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COMPUTABILITY OF COMPACT SETS

A compact set S in R2 is computable if it is empty or there is an
algorithm which, on input k ∈ N, outputs a finite set of rational
points which approximate S with precision 2−k.



COMPUTABILITY OF COMPACT SETS

Equivalently, S is computable if it has the following two
properties:

S is computably enumerable:
we can effectively list all
rational open balls which
intersect S

S is semicomputable: we
can effectively list all finite
unions of rational open balls
which cover S
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COMPUTABILITY OF NON-COMPACT SETS

What about non-compact sets?

Definition of computable enumerability can remain the same.
However, we need to modify the notion of semicomputability.

S is semicomputable if
(i) S ∩ B̂ is compact for each

closed ball B
(ii) we can effectively list all

finite unions of rational
open balls which cover
S ∩ B̂i, uniformly over all
rational closed balls B̂i



COMPUTABILITY OF NON-COMPACT SETS

What about non-compact sets?

Definition of computable enumerability can remain the same.
However, we need to modify the notion of semicomputability.

S is semicomputable if
(i) S ∩ B̂ is compact for each

closed ball B
(ii) we can effectively list all

finite unions of rational
open balls which cover
S ∩ B̂i, uniformly over all
rational closed balls B̂i



COMPUTABILITY OF NON-COMPACT SETS

What about non-compact sets?

Definition of computable enumerability can remain the same.
However, we need to modify the notion of semicomputability.

S is semicomputable if
(i) S ∩ B̂ is compact for each

closed ball B
(ii) we can effectively list all

finite unions of rational
open balls which cover
S ∩ B̂i, uniformly over all
rational closed balls B̂i



COMPUTABILITY OF NON-COMPACT SETS

What about non-compact sets?

Definition of computable enumerability can remain the same.
However, we need to modify the notion of semicomputability.

S is semicomputable if
(i) S ∩ B̂ is compact for each

closed ball B
(ii) we can effectively list all

finite unions of rational
open balls which cover
S ∩ B̂i, uniformly over all
rational closed balls B̂i



WHEN IS SEMICOMPUTABILITY ENOUGH?

Not all semicomputable sets are computably enumerable. In
fact, there is a semicoputable set with no computable points.

However, semicomputability of a set can automatically imply
computable enumerability, under some additional topological
conditions.



EXAMPLE: ARC

Suppose S is a semicomputable arc with computable
endpoints a and b

Bi ∩ S ̸= ∅ ⇐⇒

⋃
uBu ∪Bi ∪

⋃
v Bv covers S

a ∈
⋃

uBu, b ∈
⋃

v Bv⋃
uBu and

⋃
v Bv are formally disjoint

In this case, computable enumerability is reducible to
semicomputability!
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SOME KNOWN RESULTS 1-manifolds

Theorem 1 (Burnik and Iljazović 2014)

Let (X, d, α) be a computable metric space. Let M be a
1-manifold with boundary in this space such that M has
finitely many components. Suppose M and ∂M are
semicomputable. Then M is computable.

K. Burnik and Z. Iljazović (2014). “Computability of 1-manifolds”. In: Logical
Methods in Computer Science 10.2:8, pp. 1–28.



SOME KNOWN RESULTS 1-manifolds

Theorem 1 (Burnik and Iljazović 2014)
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SOME KNOWN RESULTS generalized graphs

Theorem 2 (Iljazović 2020)

Let (X, d, α) be a computable metric space and let S be a
semicomputable set in this space. Suppose S, as a subspace of
(X, d), is a generalized graph such that the set E of all
endpoints of S is semicomputable in (X, d, α). Then S is
computable in (X, d, α).

Z. Iljazović (2020). “Computability of graphs”. In: Mathematical Logic Quarterly
66, pp. 51–64.
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SOME KNOWN RESULTS n-manifolds

Theorem 3 (Iljazović and Sušić 2018)

Let (X, d, α) be a computable metric space and let K be a
manifold with boundary in this space. Suppose K and ∂K are
semicomputable. Then K is computable if there exists an open
set U in K such that U is compact in K and K \ U is
homeomorphic to Rn \B(0, 1) or Hn.

Z. Iljazović and I. Sušić (2018). “Semicomputable manifolds in computable topo-
logical spaces”. In: Journal of Complexity 45, pp. 83–114.
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How do we reduce computable enumerability to
semicomputability in the non-compact case?

