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Introduction

A compact set S inR is

• computable if it is empty or there is an algorithm which, on input
k ∈ N, outputs a finite set of rational points which approximate S
with precision 2−k ;

• semicomputable if its complement can be effectively exhausted
by rational open intervals.

These notions can be defined in more general spaces: Rn , computable
metric spaces, computable Hausdorff spaces, ...
Regardless of the ambient space, it holds that

S computable ⇒ S semicomputable.
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Introduction

Does the converse hold?
No! Even in R: if ‚ is a left-computable number which is not com-
putable, the segment [0; ‚] is a semicomputable set which is not
computable.

However, for any " > 0, one can find ‚′ ∈ 〈‚ − "; ‚〉 such that [0; ‚′] is
computable.

0 ‚

‚′

‚ − "

Therefore, [0; ‚] can be inner approximated by a computable set [0; ‚′],
which is also a line segment (so the nice topological properties have
been preserved).

M. Čelar Computable approximations of semicomputable graphs 2/38



Main question

Is there always a computable inner approximation?

No! In fact, there are semicomputable sets which do not contain any
computable points, so they have no computable subsets.

Question

Which (topological) conditions enable semicomputable sets to have
"nice" computable inner approximations?
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Related topic: (Strong) computable type

A topological spaceX has (strong) computable type if

S semicomputable
(relative to O)

=⇒ S computable
(relative to O)

holds for any S ∼= X (and any oracle O).

Examples: closed manifolds, polyhedra, ...

Obviously, ifX has strong computable type, then any semicomputable
S ∼= X has a computable inner approximation: S itself!
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Strong computable type of pairs

A pair (X;A) of a topological spaceX and its subspace A has (strong)
computable type if

S and T semicomputable
(relative to O)

=⇒ S computable
(relative to O)

holds for any (S; T ) ∼= (X;A) (and any oracle O).

Examples: manifolds with boundary, simplicial complexes,
graphs with endpoints, ...

Intuitively: if both S and its "boundary" are semicomputable, then S is
computable.

What if the boundary of a semicomputable set is not semicomputable?
Is it possible "cut out" the "bad" boundary and obtain a new,
semicomputable boundary?
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Preliminaries



The setting

A computable metric space is a triple (X; d; ¸), where (X; d) is a
metric space and ¸ = (¸i )i∈N is a dense sequence in (X; d) such that
the function (i ; j) 7→ d(¸i ; ¸j) is computable.

Let i 7→ (ci ; ri ) be a fixed computable enumeration of {¸n}n∈N ×Q+.
Then

(Ii = B(ci ; ri ))i∈N and (bIi = B(ci ; ri ))i∈N

are effective enumerations of, respectively, open and closed balls
centered at ¸i with rational radii.
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(Families of) rational open sets

Let j 7→ ((j)0; (j)1; : : : ; (j)j) be a fixed effective enumeration of all
nonempty finite sequences inN and let [j ] :=

˘
(j)0; : : : ; (j)j

¯
.

For j; l ∈ N let

Jj :=
[
i∈[j ]

Ii bJj := [
i∈[j ]

bIi J[l ] :=
[
j∈[l ]

Jj

The function fdiam : j 7→ max
u;v∈[j ]

d(cu; cv ) + 2max
u∈[j ]

ru is computable.

It provides an upper bound for the diameter of bJj , i.e.
diam(bJj) ≤ fdiam(j).
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Distance between sets

Let (X; d) be a metric space, A ⊆ X and " > 0.

Let A" =
[
x∈A

B(x; ") be the "-neighbourhood of A.

For a pair (A;B) of (nonempty) closed, bounded subsets ofX we define

dH(A;B) = inf{" | A ⊆ B" and B ