Computable type of certain quotient spaces

Matea Čelar Zvonko Iljazović

University of Zagreb
Faculty of Science
Department of Mathematics

Computability in Europe Swansea, 15th July 2022

Computable topological spaces

Computable topological space is a second countable Hausdorff space (X, \mathcal{T}) equipped with an enumeration of its base $\left(I_{i}\right)_{i \in \mathbb{N}}$ such that there exist r.e. sets \mathcal{C} and \mathcal{D} with the following properties:
i. $\mathcal{C} \subseteq\left\{(i, j) \mid I_{i} \subseteq I_{j}\right\}$;
ii. $\mathcal{D} \subseteq\left\{(i, j) \mid I_{i} \cap I_{j}=\emptyset\right\}$;
iii. $x \in I_{i} \cap I_{j} \Rightarrow \exists k\left(x \in I_{k} \wedge(k, i) \in \mathcal{C} \wedge(k, j) \in \mathcal{C}\right)$;
iv. $x \neq y \Rightarrow \exists i \exists j\left(x \in I_{i} \wedge y \in I_{j} \wedge(i, j) \in \mathcal{D}\right)$.

Computability of sets

Let S be a set in a computable topological space.

Computability of sets

Let S be a set in a computable topological space. We say that S is

- computably enumerable if it is closed and $\left\{i \in \mathbb{N} \mid I_{i} \cap S \neq \emptyset\right\}$ is c.e.;

Computability of sets

Let S be a set in a computable topological space. We say that S is

- computably enumerable if it is closed and $\left\{i \in \mathbb{N} \mid I_{i} \cap S \neq \emptyset\right\}$ is c.e.;
- semicomputable if it is compact and $\left\{\left\langle i_{0}, \ldots, i_{k}\right\rangle \mid S \subseteq I_{i_{0}} \cup \ldots \cup I_{i_{k}}\right\}$ is c.e.;

Computability of sets

Let S be a set in a computable topological space. We say that S is

- computably enumerable if it is closed and $\left\{i \in \mathbb{N} \mid I_{i} \cap S \neq \emptyset\right\}$ is c.e.;
- semicomputable if it is compact and $\left\{\left\langle i_{0}, \ldots, i_{k}\right\rangle \mid S \subseteq I_{i_{0}} \cup \ldots \cup I_{i_{k}}\right\}$ is c.e.;
- computable if S is semicomputable and computably enumerable.

Computability of sets

Let S be a set in a computable topological space. We say that S is

- computably enumerable if it is closed and $\left\{i \in \mathbb{N} \mid I_{i} \cap S \neq \emptyset\right\}$ is c.e.;
- semicomputable if it is compact and $\left\{\left\langle i_{0}, \ldots, i_{k}\right\rangle \mid S \subseteq I_{i_{0}} \cup \ldots \cup I_{i_{k}}\right\}$ is c.e.;
- computable if S is semicomputable and computably enumerable.

Definition

Topological pair (A, B) has computable type if, for every semicomputable copy (S, T) of (A, B) in a computable topological space, S is computable.

Computable type: examples

[Iljazović and Sušić, 2018, Čičković et al., 2019, Amir and Hoyrup, 2022, Horvat et al., 2020]

Pairs and quotients

Pairs and quotients

\mathbb{S}^{1} has computable type

Pairs and quotients

\mathbb{S}^{1} has computable type

Pairs and quotients

\mathbb{S}^{1} has computable type

Definition

Let B be a subset of a topological space A. The quotient space A / B is the set $\{B\} \cup\{\{x\} \mid x \in A \backslash B\}$ equipped with the finest topology which makes the cannonical projection map continuous.

The main goal

The main goal

"Unbinding" a quotient space

Theorem

Let A be a topological space and let B be a compact subset of A such that $\operatorname{Int}_{A} B=\emptyset$. If A / B has computable type, then (A, B) also has computable type.

"Unbinding" a quotient space

Theorem

Let A be a topological space and let B be a compact subset of A such that $\operatorname{Int}_{A} B=\emptyset$. If A / B has computable type, then (A, B) also has computable type.

Sketch of proof.

