
should find some benefit.

Having named high-school students as my target audience, I must now turn around and
admit that I have not made any effort to keep calculus out of the exposition, for several
reasons. First, in certain places, rewriting to avoid calculus would make the exposition a
lot more awkward. Second, the calculus I invoke is for the most part pretty basic, mostly
properties of the first and second derivative. Finally, it is my experience that many Olympiad
participants have studied calculus anyway. In any case, I have clearly flagged uses of calculus
in the text, and I’ve included a crash course in calculus (Chapter 4) to fill in the details.

By no means is this primer a substitute for an honest treatise on inequalities, such as
the magnum opus of Hardy, Littlewood and Pólya [2] or its latter-day sequel [1], nor for a
comprehensive catalog of problems in the area, for which we have Stanley Rabinowitz’ series
[4]. My aim, rather than to provide complete information, is to whet the reader’s appetite
for this beautiful and boundless subject.

Also note that I have given geometric inequalities short shrift, except to the extent that
they can be written in an algebraic or trigonometric form. ADD REFERENCE.

Thanks to Paul Zeitz for his MOP 1995 notes, upon which these notes are ultimately
based. (In particular, they are my source for symmetric sum notation.) Thanks also to the
participants of the 1998 and 1999 MOPs for working through preliminary versions of these
notes.

Caveat solver!

It seems easier to fool oneself by constructing a false proof of an inequality than of any other
type of mathematical assertion. All it takes is one reversed inequality to turn an apparently
correct proof into a wreck. The adage “if it seems too good to be true, it probably is” applies
in full force.

To impress the gravity of this point upon the reader, we provide a little exercise in
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mathematical proofreading. Of the following X proofs, only Y are correct. Can you spot the
fakes?

PUT IN THE EXAMPLES.
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Chapter 1

Separable inequalities

This chapter covers what I call “separable” inequalities, those which can be put in the form

f(x1) + · · ·+ f(xn) ≥ c

for suitably constrained x1, . . . , xn. For example, if one fixes the product, or the sum, of the
variables, the AM-GM inequality takes this form, and in fact this will be our first example.

1.1 Smoothing, convexity and Jensen’s inequality

The “smoothing principle” states that if you have a quantity of the form f(x1)+ · · ·+ f(xn)
which becomes smaller as you move two of the variables closer together (while preserving
some constraint, e.g. the sum of the variables), then the quantity is minimized by making the
variables all equal. This remark is best illustrated with an example: the famous arithmetic
mean and geometric mean (AM-GM) inequality.

Theorem 1 (AM-GM). Let x1, . . . , xn be positive real numbers. Then

x1 + · · ·+ xn

n
≥ n
√

x1 · · ·xn,

with equality if and only if x1 = · · · = xn.

Proof. We will make a series of substitutions that preserve the left-hand side while strictly
increasing the right-hand side. At the end, the xi will all be equal and the left-hand side
will equal the right-hand side; the desired inequality will follow at once. (Make sure that
you understand this reasoning before proceeding!)

If the xi are not already all equal to their arithmetic mean, which we call a for conve-
nience, then there must exist two indices, say i and j, such that xi < a < xj. (If the xi were
all bigger than a, then so would be their arithmetic mean, which is impossible; similarly if
they were all smaller than a.) We will replace the pair xi and xj by

x′i = a, x′j = xi + xj − a;
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by design, x′i and x′j have the same sum as xi and xj, but since they are closer together,
their product is larger. To be precise,

a(xi + xj − a) = xixj + (xj − a)(a− xi) > xixj

because xj − a and a− xi are positive numbers.
By this replacement, we increase the number of the xi which are equal to a, preserving the

left-hand side of the desired inequality by increasing the right-hand side. As noted initially,
eventually this process ends when all of the xi are equal to a, and the inequality becomes
equality in that case. It follows that in all other cases, the inequality holds strictly.

Note that we made sure that the replacement procedure terminates in a finite number of
steps. If we had proceeded more naively, replacing a pair of xi by their arithmetic meaon, we
would get an infinite procedure, and then would have to show that the xi were “converging”
in a suitable sense. (They do converge, but making this precise would require some additional
effort which our alternate procedure avoids.)

A strong generalization of this smoothing can be formulated for an arbitrary convex
function. Recall that a set of points in the plane is said to be convex if the line segment
joining any two points in the set lies entirely within the set. A function f defined on an
interval (which may be open, closed or infinite on either end) is said to be convex if the set

{(x, y) ∈ R2 : y ≥ f(x)}
is convex. We say f is concave if −f is convex. (This terminology was standard at one time,
but today most calculus textbooks use “concave up” and “concave down” for our “convex”
and “concave”. Others use the evocative sobriquets “holds water” and “spills water”.)

A more enlightening way to state the definition might be that f is convex if for any
t ∈ [0, 1] and any x, y in the domain of f ,

tf(x) + (1− t)f(y) ≥ f(tx + (1− t)y).

If f is continuous, it suffices to check this for t = 1/2. Conversely, a convex function is
automatically continuous except possibly at the endpoints of the interval on which it is
defined.

DIAGRAM.

Theorem 2. If f is a convex function, then the following statements hold:

1. If a ≤ b < c ≤ d, then f(c)−f(a)
c−a

≤ f(d)−f(b)
d−b

. (The slopes of secant lines through the
graph of f increase with either endpoint.)

2. If f is differentiable everywhere, then its derivative (that is, the slope of the tangent
line to the graph of f is an increasing function.)

The utility of convexity for proving inequalities comes from two factors. The first factor is
Jensen’s inequality, which one may regard as a formal statement of the “smoothing principle”
for convex functions.
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Theorem 3 (Jensen). Let f be a convex function on an interval I and let w1, . . . , wn be
nonnegative real numbers whose sum is 1. Then for all x1, . . . , xn ∈ I,

w1f(x1) + · · ·+ wnf(xn) ≥ f(w1x1 + · · ·+ wnxn).

Proof. An easy induction on n, the case n = 2 being the second definition above.

The second factor is the ease with which convexity can be checked using calculus, namely
via the second derivative test.

Theorem 4. Let f be a twice-differentiable function on an open interval I. Then f is convex
on I if and only if f ′′(x) ≥ 0 for all x ∈ I.

For example, the AM-GM inequality can be proved by noting that f(x) = log x is
concave; its first derivative is 1/x and its second −1/x2. In fact, one immediately deduces a
weighted AM-GM inequality; as we will generalize AM-GM again later, we will not belabor
this point.

We close this section by pointing out that separable inequalities sometimes concern
functions which are not necessarily convex. Nonetheless one can prove something!

Example 5 (USA, 1998). Let a0, . . . , an be numbers in the interval (0, π/2) such that

tan(a0 − π/4) + tan(a1 − π/4) + · · ·+ tan(an − π/4) ≥ n− 1.

Prove that tan a0 tan a1 · · · tan an ≥ nn+1.

Solution. Let xi = tan(ai − π/4) and yi = tan ai = (1 + xi)/(1 − xi), so that xi ∈ (−1, 1).
The claim would follow immediately from Jensen’s inequality if only the function f(x) =
log(1 + x)/(1 − x) were convex on the interval (−1, 1), but alas, it isn’t. It’s concave on
(−1, 0] and convex on [0, 1). So we have to fall back on the smoothing principle.

What happens if we try to replace xi and xj by two numbers that have the same sum but
are closer together? The contribution of xi and xj to the left side of the desired inequality is

1 + xi

1− xi

· 1 + xj

1− xj

= 1 +
2

xixj+1

xi+xj
− 1

.

The replacement in question will increase xixj, and so will decrease the above quantity
provided that xi + xj > 0. So all we need to show is that we can carry out the smoothing
process so that every pair we smooth satisfies this restriction.

