Computability of non-compact manifolds

Matea Čelar University of Zagreb

Zagreb Logic Conference, January 15th, 2024

A compact set S in \mathbb{R}^2 is **computable** if it is empty or there is an algorithm which, on input $k \in \mathbb{N}$, outputs a finite set of rational points which approximate S with precision 2^{-k} .

COMPUTABILITY OF COMPACT SETS

Equivalently, *S* is computable if it has the following two properties:

Equivalently, \boldsymbol{S} is computable if it has the following two properties:

S is **computably enumerable**: we can effectively list all rational open balls which intersect *S*

Equivalently, *S* is computable if it has the following two properties:

S is **computably enumerable**: we can effectively list all rational open balls which intersect *S*

S is **semicomputable**: we can effectively list all finite unions of rational open balls which cover *S*

COMPUTABILITY OF NON-COMPACT SETS

What about non-compact sets?

What about non-compact sets?

Definition of computable enumerability can remain the same. However, we need to modify the notion of semicomputability. What about non-compact sets?

Definition of computable enumerability can remain the same. However, we need to modify the notion of semicomputability.

S is **semicomputable** if

- (i) $S \cap \hat{B}$ is compact for each closed ball B
- (ii) we can effectively list all finite unions of rational open balls which cover $S \cap \hat{B}_i$, uniformly over all rational closed balls \hat{B}_i

What about non-compact sets?

Definition of computable enumerability can remain the same. However, we need to modify the notion of semicomputability.

S is **semicomputable** if

- (i) $S \cap \hat{B}$ is compact for each closed ball B
- (ii) we can effectively list all finite unions of rational open balls which cover $S \cap \hat{B}_i$, uniformly over all rational closed balls \hat{B}_i

Not all semicomputable sets are computably enumerable. In fact, there is a semicoputable set with no computable points.

However, semicomputability of a set can automatically imply computable enumerability, under some additional topological conditions.

$$\frown$$

 $B_i \cap S \neq \emptyset$

 $B_i \cap S \neq \emptyset \iff \bigcup_u B_u \cup B_i \cup \bigcup_v B_v \text{ covers } S$ $a \in \bigcup_u B_u, \quad b \in \bigcup_v B_v$ $\bigcup_u B_u \text{ and } \bigcup_v B_v \text{ are formally disjoint}$

$$B_i \cap S \neq \emptyset \iff \bigcup_u B_u \cup B_i \cup \bigcup_v B_v \text{ covers } S$$
$$a \in \bigcup_u B_u, \quad b \in \bigcup_v B_v$$
$$\bigcup_u B_u \text{ and } \bigcup_v B_v \text{ are formally disjoint}$$

In this case, computable enumerability is reducible to semicomputability!

Theorem 1 (Burnik and Iljazović 2014)

Let (X, d, α) be a computable metric space. Let M be a 1-manifold with boundary in this space such that M has finitely many components. Suppose M and ∂M are semicomputable. Then M is computable.

K. Burnik and Z. Iljazović (2014). "Computability of 1-manifolds". In: Logical Methods in Computer Science 10.2:8, pp. 1–28.

Theorem 1 (Burnik and Iljazović 2014)

Let (X, d, α) be a computable metric space. Let M be a 1-manifold with boundary in this space such that M has finitely many components. Suppose M and ∂M are semicomputable. Then M is computable.

K. Burnik and Z. Iljazović (2014). "Computability of 1-manifolds". In: Logical Methods in Computer Science 10.2:8, pp. 1–28.

Theorem 2 (Iljazović 2020)

Let (X, d, α) be a computable metric space and let S be a semicomputable set in this space. Suppose S, as a subspace of (X, d), is a generalized graph such that the set E of all endpoints of S is semicomputable in (X, d, α) . Then S is computable in (X, d, α) .

Z. Iljazović (2020). "Computability of graphs". In: Mathematical Logic Quarterly 66, pp. 51–64.

Theorem 2 (Iljazović 2020)

Let (X, d, α) be a computable metric space and let S be a semicomputable set in this space. Suppose S, as a subspace of (X, d), is a generalized graph such that the set E of all endpoints of S is semicomputable in (X, d, α) . Then S is computable in (X, d, α) .

Z. Iljazović (2020). "Computability of graphs". In: Mathematical Logic Quarterly 66, pp. 51–64.

Theorem 3 (Iljazović and Sušić 2018)

Let (X, d, α) be a computable metric space and let K be a manifold with boundary in this space. Suppose K and ∂K are semicomputable. Then K is computable if there exists an open set U in K such that \overline{U} is compact in K and $K \setminus U$ is homeomorphic to $\mathbb{R}^n \setminus B(0, 1)$ or \mathbb{H}^n .

Z. Iljazović and I. Sušić (2018). "Semicomputable manifolds in computable topological spaces". In: Journal of Complexity 45, pp. 83–114.

Theorem 3 (Iljazović and Sušić 2018)

Let (X, d, α) be a computable metric space and let K be a manifold with boundary in this space. Suppose K and ∂K are semicomputable. Then K is computable if there exists an open set U in K such that \overline{U} is compact in K and $K \setminus U$ is homeomorphic to $\mathbb{R}^n \setminus B(0, 1)$ or \mathbb{H}^n .

Z. Iljazović and I. Sušić (2018). "Semicomputable manifolds in computable topological spaces". In: Journal of Complexity 45, pp. 83–114.

How do we reduce computable enumerability to semicomputability in the non-compact case?

How do we reduce computable enumerability to semicomputability in the non-compact case? Example from Theorem 1 (*S* is a line):

How do we reduce computable enumerability to semicomputability in the non-compact case? Example from Theorem 1 (*S* is a line):

 $\begin{array}{l} \mathcal{H}_{\ell} \text{ is a formal chain} \\ S \cap \hat{B}(a,n) \subseteq \bigcup \mathcal{H}_{\ell}^{p \leq q} \\ S \cap \hat{B}(a,m) \subseteq \bigcup \mathcal{H}_{\ell} \\ \mathcal{H}_{\ell}^{p \leq q} \subseteq_{F} B(a,m) \\ \mathcal{H}_{\ell}^{p \leq q} \subseteq_{F} B(a,m) \\ p < e < q < \overline{\ell} \land m > 1 \land p \leq w \leq q \\ fmesh(\ell) < 2^{-(k_0+k+3)} \\ I_A \text{ and } \mathcal{H}_{\ell}^{e \leq \overline{\ell}} \text{ are formally disjoint} \\ I_B \text{ and } \mathcal{H}_{\ell}^{0 \leq e} \text{ are formally disjoint} \\ J_{(\ell)w} \subseteq_{F} I_i \end{array}$

Is there a better way to deal with non-compact sets?

(a) A one-sided infinite cylinder

(a) A one-sided infinite cylinder

(b) One-point compactification

(a) A one-sided infinite cylinder

(b) One-point compactification

(c) Stone-Čech compactification

(a) A one-sided infinite cylinder

(b) One-point compactification

(c) Stone-Čech compactification

We will use the **one-point compactification**.

(a) A one-sided infinite cylinder

(b) One-point compactification

(c) Stone-Čech compactification

We will use the **one-point compactification**. What about computability?

PSEUDOCOMPACTIFICATION

We start with a non-compact space equipped with a structure of computable metric space

PSEUDOCOMPACTIFICATION

We start with a non-compact space equipped with a structure of computable metric space

PSEUDOCOMPACTIFICATION

We start with a non-compact space equipped with a structure of computable metric space

We can define a structure of a computable topological space on the compactification.

We call the newly defined computable topological space a **pseudocompactification** of the original computable metric space.

Theorem 4 (Iljazović and Sušić 2018)

Let (X, d, α) be a computable metric space and let $(Y, S, (I_i))$ be its pseudocompactification. Let K be a semicomputable set in (X, d, α) . Suppose the metric space (X, d) is unbounded.

- (i) If K is compact in (X, d), then K is semicomputable in $(Y, \mathcal{S}, (I_i))$.
- (ii) If *K* is not compact in (X, d), then $K \cup \{\infty\}$ is semicomputable in $(Y, S, (I_i))$.

