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Computable topological spaces

Computable topological space is a second countable Hausdorff space (X, T )
equipped with an enumeration of its base (Ii)i∈N such that there exist r.e. sets C
and D with the following properties:

i. C ⊆ {(i, j) | Ii ⊆ Ij};

ii. D ⊆ {(i, j) | Ii ∩ Ij = ∅};

iii. x ∈ Ii ∩ Ij ⇒ ∃k(x ∈ Ik ∧ (k, i) ∈ C ∧ (k, j) ∈ C);

iv. x ̸= y ⇒ ∃i∃j(x ∈ Ii ∧ y ∈ Ij ∧ (i, j) ∈ D).



Computability of sets

Let S be a set in a computable topological space.

We say that S is

• computably enumerable if it is closed and {i ∈ N | Ii ∩ S ̸= ∅} is c.e.;

• semicomputable if it is compact and {⟨i0, . . . , ik⟩ | S ⊆ Ii0 ∪ . . . ∪ Iik} is c.e.;

• computable if S is semicomputable and computably enumerable.

Definition
Topological pair (A,B) has computable type if, for every semicomputable copy
(S, T ) of (A,B) in a computable topological space, S is computable.
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Computable type: examples

[Iljazović and Sušić, 2018, Čičković et al., 2019, Amir and Hoyrup, 2022,
Horvat et al., 2020]



Pairs and quotients

0 1

([0, 1], {0, 1}) has
computable type

S1 has computable type

0 ∼ 1

Definition
Let B be a subset of a topological space A. The quotient space A/B is the set
{B} ∪ {{x} | x ∈ A \B} equipped with the finest topology which makes the
cannonical projection map continuous.
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"Unbinding" a quotient space

Theorem
Let A be a topological space and let B be a compact subset of A such that IntAB = ∅. If
A/B has computable type, then (A,B) also has computable type.

Sketch of proof.
• Given a semicomputable set B in a computable topological space, we can

define a natural structure of computability on the corresponding quotient
space

• The natural quotient map q : X → X/B preserves semicomputability
• The inverse image of q preserves computable enumerability

( IntAB = ∅ is crucial in this step)
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Counterexample I
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Counterexample II
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Local computability

Suppose T ⊆ S. We say that T is computably enumerable up to S if there exists a
r.e. set Ω ⊆ N such that {i ∈ N | Ii ∩ T ̸= ∅} ⊆ Ω ⊆ {i ∈ N | Ii ∩ S ̸= ∅}.

We say that S is computably enumerable at x ∈ S if x has a neighborhood in S
which is c.e. up to S.

Definition
Topological space A has local computable type if a semicomputable set is c.e. at
any point which has a neighborhood homeomorphic to A.
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Local computable type: examples



Local computable type of Rn/K

Theorem
Let K be a compact subset of Rn such that Rn \K has finitely many connected
components. Then Rn/K has local computable type.

Sketch of proof.
• Suppose S is semicomputable and x0 ∈ S has a neighborhood homeomorphic

to Rn/K. WLOG we can assume x0 is the image of the "collapsed" set K;
otherwise, it has an Euclidean neighborhood.

• The image of any unbounded connected component of Rn \K contains a
neighborhood of x0 which is c.e. up to S.

• The image of any connected component can be expressed as an image of an
unbounded component under a similar map.
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