Obviously there is no problem if all of the xi are positive, so we concentrate on the
possibility of having xi < 0. Fortunately, we can’t have more than one negative xi, since
x0 + · · · + xn ≥ n − 1 and each xi is less than 1. (So if two were negative, the sum would
be at most the sum of the remaining n − 1 terms, which is less than n − 1.) Moreover, if
x0 < 0, we could not have x0 + xj < 0 for j = 1, . . . , n, else we would have the contradiction

x0 + · · ·+ xn ≤ (1− n)x0 < n− 1.
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Thus x0 +xj > 0 for some j, and we can replace these two by their arithmetic mean. Now all
of the xi are positive and smoothing (or Jensen) may continue without further restrictions,
yielding the desired inequality.

Problems for Section 1.1

1. Make up a problem by taking a standard property of convex functions, and specializing
to a particular function. The less evident it is where your problem came from, the
better!

2. Given real numbers x1, . . . , xn, what is the minimum value of

|x− x1|+ · · ·+ |x− xn|?

3. (via Titu Andreescu) If f is a convex function and x1, x2, x3 lie in its domain, then

f(x1) + f(x2) + f(x3) + f

(
x1 + x2 + x3

3

)

≥ 4

3

[
f

(
x1 + x2

2

)
+ f

(
x2 + x3

2

)

+f

(
x3 + x1

2

)]
.

4. (USAMO 1974/1) For a, b, c > 0, prove that aabbcc ≥ (abc)(a+b+c)/3.

5. (India, 1995) Let x1, . . . , xn be n positive numbers whose sum is 1. Prove that

x1√
1− x1

+ · · ·+ xn√
1− xn

≥
√

n

n− 1
.

6. Let A,B,C be the angles of a triangle. Prove that

1. sin A + sin B + sin C ≤ 3
√

3/2;

2. cos A + cos B + cos C ≤ 3/2;

3. sin A/2 sin B/2 sin C/2 ≤ 1/8;

4. cot A + cot B + cot C ≥ √
3 (i.e. the Brocard angle is at most π/6).

(Beware: not all of the requisite functions are convex everywhere!)

7. (Vietnam, 1998) Let x1, . . . , xn (n ≥ 2) be positive numbers satisfying

1

x1 + 1998
+

1

x2 + 1998
+ · · ·+ 1

xn + 1998
=

1

1998
.
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Prove that
n
√

x1x2 · · · xn

n− 1
≥ 1998.

(Again, beware of nonconvexity.)

8. Let x1, x2, . . . be a sequence of positive real numbers. If ak and gk are the arithmetic
and geometric means, respectively, of x1, . . . , xk, prove that

an
n

gn
k

≥ an−1
n−1

gn−1
k

(1.1)

n(an − gn) ≥ (n− 1)(an−1 − gn−1). (1.2)

These strong versions of the AM-GM inequality are due to Rado [2, Theorem 60] and
Popoviciu [3], respectively. (These are just a sample of the many ways the AM-GM
inequality can be sharpened, as evidenced by [1].)

1.2 Unsmoothing and noninterior extrema

A convex function has no interior local maximum. (If it had an interior local maximum at
x, then the secant line through (x − ε, f(x − ε)) and (x + ε, f(x + ε)) would lie under the
curve at x, which cannot occur for a convex function.)

Even better, a function which is linear in a given variable, as the others are held fixed,
attains no extrema in either direction except at its boundary values.

Problems for Section 1.2

1. (IMO 1974/5) Determine all possible values of

S =
a

a + b + d
+

b

a + b + c
+

c

b + c + d
+

d

a + c + d

where a, b, c, d are arbitrary positive numbers.

2. (Bulgaria, 1995) Let n ≥ 2 and 0 ≤ xi ≤ 1 for all i = 1, 2, . . . , n. Show that

(x1 + x2 + · · ·+ xn)− (x1x2 + x2x3 + · · ·+ xnx1) ≤
⌊n

2

⌋
,

and determine when there is equality.

1.3 Discrete smoothing

The notions of smoothing and convexity can also be applied to functions only defined on
integers.
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Example 6. How should n balls be put into k boxes to minimize the number of pairs of balls
which lie in the same box?

Solution. In other words, we want to minimize
∑k

i=1

(
ni

2

)
over sequences n1, . . . , nk of non-

negative integers adding up to n.
If ni − nj ≥ 2 for some i, j, then moving one ball from i to j decreases the number of

pairs in the same box by

(
ni

2

)
−

(
ni − 1

2

)
+

(
nj

2

)
−

(
nj + 1

2

)
= ni − nj − 1 > 0.

Thus we minimize the number of pairs by making sure no two boxes differ by more than one
ball; one can easily check that the boxes must each contain bn/kc or dn/ke balls.

Problems for Section 1.3

1. (Germany, 1995) Prove that for all integers k and n with 1 ≤ k ≤ 2n,

(
2n + 1

k − 1

)
+

(
2n + 1

k + 1

)
≥ 2 · n + 1

n + 2
·
(

2n + 1

k

)
.

2. (Arbelos) Let a1, a2, . . . be a convex sequence of real numbers, which is to say ak−1 +
ak+1 ≥ 2ak for all k ≥ 2. Prove that for all n ≥ 1,

a1 + a3 + · · ·+ a2n+1

n + 1
≥ a2 + a4 + · · ·+ a2n

n
.

3. (USAMO 1993/5) Let a0, a1, a2, . . . be a sequence of positive real numbers satisfying
ai−1ai+1 ≤ a2

i for i = 1, 2, 3, . . . . (Such a sequence is said to be log concave.) Show
that for each n ≥ 1,

a0 + · · ·+ an

n + 1
· a1 + · · ·+ an−1

n− 1
≥ a0 + · · ·+ an−1

n
· a1 + · · ·+ an

n
.

4. (MOP 1997) Given a sequence {xn}∞n=0 with xn > 0 for all n ≥ 0, such that the
sequence {anxn}∞n=0 is convex for all a > 0, show that the sequence {log xn}∞n=0 is also
convex.

5. How should the numbers 1, . . . , n be arranged in a circle to make the sum of the
products of pairs of adjacent numbers as large as possible? As small as possible?
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Chapter 2

Symmetric polynomial inequalities

This section is a basic guide to polynomial inequalities, which is to say, those inequalities
which are in (or can be put into) the form P (x1, . . . , xn) ≥ 0 with P a symmetric polynomial
in the real (or sometimes nonnegative) variables x1, . . . , xn.

2.1 Introduction to symmetric polynomials

Many inequalities express some symmetric relationship between a collection of numbers.
For this reason, it seems worthwhile to brush up on some classical facts about symmetric
polynomials.

For arbitrary x1, . . . , xn, the coefficients c1, . . . , cn of the polynomial

(t + x1) · · · (t + xn) = tn + c1t
n−1 + · · ·+ cn−1t + cn

are called the elementary symmetric functions of the xi. (That is, ck is the sum of the
products of the xi taken k at a time.) Sometimes it proves more convenient to work with
the symmetric averages

di =
ci(
n
i

) .

For notational convenience, we put c0 = d0 = 1 and ck = dk = 0 for k > n.
Two basic inequalities regarding symmetric functions are the following. (Note that the

second follows from the first.)

Theorem 7 (Newton). If x1, . . . , xn are nonnegative, then

d2
i ≥ di−1di+1 i = 1, . . . , n− 1.

Theorem 8 (Maclaurin). If x1, . . . , xn are positive, then

d1 ≥ d
1/2
2 ≥ · · · ≥ d1/n

n ,

with equality if and only if x1 = · · · = xn.
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These inequalities and many others can be proved using the following trick.

Theorem 9. Suppose the inequality

f(d1, . . . , dk) ≥ 0

holds for all real (resp. positive) x1, . . . , xn for some n ≥ k. Then it also holds for all real
(resp. positive) x1, . . . , xn+1.

Proof. Let

P (t) = (t + x1) · · · (t + xn+1) =
n+1∑
i=0

(
n + 1

i

)
dit

n+1−i

be the monic polynomial with roots −x1, . . . ,−xn. Recall that between any two zeros of a
differentiable function, there lies a zero of its derivative (Rolle’s theorem). Thus the roots
of P ′(t) are all real if the xi are real, and all negative if the xi are positive. Since

P ′(t) =
n+1∑
i=0

(n + 1− i)

(
n + 1

i

)
dit

n−i = (n + 1)
n∑

i=0

(
n

i

)
dit

n−i,

we have by assumption f(d1, . . . , dk) ≥ 0.