Theorem 5 (Iljazović and Sušić 2018)

Let (X, d, α) be a computable metric space and let $(Y, S, (I_i))$ be its pseudocompactification. Suppose $K \subseteq X$ is such that $K \cup \{\infty\}$ is a c.e. set in $(Y, S, (I_i))$. Then K is c.e. in (X, d, α) .

S semicomputable

S semicomputable

S semicomputable \Rightarrow S^{∞} semicomputable

 $S \text{ semicomputable } \quad \Rightarrow \quad S^\infty \text{ semicomputable }$

 \Downarrow

 S^∞ c.e.

We know that semicomputable (compact) spaces obtained by glueing manifolds together are computably enumerable.

More in Matea Čelar and Zvonko Iljazović (Oct. 2021). "Computability of glued manifolds". In: Journal of Logic and Computation 32.1, pp. 65–97. ISSN: 0955-792X. DOI: 10.1093/logcom/exab063.

We know that semicomputable (compact) spaces obtained by glueing manifolds together are computably enumerable.

More in Matea Čelar and Zvonko Iljazović (Oct. 2021). "Computability of glued manifolds". In: Journal of Logic and Computation 32.1, pp. 65–97. ISSN: 0955-792X. DOI: 10.1093/logcom/exab063.

We know that semicomputable (compact) spaces obtained by glueing manifolds together are computably enumerable.

More in Matea Čelar and Zvonko Iljazović (Oct. 2021). "Computability of glued manifolds". In: Journal of Logic and Computation 32.1, pp. 65–97. ISSN: 0955-792X. DOI: 10.1093/logcom/exab063.

We know that semicomputable (compact) spaces obtained by glueing manifolds together are computably enumerable.

More in Matea Čelar and Zvonko Iljazović (Oct. 2021). "Computability of glued manifolds". In: Journal of Logic and Computation 32.1, pp. 65–97. ISSN: 0955-792X. DOI: 10.1093/logcom/exab063.

This allows us to conclude the same about a more general class of non-compact manifolds.

EXAMPLES

antificit			in.
100	-	-	
2			
1			
1-1			
			۲
1.0			
1			
51			
1			
1			
1			1
1.1.1			
0			
			ŀ
1.1			
1 2			
21			
1			
1			
1			P
1.1.1			
0			

- Burnik, K. and Z. Iljazović (2014). "Computability of 1-manifolds". In: Logical Methods in Computer Science 10.2:8, pp. 1–28.
- Guilbault, Craig R. (2016). "Ends, Shapes, and Boundaries in Manifold Topology and Geometric Group Theory". In: *Topology and Geometric Group Theory*. Ed. by Michael W. Davis et al. Cham: Springer International Publishing, pp. 45–125. ISBN: 978-3-319-43674-6.
- Iljazović, Z. (2020). "Computability of graphs". In: Mathematical Logic Quarterly 66, pp. 51–64.
- Iljazović, Z. and I. Sušić (2018). "Semicomputable manifolds in computable topological spaces". In: *Journal of Complexity* 45, pp. 83–114.

- Iljazović, Zvonko and Takayuki Kihara (2021). "Computability of Subsets of Metric Spaces". In: *Handbook of Computability and Complexity in Analysis*. Ed. by Vasco Brattka and Peter Hertling. Cham: Springer International Publishing, pp. 29–69. ISBN: 978-3-030-59234-9. DOI: 10.1007/978-3-030-59234-9_2. URL: https://doi.org/10.1007/978-3-030-59234-9_2.
 Miller, J.S. (2002). "Effectiveness for Embedded Spheres and
 - Balls". In: *Electronic Notes in Theoretical Computer Science* 66, pp. 127–138.
- Čelar, Matea and Zvonko Iljazović (Oct. 2021). "Computability of glued manifolds". In: *Journal of Logic and Computation* 32.1, pp. 65–97. ISSN: 0955-792X. DOI: 10.1093/logcom/exab063.

Thank you!