- Given a semicomputable set B in a computable topological space, we can define a natural structure of computability on the corresponding quotient space
- The natural quotient map $q: X \rightarrow X / B$ preserves semicomputability
- The inverse image of q preserves computable enumerability ($\operatorname{Int}_{A} B=\emptyset$ is crucial in this step)

$$
\begin{gathered}
(A, B) \text { has } \\
\text { computable type }
\end{gathered} \stackrel{?}{\operatorname{Int}_{A} B=\emptyset} \quad \begin{gathered}
A / B \text { has } \\
\text { computable type }
\end{gathered}
$$

$$
\begin{gathered}
(A, B) \text { has } \\
\text { computable type }
\end{gathered} \stackrel{?}{\operatorname{Int}_{A} B=\emptyset} \quad \begin{gathered}
A / B \text { has } \\
\text { computable type }
\end{gathered}
$$

$$
\begin{gathered}
(A, B) \text { has } \\
\text { computable type }
\end{gathered} \stackrel{?}{\operatorname{Int}_{A} B=\emptyset} \quad \begin{gathered}
A / B \text { has } \\
\text { computable type }
\end{gathered}
$$

Counterexample I

(A, B) has
computable type

Counterexample I

Counterexample I

Counterexample II

Counterexample II

Counterexample II

Counterexample II

Counterexample II

Local computability

Local computability

Suppose $T \subseteq S$. We say that T is computably enumerable up to S if there exists a r.e. set $\Omega \subseteq \mathbb{N}$ such that $\left\{i \in \mathbb{N} \mid I_{i} \cap T \neq \emptyset\right\} \subseteq \Omega \subseteq\left\{i \in \mathbb{N} \mid I_{i} \cap S \neq \emptyset\right\}$.

Local computability

Suppose $T \subseteq S$. We say that T is computably enumerable up to S if there exists a r.e. set $\Omega \subseteq \mathbb{N}$ such that $\left\{i \in \mathbb{N} \mid I_{i} \cap T \neq \emptyset\right\} \subseteq \Omega \subseteq\left\{i \in \mathbb{N} \mid I_{i} \cap S \neq \emptyset\right\}$.

We say that S is computably enumerable at $x \in S$ if x has a neighborhood in S which is c.e. up to S.

Local computability

Suppose $T \subseteq S$. We say that T is computably enumerable up to S if there exists a r.e. set $\Omega \subseteq \mathbb{N}$ such that $\left\{i \in \mathbb{N} \mid I_{i} \cap T \neq \emptyset\right\} \subseteq \Omega \subseteq\left\{i \in \mathbb{N} \mid I_{i} \cap S \neq \emptyset\right\}$.

We say that S is computably enumerable at $x \in S$ if x has a neighborhood in S which is c.e. up to S.

Definition

Topological space A has local computable type if a semicomputable set is c.e. at any point which has a neighborhood homeomorphic to A.

Local computable type: examples

Local computable type of \mathbb{R}^{n} / K

Theorem

Let K be a compact subset of \mathbb{R}^{n} such that $\mathbb{R}^{n} \backslash K$ has finitely many connected components. Then \mathbb{R}^{n} / K has local computable type.

Local computable type of \mathbb{R}^{n} / K

Theorem

Let K be a compact subset of \mathbb{R}^{n} such that $\mathbb{R}^{n} \backslash K$ has finitely many connected components. Then \mathbb{R}^{n} / K has local computable type.

Sketch of proof.

- Suppose S is semicomputable and $x_{0} \in S$ has a neighborhood homeomorphic to \mathbb{R}^{n} / K. WLOG we can assume x_{0} is the image of the "collapsed" set K; otherwise, it has an Euclidean neighborhood.
- The image of any unbounded connected component of $\mathbb{R}^{n} \backslash K$ contains a neighborhood of x_{0} which is c.e. up to S.
- The image of any connected component can be expressed as an image of an unbounded component under a similar map.

Example

Example

Example

References

© Amir，D．E．and Hoyrup，M．（2022）． Computability of finite simplicial complexes．
図 Horvat，M．，Iljazović，Z．，and Pažek，B．（2020）． Computability of pseudo－cubes． Annals of Pure and Applied Logic，171（8）：102823．
國 Iljazović，Z．（2020）．
Computability of graphs．
Mathematical Logic Quarterly，66：51－64．
國 Iljazović，Z．and Sušić，I．（2018）．
Semicomputable manifolds in computable topological spaces． Journal of Complexity，45：83－114．

References

围 Miller，J．（2002）．
Effectiveness for embedded spheres and balls．
Electronic Notes in Theoretical Computer Science，66：127－138．
围 Čičković，E．，Iljazović，Z．，and Validžić，L．（2019）．
Chainable and circularly chainable semicomputable sets in computable topological spaces．
Archive for Mathematical Logic，58：885－897．
國 Weihrauch，K．（2010）．
Computable separation in topology，from T_{0} to T_{2} ．
Journal of Universal Computer Science，16（18）：2733－2753．

Thank you!