Incidentally, the same trick can also be used to prove certain polynomial identities.

Problems for Section 2.1

1. Prove that every symmetric polynomial in x1, . . . , xn can be (uniquely) expressed as a
polynomial in the elementary symmetric polynomials.

2. Prove Newton’s and Maclaurin’s inequalities.

3. Prove Newton’s identities: if si = xi
1 + · · ·+ xi

n, then

c0sk + c1sk−1 + · · ·+ ck−1s1 + kck = 0.

(Hint: first consider the case n = k.)

4. (Hungary) Let f(x) = xn +an−1x
n−1 + · · ·+a1x+1 be a polynomial with non-negative

real coefficients and n real roots. Prove that f(x) ≥ (1 + x)n for all x ≥ 0.

5. (Gauss-??) Let P (z) be a polynomial with complex coefficients. Prove that the (com-
plex) zeroes of P ′(z) all lie in the convex hull of the zeroes of P (z). Deduce that if S
is a convex subset of the complex plane (e.g., the unit disk), and if <f(d1, . . . , dk) ≥ 0
holds for all x1, . . . , xn ∈ S for some n ≥ k, then the same holds for x1, . . . , xn+1 ∈ S.

6. Prove Descartes’ Rule of Signs: let P (x) be a polynomial with real coefficients written
as P (x) =

∑
aki

xki , where all of the aki
are nonzero. Prove that the number of

positive roots of P (x), counting multiplicities, is equal to the number of sign changes
(the number of i such that aki−1

aki
< 0) minus a nonnegative even integer. (For

negative roots, apply the same criterion to P (−x).)
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2.2 The idiot’s guide to homogeneous inequalities

Suppose one is given a homogeneous symmetric polynomial P and asked to prove that
P (x1, . . . , xn) ≥ 0. How should one proceed?

Our first step is purely formal, but may be psychologically helpful. We introduce the
following notation: ∑

sym

Q(x1, . . . , xn) =
∑

σ

Q(xσ(1), . . . , xσ(n))

where σ runs over all permutations of 1, . . . , n (for a total of n! terms). For example, if
n = 3, and we write x, y, z for x1, x2, x3,

∑
sym

x3 = 2x3 + 2y3 + 2z3

∑
sym

x2y = x2y + y2z + z2x + x2z + y2x + z2y

∑
sym

xyz = 6xyz.

Using symmetric sum notation can help prevent errors, particularly when one begins with
rational functions whose denominators must first be cleared. Of course, it is always a good
algebra check to make sure that equality continues to hold when it’s supposed to.

In passing, we note that other types of symmetric sums can be useful when the inequal-
ities in question do not have complete symmetry, most notably cyclic summation

∑

cyclic

x2y = x2y + y2z + z2x.

However, it is probably a bad idea to mix, say, cyclic and symmetric sums in the same
calculation!

Next, we attempt to “bunch” the terms of P into expressions which are nonnegative for
a simple reason. For example, ∑

sym

(x3 − xyz) ≥ 0

by the AM-GM inequality, while

∑
sym

(x2y2 − x2yz) ≥ 0

by a slightly jazzed-up but no more sophisticated argument: we have x2y2 + x2z2 ≥ x2yz
again by AM-GM.

We can formalize what we are doing using the notion of majorization. If s = (s1, . . . , sn)
and t = (t1, . . . , tn) are two nonincreasing sequences, we say that s majorizes t if s1+· · ·+sn =
t1 + · · ·+ tn and s1 + · · ·+ si ≥ t1 + · · ·+ ti for i = 1, . . . , n.
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Theorem 10 (“Bunching”). If s and t are sequences of nonnegative reals such that s
majorizes t, then ∑

sym

xs1
1 · · · xsn

n ≥
∑
sym

xt1
1 · · ·xtn

n .

Proof. One first shows that if s majorizes t, then there exist nonnegative constants kσ, as σ
ranges over the permutations of {1, . . . , n}, whose sum is 1 and such that

∑
σ

kσ(sσ1 , . . . , sσn) = (t1, . . . , tn)

(and conversely). Then apply weighted AM-GM as follows:

∑
σ

x
sσ(n)

1 · · ·xsσ(n)
n =

∑
σ,τ

kτx
sσ(τ(1))

1 · · ·xsσ(τ(n))
n

≥
∑

σ

x
P

τ kτ sσ(τ(1))

1 · · ·x
P

τ kτ sσ(τ(n))
n

=
∑

σ

x
tσ(1)

1 · · · xtσ(n)
n .

If the indices in the above proof are too bewildering, here’s an example to illustrate
what’s going on: for s = (5, 2, 1) and t = (3, 3, 2), we have

(3, 3, 2) = (5, 2, 1)+

and so BLAH.

Example 11 (USA, 1997). Prove that, for all positive real numbers a, b, c,

1

a3 + b3 + abc
+

1

b3 + c3 + abc
+

1

c3 + a3 + abc
≤ 1

abc
.

Solution. Clearing denominators and multiplying by 2, we have
∑
sym

(a3 + b3 + abc)(b3 + c3 + abc)abc ≤ 2(a3 + b3 + abc)(b3 + c3 + abc)(c3 + a3 + abc),

which simplifies to
∑
sym

a7bc + 3a4b4c + 4a5b2c2 + a3b3c3 ≤
∑
sym

a3b3c3 + 2a6b3 + 3a4b4c + 2a5b2c2 + a7bc,

and in turn to ∑
sym

2a6b3 − 2a5b2c2 ≥ 0,

which holds by bunching.
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In this case we were fortunate that after slogging through the algebra, the resulting
symmetric polynomial inequality was quite straightforward. Alas, there are cases where
bunching will not suffice, but for these we have the beautiful inequality of Schur.

Note the extra equality condition in Schur’s inequality; this is a much stronger result
than AM-GM, and so cannot follow from a direct AM-GM argument. In general, one can
avoid false leads by remembering that all of the steps in the proof of a given inequality must
have equality conditions at least as permissive as those of the desired result!

Theorem 12 (Schur). Let x, y, z be nonnegative real numbers. Then for any r > 0,

xr(x− y)(x− z) + yr(y − z)(y − x) + zr(z − x)(z − y) ≥ 0.

Equality holds if and only if x = y = z, or if two of x, y, z are equal and the third is zero.

Proof. Since the inequality is symmetric in the three variables, we may assume without loss
of generality that x ≥ y ≥ z. Then the given inequality may be rewritten as

(x− y)[xr(x− z)− yr(y − z)] + zr(x− z)(y − z) ≥ 0,

and every term on the left-hand side is clearly nonnegative.

Keep an eye out for the trick we just used: creatively rearranging a polynomial into the
sum of products of obviously nonnegative terms.

The most commonly used case of Schur’s inequality is r = 1, which, depending on your
notation, can be written

3d3
1 + d3 ≥ 4d1d2 or

∑
sym

x3 − 2x2y + xyz ≥ 0.

If Schur is invoked with no mention r, you should assume r = 1.

Example 13. (Japan, 1997)

(Japan, 1997) Let a, b, c be positive real numbers, Prove that

(b + c− a)2

(b + c)2 + a2
+

(c + a− b)2

(c + a)2 + b2
+

(a + b− c)2

(a + b)2 + c2
≥ 3

5
.

Solution. We first simplify slightly, and introduce symmetric sum notation:

∑
sym

2ab + 2ac

a2 + b2 + c2 + 2bc
≤ 24

5
.

Writing s = a2 + b2 + c2, and clearing denominators, this becomes

5s2
∑
sym

ab + 10s
∑
sym

a2bc + 20
∑
sym

a3b2c ≤ 6s3 + 6s2
∑
sym

ab + 12s
∑
sym

a2bc + 48a2b2c2

14



which simplifies a bit to

6s3 + s2
∑
sym

ab + 2s
∑
sym

a2bc + 8
∑
sym

a2b2c2 ≥ 10s
∑
sym

a2bc + 20
∑
sym

a3b2c.