Example from
Theorem 1 (S is a line):

Ii ∩ S ̸= ∅ ⇐⇒

Hℓ is a formal chain
S ∩ B̂(a, n) ⊆

⋃
Hp≤q

ℓ

S ∩ B̂(a,m) ⊆
⋃

Hℓ

Hp≤q
ℓ ⊆F B(a,m)

p < e < q < ℓ ∧m > 1 ∧ p ≤ w ≤ q
fmesh(ℓ) < 2−(k0+k+3)

IA and He≤ℓ
ℓ are formally disjoint

IB and H0≤e
ℓ are formally disjoint
J(ℓ)w ⊆F Ii

Is there a better way to deal with non-compact sets?
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COMPACTIFICATION

From the standpoint of topology, we could consider
compactifications – embeddings as a dense subspace of a
compact topological space.

(a) A one-sided infinite
cylinder

(b) One-point
compactification

(c) Stone-Čech
compactification

We will use the one-point compactification.

What about computability?



COMPACTIFICATION

From the standpoint of topology, we could consider
compactifications – embeddings as a dense subspace of a
compact topological space.

(a) A one-sided infinite
cylinder

(b) One-point
compactification

(c) Stone-Čech
compactification

We will use the one-point compactification.

What about computability?



COMPACTIFICATION

From the standpoint of topology, we could consider
compactifications – embeddings as a dense subspace of a
compact topological space.

(a) A one-sided infinite
cylinder

(b) One-point
compactification

(c) Stone-Čech
compactification

We will use the one-point compactification.

What about computability?



COMPACTIFICATION

From the standpoint of topology, we could consider
compactifications – embeddings as a dense subspace of a
compact topological space.

(a) A one-sided infinite
cylinder

(b) One-point
compactification

(c) Stone-Čech
compactification

We will use the one-point compactification.

What about computability?



COMPACTIFICATION

From the standpoint of topology, we could consider
compactifications – embeddings as a dense subspace of a
compact topological space.

(a) A one-sided infinite
cylinder

(b) One-point
compactification

(c) Stone-Čech
compactification

We will use the one-point compactification.

What about computability?



COMPACTIFICATION

From the standpoint of topology, we could consider
compactifications – embeddings as a dense subspace of a
compact topological space.

(a) A one-sided infinite
cylinder

(b) One-point
compactification

(c) Stone-Čech
compactification

We will use the one-point compactification.

What about computability?



PSEUDOCOMPACTIFICATION

We start with a non-compact
space equipped with a
structure of computable metric
space

We can define a structure of a
computable topological space
on the compactification.

We call the newly defined computable topological space a
pseudocompactification of the original computable metric
space.
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PSEUDOCOMPACTIFICATION preservation results

Theorem 4 (Iljazović and Sušić 2018)

Let (X, d, α) be a computable metric space and let (Y,S, (Ii)) be
its pseudocompactification. Let K be a semicomputable set in
(X, d, α). Suppose the metric space (X, d) is unbounded.
(i) If K is compact in (X, d), then K is semicomputable in

(Y,S, (Ii)).
(ii) If K is not compact in (X, d), then K ∪ {∞} is

semicomputable in (Y,S, (Ii)).

Theorem 5 (Iljazović and Sušić 2018)

Let (X, d, α) be a computable metric space and let (Y,S, (Ii)) be
its pseudocompactification. Suppose K ⊆ X is such that
K ∪ {∞} is a c.e. set in (Y,S, (Ii)). Then K is c.e. in (X, d, α).



GENERAL ARGUMENT

S semicomputable

⇒ S∞ semicomputable

⇓

S∞ c.e.⇐=S c.e.
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MORE CYLINDERS

Generally, spaces obtained by compactifying cylinders are
(locally) cones or wedges of cones.

We know that semicomputable (compact) spaces obtained by
glueing manifolds together are computably enumerable.

More in Matea Čelar and Zvonko Iljazović (Oct. 2021). “Computability of glued
manifolds”. In: Journal of Logic and Computation 32.1, pp. 65–97. ISSN: 0955-
792X. DOI: 10. 1093/ logcom/ exab063 .

This allows us to conclude the same about a more general class
of non-compact manifolds.

https://doi.org/10.1093/logcom/exab063
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