Now we multiply out the powers of s:

∑
sym

3a6 + 2a5b− 2a4b2 + 3a4bc + 2a3b3 − 12a3b2c + 4a2b2c2 ≥ 0.

The trouble with proving this by AM-GM alone is the a2b2c2 with a positive coefficient,
since it is the term with the most evenly distributed exponents. We save face using Schur’s
inequality (multiplied by 4abc:)

∑
sym

4a4bc− 8a3b2c + 4a2b2c2 ≥ 0,

which reduces our claim to
∑
sym

3a6 + 2a5b− 2a4b2 − a4bc + 2a3b3 − 4a3b2c ≥ 0.

Fortunately, this is a sum of four expressions which are nonnegative by weighted AM-GM:

0 ≤ 2
∑
sym

(2a6 + b6)/3− a4b2

0 ≤
∑
sym

(4a6 + b6 + c6)/6− a4bc

0 ≤ 2
∑
sym

(2a3b3 + c3a3)/3− a3b2c

0 ≤ 2
∑
sym

(2a5b + a5c + ab5 + ac5)/6− a3b2c.

Equality holds in each case of AM-GM, and in Schur, if and only if a = b = c.

Problems for Section 2.2

1. Suppose r is an even integer. Show that Schur’s inequality still holds when x, y, z are
allowed to be arbitrary real numbers (not necessarily positive).

2. (Iran, 1996) Prove the following inequality for positive real numbers x, y, z:

(xy + yz + zx)

(
1

(x + y)2
+

1

(y + z)2
+

1

(z + x)2

)
≥ 9

4
.
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3. The author’s solution to the USAMO 1997 problem also uses bunching, but in a subtler
way. Can you find it? (Hint: try replacing each summand on the left with one that
factors.)

4. (MOP 1998)

5. Prove that for x, y, z > 0,

x

(x + y)(x + z)
+

y

(y + z)(y + x)
+

z

(z + x)(z + y)
≤ 9

4(x + y + z)
.

2.3 Variations: inhomogeneity and constraints

One can complicate the picture from the previous section in two ways: one can make the
polynomials inhomogeneous, or one can add additional constraints. In many cases, one can
reduce to a homogeneous, unconstrained inequality by creative manipulations or substitu-
tions; we illustrate this process here.

Example 14 (IMO 1995/2). Let a, b, c be positive real numbers such that abc = 1. Prove
that

1

a3(b + c)
+

1

b3(c + a)
+

1

c3(a + b)
≥ 3

2
.

Solution. We eliminate both the nonhomogeneity and the constraint by instead proving that

1

a3(b + c)
+

1

b3(c + a)
+

1

c3(a + b)
≥ 3

2(abc)4/3
.

This still doesn’t look too appetizing; we’d prefer to have simpler denominators. So we make
the additional substitution a = 1/x, b = 1/y, c = 1/z a = x/y, b = y/z, c = z/x, in which
case the inequality becomes

x2

y + z
+

y2

z + x
+

z2

x + y
≥ 3

2
(xyz)1/3. (2.1)

Now we may follow the paradigm: multiply out and bunch. We leave the details to the
reader. (We will revisit this inequality several times later.)

On the other hand, sometimes more complicated maneuvers are required, as in this
offbeat example.

Example 15 (Vietnam, 1996). Let a, b, c, d be four nonnegative real numbers satisfying
the conditions

2(ab + ac + ad + bc + bd + cd) + abc + abd + acd + bcd = 16.

Prove that

a + b + c + d ≥ 2

3
(ab + ac + ad + bc + bd + cd)

and determine when equality holds.
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Solution (by Sasha Schwartz). Adopting the notation from the previous section, we want to
show that

3d2 + d3 = 4 =⇒ d1 ≥ d2.

Assume on the contrary that we have 3d2 + d3 = 4 but d1 < d2. By Schur’s inequality plus
Theorem 9, we have

3d3
1 + d3 ≥ 4d1d2.

Substituting d3 = 4− 3d2 gives

3d3
1 + 4 ≥ (4d1 + 3)d2 > 4d2

1 + 3d1,

which when we collect and factor implies (3d1 − 4)(d2
1 − 1) > 0. However, on one hand

3d1 − 4 < 3d2 − 4 = −d3 < 0; on the other hand, by Maclaurin’s inequality d2
1 ≥ d2 > d1, so

d1 > 1. Thus (3d1− 4)(d2
1− 1) is negative, a contradiction. As for equality, we see it implies

(3d1 − 4)(d2
1 − 1) = 0 as well as equality in Maclaurin and Schur, so d1 = d2 = d3 = 1.

Problems for Section 2.3

1. (IMO 1984/1) Prove that 0 ≤ yz + zx + xy − 2xyz ≤ 7/27, where x, y and z are
non-negative real numbers for which x + y + z = 1.

2. (Ireland, 1998) Let a, b, c be positive real numbers such that a + b + c ≥ abc. Prove
that a2 + b2 + c2 ≥ abc. (In fact, the right hand side can be improved to

√
3abc.)

3. (Bulgaria, 1998) Let a, b, c be positive real numbers such that abc = 1. Prove that

1

1 + a + b
+

1

1 + b + c
+

1

1 + c + a
≤ 1

2 + a
+

1

2 + b
+

1

2 + c
.

2.4 Substitutions, algebraic and trigonometric

Sometimes a problem can be simplified by making a suitable substition. In particular, this
technique can often be used to simplify unwieldy constraints.

One particular substitution occurs frequently in problems of geometric origin. The con-
dition that the numbers a, b, c are the sides of a triangle is equivalent to the constraints

a + b > c, b + c > a, c + a > b

coming from the triangle inequality. If we let x = (b + c − a)/2, y = (c + a − b)/2, z =
(a+ b− c)/2, then the constraints become x, y, z > 0, and the original variables are also easy
to express:

a = y + z, b = z + x, c = x + y.

A more exotic substitution can be used when the constraint a+ b+ c = abc is given. Put

α = arctan a, β = arctan b, γ = arctan c;
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then α + β + γ is a multiple of π. (If a, b, c are positive, one can also write them as the
cotangents of three angles summing to π/2.)

Problems for Section 2.4

1. (IMO 1983/6) Let a, b, c be the lengths of the sides of a triangle. Prove that

a2b(a− b) + b2c(b− c) + c2a(c− a) ≥ 0,

and determine when equality occurs.

2. (Asian Pacific, 1996) Let a, b, c be the lengths of the sides of a triangle. Prove that

√
a + b− c +

√
b + c− a +

√
c + a− b ≤ √

a +
√

b +
√

c.

3. (MOP, 1999) Let a, b, c be lengths of the the sides of a triangle. Prove that

a3 + b3 + c3 − 3abc ≥ 2 max{|a− b|3, |b− c|3, |c− a|3}.

4. (Arbelos) Prove that if a, b, c are the sides of a triangle and

2(ab2 + bc2 + ca2) = a2b + b2c + c2a + 3abc,

then the triangle is equilateral.

5. (Korea, 1998) For positive real numbers a, b, c with a + b + c = abc, show that

1√
1 + a2

+
1√

1 + b2
+

1√
1 + c2

≤ 3

2
,

and determine when equality occurs. (Try proving this by dehomogenizing and you’ll
appreciate the value of the trig substitution!)
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Chapter 3

The toolbox

In principle, just about any inequality can be reduced to the basic principles we have outlined
so far. This proves to be fairly inefficient in practice, since once spends a lot of time repeating
the same reduction arguments. More convenient is to invoke as necessary some of the famous
classical inequalities described in this chapter.

We only barely scratch the surface here of the known body of inequalities; already [2]
provides further examples, and [1] more still.

3.1 Power means

The power means constitute a simultaneous generalization of the arithmetic and geometric
means; the basic inequality governing them leads to a raft of new statements, and exposes a
symmetry in the AM-GM inequality that would not otherwise be evident.

For any real number r 6= 0, and any positive reals x1, . . . , xn, we define the r-th power
mean of the xi as

M r(x1, . . . , xn) =

(
xr

1 + · · ·+ xr
n

n

)1/r

.

More generally, if w1, . . . , wn are positive real numbers adding up to 1, we may define the
weighted r-th power mean

M r
w(x1, . . . , xn) = (w1x

r
1 + · · ·+ wnx

r
n)1/r .

Clearly this quantity is continuous as a function of r (keeping the xi fixed), so it makes sense
to define M0 as

lim
r→0

M r
w = lim

r→0

(
1

r
exp log(w1x

r
1 + · · ·+ wnx

r
n

)

= exp
d

dr

∣∣∣∣
r=0

log(w1x
r
1 + · · ·+ wnx

r
n)

= exp
w1 log x1 + · · ·+ wn log xn

w1 + · · ·+ wn

= xw1
1 · · ·xwn

n
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or none other than the weighted geometric mean of the xi.

Theorem 16 (Power mean inequality). If r > s, then

M r
w(x1, . . . , xn) ≥ M s

w(x1, . . . , xn)

with equality if and only if x1 = · · · = xn.

Proof. Everything will follow from the convexity of the function f(x) = xr for r ≥ 1 (its
second derivative is r(r − 1)xr−2), but we have to be a bit careful with signs. Also, we’ll
assume neither r nor s is nonzero, as these cases can be deduced by taking limits.

First suppose r > s > 0. Then Jensen’s inequality for the convex function f(x) = xr/s

applied to xs
1, . . . , x

s
n gives

w1x
r
1 + · · ·+ wnx

r
n ≥ (w1x

s
1 + · · ·+ wnx

s
n)r/s

and taking the 1/r-th power of both sides yields the desired inequality.
Now suppose 0 > r > s. Then f(x) = xr/s is concave, so Jensen’s inequality is reversed;

however, taking 1/r-th powers reverses the inequality again.
Finally, in the case r > 0 > s, f(x) = xr/s is again convex, and taking 1/r-th powers

preserves the inequality. (Or this case can be deduced from the previous ones by comparing
both power means to the geometric mean.)

Several of the power means have specific names. Of course r = 1 yields the arithmetic
mean, and we defined r = 0 as the geometric mean. The case r = −1 is known as the
harmonic mean, and the case r = 2 as the quadratic mean or root mean square.

Problems for Section 3.1

1. (Russia, 1995) Prove that for x, y > 0,

x

x4 + y2
+

y

y4 + x2
≤ 1

xy
.

2. (Romania, 1996) Let x1, . . . , xn+1 be positive real numbers such that x1 + · · · + xn =
xn+1. Prove that

n∑
i=1

√
xi(xn+1 − xi) ≤

√√√√
n∑

i=1

xn+1(xn+1 − xi).

3. (Poland, 1995) For a fixed integer n ≥ 1 compute the minimum value of the sum

x1 +
x2

2

2
+ · · ·+ xn

n

n

given that x1, . . . , xn are positive numbers subject to the condition

1

x1

+ · · ·+ 1

xn

= n.
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4. Let a, b, c, d ≥ 0. Prove that

1

a
+

1

b
+

4

c
+

16

d
≥ 64

a + b + c + d
.

5. Extend the Rado/Popoviciu inequalities to power means by proving that

M r
w(x1, . . . , xn)k −M s

w(x1, . . . , xn)k

wn

≥ M r
w′(x1, . . . , xn−1)

k −M s
w′(x1, . . . , xn−1)

k

w′
n−1

whenever r ≥ k ≥ s. Here the weight vector w′ = (w′
1, . . . , w

′
n−1) is given by w′

i =
wi/(w1 + · · · + wn−1). (Hint: the general result can be easily deduced from the cases
k = r, s.)

6. Prove the following “converse” to the power mean inequality: if r > s > 0, then
(∑

i

xr
i

)1/r

≤
(∑

i

xs
i

)1/s

.

3.2 Cauchy-Schwarz, Hölder and Minkowski inequali-

ties

This section consists of three progressively stronger inequalities, beginning with the simple
but versatile Cauchy-Schwarz inequality.

Theorem 17 (Cauchy-Schwarz). For any real numbers a1, . . . , an, b1, . . . , bn,

(a2
1 + · · ·+ a2

n)(b2
1 + · · ·+ b2

n) ≥ (a1b1 + · · ·+ anbn)2,

with equality if the two sequences are proportional.

Proof. The difference between the two sides is
∑
i<j

(aibj − ajbi)
2

and so is nonnegative, with equality iff aibj = ajbi for all i, j.

The “sum of squares” trick used here is an important one; look for other opportunities
to use it. A clever example of the use of Cauchy-Schwarz is the proposer’s solution of
Example 14, in which the xyz-form of the desired equation is deduced as follows: start with
the inequality

(
x2

y + z
+

y2

z + x
+

z2

x + y

)
((y + z) + (z + x) + (x + y)) ≥ (x + y + z)2

which follows from Cauchy-Schwarz, cancel x + y + z from both sides, then apply AM-GM
to replace x + y + z on the right side with 3(xyz)1/3.

A more flexible variant of Cauchy-Schwarz is the following.
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Theorem 18 (Hölder). Let w1, . . . , wn be positive real numbers whose sum is 1. For any
positive real numbers aij,

n∏
i=1

(
m∑

j=1

aij

)wi

≥
m∑

j=1

n∏
i=1

awi
ij .

Proof. By induction, it suffices to do the case n = 2, in which case we’ll write w1 = 1/p and
w2 = 1/q. Also without loss of generality, we may rescale the aij so that

∑m
j=1 aij = 1 for

i = 1, 2. In this case, we need to prove

1 ≥
m∑

j=1

a
1/p
1j a

1/q
2j .

On the other hand, by weighted AM-GM,

a1j

p
+

a2j

q
≥ a

1/p
1j a

1/q
2j

and the sum of the left side over j is 1/p + 1/q = 1, so the proof is complete. (The special
case of weighted AM-GM we just used is sometimes called Young’s inequality.)

Cauchy-Schwarz admits a geometric interpretation, as the triangle inequality for vectors
in n-dimensional Euclidean space:

√
x2

1 + · · ·+ x2
n +

√
y2

1 + · · ·+ y2
n ≥

√
(x1 + y1)2 + · · ·+ (xn + yn)2.

One can use this interpretation to prove Cauchy-Schwarz by reducing it to the case in two
variables, since two nonparallel vectors span a plane. Instead, we take this as a starting
point for our next generalization of Cauchy-Schwarz (which will be the case r = 2, s = 1 of
Minkowski’s inequality).

Theorem 19 (Minkowski). Let r > s be nonzero real numbers. Then for any positive real
numbers aij, 


m∑

j=1

(
n∑

i=1

ar
ij

)s/r



1/s

≥



n∑
i=1

(
m∑

j=1

as
ij

)r/s



1/r

.

Minkowski’s theorem may be interpreted as a comparison between taking the r-th power
mean of each row of a matrix, then taking the s-th power mean of the results, versus taking
the s-th power mean of each column, then taking the r-th power mean of the result. If r > s,
the former result is larger, which should not be surprising since there we only use the smaller
s-th power mean operation once.

This interpretation also tells us what Minkowski’s theorem should say in case one of r, s
is zero. The result is none other than Hölder’s inequality!
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Proof. First suppose r > s > 0. Write L and R for the left and right sides, respectively, and
for convenience, write ti =

∑m
j=1 as

ij. Then

Rr =
n∑

i=1

t
r/s
i =

n∑
i=1

tit
r/s−1
i

=
m∑

j=1

(
n∑

i=1

as
ijt

r/s−1
i

)

≤
m∑

j=1

(
n∑

i=1

ar
ij

)s/r (
n∑

i=1

t
r/s
i

)1−s/r

= LsRr−s,

where the one inequality is a (term-by-term) invocation of Hölder.
Next suppose r > 0 > s. Then the above proof carries through provided we can prove a

certain variation of Hölder’s inequality with the direction reversed. We have left this to you
(Problem 3.2.2).

Finally suppose 0 > r > s. Then replacing aij by 1/aij for all i, j turns the desired
inequality into another instance of Minkowski, with r and s replaced by −s and −r. This
instance follows from what we proved above.

Problems for Section 3.2

1. (Iran, 1998) Let x, y, z be real numbers not less than 1, such that 1/x+1/y +1/z = 2.
Prove that √

x + y + z ≥ √
x− 1 +

√
y − 1 +

√
z − 1.

2. Complete the proof of Minkowski’s inequality by proving that if k < 0 and a1, . . . , an,
b1, . . . , bn > 0, then

ak
1b

1−k
1 + · · ·+ ak

nb
1−k
n ≥ (a1 + · · ·+ an)k(b1 + · · ·+ bn)1−k.

(Hint: reduce to Hölder.)

3. Formulate a weighted version of Minkowski’s inequality, with one weight corresponding
to each aij. Then show that this apparently stronger result follows from Theorem 19!

4. (Titu Andreescu) Let P be a polynomial with positive coefficients. Prove that if

P

(
1

x

)
≥ 1

P (x)

holds for x = 1, then it holds for every x > 0.
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5. Prove that for w, x, y, z ≥ 0,

w6x3 + x6y3 + y6z3 + z6x3 ≥ w2x5y2 + x2y5z2 + y2z5w2 + z2x5y2.

(This can be done either with Hölder or with weighted AM-GM; try it both ways.)

6. (China) Let ri, si, ti, ui, vi be real numbers not less than 1, for i = 1, 2, . . . , n, and let
R, S, T, U, V be the respective arithmetic means of the ri, si, ti, ui, vi. Prove that

n∏
i=1

risitiuivi + 1

risitiuivi − 1
≤

(
RSTUV + 1

RSTUV − 1

)n

.

(Hint: use Hölder and the concavity of f(x) = (x5 − 1)/(x5 + 1).

7. (IMO 1992/5) Let S be a finite set of points in three-dimensional space. Let Sx, Sy, Sz

be the orthogonal projections of S onto the yz, zx, xy planes, respectively. Show that

|S|2 ≤ |Sx||Sy||Sz|.

(Hint: Use Cauchy-Schwarz to prove the inequality

(∑

i,j,k

aijbjkcki

)2

≤
∑
i,j

a2
ij

∑

j,k

b2
jk

∑

k,i

c2
ki.

Then apply this with each variable set to 0 or 1.)

3.3 Rearrangement, Chebyshev and “arrange in or-

der”

Our next theorem is in fact a triviality that every businessman knows: you make more
money by selling most of your goods at a high price and a few at a low price than vice versa.
Nonetheless it can be useful! (In fact, an equivalent form of this theorem was on the 1975
IMO.)

Theorem 20 (Rearrangement). Given two increasing sequences x1, . . . , xn and y1, . . . , yn

of real numbers, the sum
n∑

i=1

xiyσ(i),

for σ a permutation of {1, . . . , n}, is maximized when σ is the identity permutation and
minimized when σ is the reversing permutation.
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Proof. For n = 2, the inequality ac + bd ≥ ad + bc is equivalent, after collecting terms and
factoring, to (a− b)(c−d) ≥ 0, and so holds when a ≥ b and c ≥ d. We leave it to the reader
to deduce the general case from this by successively swapping pairs of the yi.

Another way to state this argument involves “partial summation” (which the calculus-
equipped reader will recognize as analogous to doing integration by parts). Let si = yσ(i) +
· · ·+ yσ(n) for i = 1, . . . , n, and write

n∑
i=1

xiyσ(i) = x1s1 +
n∑

j=2

(xj − xj−1)sj.

The desired result follows from this expression and the inequalities

x1 + · · ·+ xn−j+1 ≤ sj ≤ xj + · · ·+ xn,

in which the left equality holds for σ equal to the reversing permutation and the right equality
holds for σ equal to the identity permutation.

One important consequence of rearrangement is Chebyshev’s inequality.

Theorem 21 (Chebyshev). Let x1, . . . , xn and y1, . . . , yn be two sequences of real numbers,
at least one of which consists entirely of positive numbers. Assume that x1 < · · · < xn and
y1 < · · · < yn. Then

x1 + · · ·+ xn

n
· y1 + · · ·+ yn

n
≤ x1y1 + · · ·+ xnyn

n
.

If instead we assume x1 > · · · > xn and y1 < · · · < yn, the inequality is reversed.

Proof. Apply rearrangement to x1, x2, . . . , xn and y1, . . . , yn, but repeating each number n
times.

The great power of Chebyshev’s inequality is its ability to split a sum of complicated
terms into two simpler sums. We illustrate this ability with yet another solution to IMO
1995/5. Recall that we need to prove

x2

y + z
+

y2

z + x
+

z2

x + y
≥ x + y + z

2
.

Without loss of generality, we may assume x ≤ y ≤ z, in which case 1/(y + z) ≤ 1/(z +x) ≤
1/(x + y). Thus we may apply Chebyshev to deduce

x2

y + z
+

y2

z + x
+

z2

x + y
≥ x2 + y2 + z2

3
·
(

1

y + z
+

1

z + x
+

1

x + y

)
.

By the Power Mean inequality,

x2 + y2 + z2

3
≥

(
x + y + z

3

)2

1

3

(
1

y + z
+

1

z + x
+

1

x + y

)
≥ 3

x + y + z
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and these three inequalities constitute the proof.
The rearrangement inequality, Chebyshev’s inequality, and Schur’s inequality are all

general examples of the “arrange in order” principle: when the roles of several variables are
symmetric, it may be profitable to desymmetrize by assuming (without loss of generality)
that they are sorted in a particular order by size.

Problems for Section 3.3

1. Deduce Schur’s inequality from the rearrangement inequality.

2. For a, b, c > 0, prove that aabbcc ≥ abbcca.

3. (IMO 1971/1) Prove that the following assertion is true for n = 3 and n = 5 and false
for every other natural number n > 2: if a1, . . . , an are arbitrary real numbers, then

n∑
i=1

∏

j 6=i

(ai − aj) ≥ 0.

4. (Proposed for 1999 USAMO) Let x, y, z be real numbers greater than 1. Prove that

xx2+2yzyy2+2zxzz2+2xy ≥ (xyz)xy+yz+zx.

3.4 Bernoulli’s inequality

The following quaint-looking inequality occasionally comes in handy.

Theorem 22 (Bernoulli). For r > 1 and x > −1 (or r an even integer and x any real),
(1 + x)r ≥ 1 + xr.

Proof. The function f(x) = (1+x)r has second derivative r(r−1)(1+x)r−2 and so is convex.
The claim is simply the fact that this function lies above its tangent line at x = 0.

Problems for Section 3.4

1. (USA, 1992) Let a = (mm+1 + nn+1)/(mm + nn) for m,n positive integers. Prove
that am + an ≥ mm + nn. (The problem came with the hint to consider the ratio
(aN − NN)/(a − N) for real a ≥ 0 and integer N ≥ 1. On the other hand, you can
prove the claim for real m,n ≥ 1 using Bernoulli.)
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Chapter 4

Calculus

To some extent, I regard this section, as should you, as analogous to sex education in school–
it doesn’t condone or encourage you to use calculus on Olympiad inequalities, but rather
seeks to ensure that if you insist on using calculus, that you do so properly.

Having made that disclaimer, let me turn around and praise calculus as a wonderful
discovery that immeasurably improves our understanding of real-valued functions. If you
haven’t encountered calculus yet in school, this section will be a taste of what awaits you—but
no more than that; our treatment is far too compressed to give a comprehensive exposition.
After all, isn’t that what textbooks are for?

Finally, let me advise the reader who thinks he/she knows calculus already not to breeze
too this section too quickly. Read the text and make sure you can write down the proofs
requested in the exercises.

4.1 Limits, continuity, and derivatives

The definition of limit attempts to formalize the idea of evaluating a function at a point
where it might not be defined, by taking values at points “infinitely close” to the given
point. Capturing this idea in precise mathematical language turned out to be a tricky
business which remained unresolved until long after calculus had proven its utility in the
hands of Newton and Leibniz; the definition we use today was given by Weierstrass.

Let f be a function defined on an open interval, except possibly at a single point t. We
say the limit of f at t exists and equals L if for each positive real ε, there exists a positive
real δ (depending on ε, of course) such that

0 < |x− t| < δ =⇒ |f(x)− L| < ε.

We notate this limx→t f(x) = L. If f is also defined at t and f(t) = L, we say f is continuous
at t.

Most common functions (polynomials, sine, cosine, exponential, logarithm) are contin-
uous for all real numbers (the logarithm only for positive reals), and those which are not
(rational functions, tangent) are continuous because they go to infinity at certain points, so
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the limits in question do not exist. The first example of an “interesting” limit occurs in the
definition of the derivative.

Again, let f be a function defined on an open interval and t a point in that interval; this
time we require that f(t) is defined as well. If the limit

lim
x→t

f(x)− f(t)

x− t

exists, we call that the derivative of f at t and notate it f ′(t). We also say that f is
differentiable at t (the process of taking the derivative is called differentiation).

For example, if f(x) = x2, then for x 6= t, (f(x)− f(t))/(x− t) = x + t, and so the limit
exists and f ′(t) = 2t. More generally, you will show in the exercises that for f(x) = xn,
f ′(t) = ntn−1. On the other hand, for other functions, e.g. f(x) = sin x, the difference
quotient cannot be expressed in closed form, so certain inequalities must be established in
order to calculate the derivative (as will also take place in the exercises).

The derivative can be geometrically interpreted as the slope of the tangent line to the
graph of f at the point (t, f(t)). This is because the tangent line to a curve can be regarded
as the limit of secant lines, and the quantity (f(x + t)− f(x))/t is precisely the slope of the
secant line through (x, f(x)) and (x + t, f(x + t)). (The first half of this sentence is entirely
unrigorous, but it can be rehabilitated.)

It is easy to see that a differentiable function must be continuous, but the converse is not
true; the function f(x) = |x| (absolute value) is continuous but not differentiable at x = 0.

An important property of continuous functions, though one we will not have direct need
for here, is the intermediate value theorem. This theorem says the values of a continuous
function cannot “jump”, as the tangent function does near π/2.

Theorem 23. Suppose the function f is continuous on the closed interval [a, b]. Then for
any c between f(a) and f(b), there exists x ∈ [a, b] such that f(x) = c.

Proof. Any proof of this theorem tends to be a bit unsatisfying, because it ultimately boils
down to one’s definition of the real numbers. For example, one consequence of the standard
definition is that every set of real numbers which is bounded above has a least upper bound.
In particular, if f(a) ≤ c and f(b) ≥ c, then the set of x ∈ [a, b] such that f(x) < c has a least
upper bound y. By continuity, f(x) ≤ c; on the other hand, if f(x) > c, then f(x − t) > 0
for all t less than some positive ε, again by continuity, in which case x− ε is an upper bound
smaller than x, a contradiction. Hence f(x) = c.

Another important property of continuous functions is the “extreme value theorem”.

Theorem 24. A continuous function on a closed interval has a global maximum and mini-
mum.

Proof.
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This statement is of course false for an open or infinite interval; the function may go to
infinity at one end, or may approach an extreme value without achieving it. (In technical
terms, a closed interval is compact while an open interval is not.)

Problems for Section 4.1

1. Prove that f(x) = x is continuous.

2. Prove that the product of two continuous functions is continuous, and that the recip-
rocal of a continuous function is continuous at all points where the original function is
nonzero. Deduce that all polynomials and rational functions are continuous.

3. (Product rule) Prove that (fg)′ = fg′ + f ′g and find a similar formula for (f/g)′. (No,
it’s not f ′/g − f/g′. Try again.)

4. (Chain rule) If h(x) = f(g(x)), prove that h′(x) = f ′(g(x))g′(x).

5. Show that the derivative of xn is nxn−1 for n ∈ Z.

6. Prove that sin x < x < tan x for 0 < x < π/2. (Hint: use a geometric interpretation,
and remember that x represents an angle in radians!) Conclude that limx→0 sin x/x =
1.

7. Show that the derivative of sin x is cos x and that of cos x is (− sin x). While you’re at
it, compute the derivatives of the other trigonometric functions.

8. Show that an increasing function on a closed interval satisfying the intermediate value
theorem must be continuous. (Of course, this can fail if the function is not increasing!)
In particular, the functions cx (where c > 0 is a constant) and log x are continuous.

9. For c > 0 a constant, the function f(x) = (cx − 1)/x is continuous for x 6= 0 by the
previous exercise. Prove that its limit at 0 exists. (Hint: if c > 1, show that f is
increasing for x 6= 0; it suffices to prove this for rational x by continuity.)

10. Prove that the derivative of cx equals kcx for some constant k. (Use the previous
exercise.) Also show (using the chain rule) that k is proportional to the logarithm of
c. In fact, the base e of the natural logarithms is defined by the property that k = 1
when c = e.

11. Use the chain rule and the previous exercise to prove that the derivative of log x is 1/x.
(Namely, take the derivative of elog x = x.)

12. (Generalized product rule) Let f(y, z) be a function of two variables, and let g(x) =
f(x, x). Prove that g′(x) can be written as the sum of the derivative of f as a function
of y alone (treating z as a constant function) and the derivative of f as a function of z
alone, both evaluated at y = z = x. For example, the derivative of xx is xx log x + xx.
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4.2 Extrema and the first derivative

The derivative can be used to detect local extrema. A point t is a local maximum (resp.
minimum) for a function f if f(t) ≥ f(x) (resp. f(t) ≤ f(x)) for all x in some open interval
containing t.

Theorem 25. If t is a local extremum for f and f is differentiable at t, then f ′(t) = 0.

Corollary 26 (Rolle). If f is differentiable on the interval [a, b] and f(a) = f(b) = 0, then
there exists x ∈ [a, b] such that f ′(x) = 0.

So for example, to find the extrema of a continuous function on a closed interval, it
suffices to evaluate it at

• all points where the derivative vanishes,

• all points where the derivative is not defined, and

• the endpoints of the interval,

since we know the function has global minima and maxima, and each of these must occur at
one of the aforementioned points. If the interval is open or infinite at either end, one must
also check the limiting behavior of the function there.

A special case of what we have just said is independently useful: if a function is positive
at the left end of an interval and has nonnegative derivative on the interval, it is positive on
the entire interval.

4.3 Convexity and the second derivative

As noted earlier, a twice differentiable function is convex if and only if its second derivative
is nonnegative.

4.4 More than one variable

Warning! The remainder of this chapter is somewhat rougher going than what came before,
in part because we need to start using the language and ideas of linear algebra. Rest assured
that none of the following material is referenced anywhere else in the notes.

We have a pretty good understanding now of the relationship between extremization
and the derivative, for functions in a single variable. However, most inequalities in nature
deal with functions in more than one variable, so it behooves us to extend the formalism of
calculus to this setting. Note that whatever we allow the domain of a function to be, the
range of our “functions” will always be the real numbers. (We have no need to develop the
whole of multivariable calculus when all of our functions arise from extremization questions!)
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The formalism becomes easier to set up in the language of linear algebra. If f is a
function from a vector space to R defined in a neighborhood of (i.e. a ball around) a point
~x, then we say the limit of f at ~x exists and equals L if for every ε > 0, there exists δ > 0
such that

0 < ||~t|| < δ =⇒ |f(~x + ~t)− L| < ε.

(The double bars mean length in the Euclidean sense, but any reasonable measure of the
length of a vector will give an equivalent criterion; for example, measuring a vector by the
maximum absolute value of its components, or by the sum of the absolute values of its
components.) We say f is continuous at ~x if lim~t→0 f(~x +~t) = f(~x). If ~y is any vector and ~x
is in the domain of f , we say the directional derivative of f along ~x in the direction ~y exists
and equals f~y(~x) if

f~y(~x) = lim
t→0

f(~x + t~y)− f(~x)

t
.

If f is written as a function of variables x1, . . . , xn, we call the directional derivative along
the i-th standard basis vector the partial derivative of f with respect to i and denote it by
∂f
∂xi

. In other words, the partial derivative is the derivative of f as a function of xi along,
regarding the other variables as constants.

TOTAL DERIVATIVE
Caveat! Since the derivative is not a “function” in our restricted sense (it has takes

values in a vector space, not R) we cannot take a “second derivative”—yet.
ASSUMING the derivative exists, it can be computed by taking partial derivatives along

a basis.

4.5 Convexity in several variables

A function f defined on a convex subset of a vector space is said to be convex if for all ~x, ~y
in the domain and t ∈ [0, 1],

tf(~x) + (1− t)f(~y) ≥ f(t~x + (1− t)~y).

Equivalently, f is convex if its restriction to any line is convex. Of course, we say f is concave
if −f is convex.

The analogue of the second derivative test for convexity is the Hessian criterion. A
symmetric matrix M (that is, one with Mij = Mji for all i, j) is said to be positive definite if
M~x·~x > 0 for all nonzero vectors ~x, or equivalently, if its eigenvalues are all real and positive.
(The first condition implies the second because all eigenvalues of a symmetric matrix are
real. The second implies the first because if M has positive eigenvalues, then it has a square
root N which is also symmetric, and M~x · ~x = (N~x) · (N~x) > 0.)

Theorem 27 (Hessian test). A twice differentiable function f(x1, . . . , xn) is convex in a
region if and only if the Hessian matrix

Hij =
∂2

∂xi∂xj
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is positive definite everywhere in the region.

Note that the Hessian is symmetric because of the symmetry of mixed partials, so this
statement makes sense.

Proof. The function f is convex if and only if its restriction to each line is convex, and the
second derivative along a line through ~x in the direction of ~y is (up to a scale factor) just
H~y · ~y evaluated at ~x. So f is convex if and only if H~y · ~y > 0 for all nonzero ~y, that is, if
H is positive definite.

The bad news about this criterion is that determining whether a matrix is positive
definite is not a priori an easy task: one cannot check M~x · ~x ≥ 0 for every vector, so it
seems one must compute all of the eigenvalues of M , which can be quite a headache. The
good news is that there is a very nice criterion for positive definiteness of a symmetric matrix,
due to Sylvester, that saves a lot of work.

Theorem 28 (Sylvester’s criterion). An n × n symmetric matrix of real numbers is
positive definite if and only if the determinant of the upper left k × k submatrix is positive
for k = 1, . . . , n.

Proof. By the M~x · ~x definition, the upper left k× k submatrix of a positive definite matrix
is positive definite, and by the eigenvalue definition, a positive definite matrix has positive
determinant. Hence Sylvester’s criterion is indeed necessary for positive definiteness.

We show the criterion is also sufficient by induction on n. BLAH.

Problems for Section 4.5

1. (IMO 1968/2) Prove that for all real numbers x1, x2, y1, y2, z1, z2 with x1, x2 > 0 and
x1y1 > z2

1 , x2y2 > z2, the inequality

8

(x1 + x2)(y1 + y2)− (z1 + z2)2
≤ 1

x1y1 − z2
1

+
1

x2y2 − z2
2

is satisfied, and determine when equality holds. (Yes, you really can apply the material
of this section to the IMO! Verify convexity of the appropriate function using the
Hessian and Sylvester’s criterion.)

4.6 Constrained extrema and Lagrange multipliers

In the multivariable realm, a new phenomenon emerges that we did not have to consider in
the one-dimensional case: sometimes we are asked to prove an inequality in the case where
the variables satisfy some constraint.
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The Lagrange multiplier criterion for an interior local extremum of the function f(x1, . . . , xn)
under the constraint g(x1, . . . , xn) = c is the existence of λ such that

∂f

∂xi

(x1, . . . , xn) = λ
∂g

∂xi

(x1, . . . , xn).

Putting these conditions together with the constraint on g, one may be able to solve and
thus put restrictions on the locations of the extrema. (Notice that the duality of constrained
optimization shows up in the symmetry between f and g in the criterion.)

It is even more critical here than in the one-variable case that the Lagrange multiplier
condition is a necessary one only for an interior extremum. Unless one can prove that the
given function is convex, and thus that an interior extremum must be a global one, one must
also check all boundary situations, which is far from easy to do when (as often happens)
these extend to infinity in some direction.

For a simple example, let f(x, y, z) = ax+ by + cz with a, b, c constants, not all zero, and
consider the constraint g(x, y, z) = 1, where g(x, y, z) = x2 + y2 + z2. Then the Lagrange
multiplier condition is that

a = 2λx, b = 2λy, c = 2λz.

The only points satisfying this condition plus the original constraint are

± 1√
a2 + b2 + c2

(a, b, c),

and these are indeed the minimum and maximum for f under the constraint, as you may
verify geometrically.
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Chapter 5

Coda

5.1 Quick reference

Here’s a handy reference guide to the techniques we’ve introduced.

• Arithmetic-geometric-harmonic means

• Arrange in order

• Bernoulli

• Bunching

• Cauchy-Schwarz

• Chebyshev

• Convexity

• Derivative test

• Duality for constrained optimization

• Equality conditions

• Factoring

• Geometric interpretations

• Hessian test

• Hölder

• Jensen
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• Lagrange multipliers

• Maclaurin

• Minkowski

• Newton

• Power means

• Rearrangement

• Reduction of the number of variables (Theorem 9)

• Schur

• Smoothing

• Substitution (algebraic or trigonometric)

• Sum of squares

• Symmetric sums

• Unsmoothing (boundary extrema)

5.2 Additional problems

Here is an additional collection of problems covering the entire range of techniques we have
introduced, and one or two that you’ll have to discover for yourselves!

Problems for Section 5.2

1. Let x, y, z > 0 with xyz = 1. Prove that x + y + z ≤ x2 + y2 + z2.

2. The real numbers x1, x2, . . . , xn belong to the interval [−1, 1] and the sum of their
cubes is zero. Prove that their sum does not exceed n/3.

3. (IMO 1972/2) Let x1, . . . , x5 be positive reals such that

(x2
i+1 − xi+3xi+5)(x

2
i+2 − xi+3xi+5) ≤ 0

for i = 1, . . . , 5, where xn+5 = xn for all n. Prove that x1 = · · · = x5.

4. (USAMO 1979/3) Let x, y, z ≥ 0 with x + y + z = 1. Prove that

x3 + y3 + z3 + 6xyz ≥ 1

4
.
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5. (Taiwan, 1995) Let P (x) = 1+a1x+ · · ·+an−1x
n−1 +xn be a polynomial with complex

coefficients. Suppose the roots of P (x) are α1, α2, . . . , αn with

|α1| > 1, |α2| > 1, . . . , |αj| > 1

and
|αj+1| ≤ 1, |αj+2| ≤ 1, . . . , |αn| ≤ 1.

Prove that
j∏

i=1

|αi| ≤
√
|a0|2 + |a1|2 + · · ·+ |an|2.

(Hint: look at the coefficients of P (x)P (x), the latter being 1+a1x+· · ·+an−1x
n−1+xn.)

6. Prove that, for any real numbers x, y, z,

3(x2 − x + 1)(y2 − y + 1)(z2 − z + 1) ≥ (xyz)2 + xyz + 1.

7. (a) Prove that any polynomial P (x) such that P (x) ≥ 0 for all real x can be written
as the sum of the squares of two polynomials.

(b) Prove that the polynomial

x2(x2 − y2)(x2 − 1) + y2(y2 − 1)(y2 − x2) + (1− x2)(1− y2)

is everywhere nonnegative, but cannot be written as the sum of squares of any
number of polynomials. (One of Hilbert’s problems, solved by Artin and Schreier,
was to prove that such a polynomial can always be written as the sum of squares
of rational functions.)
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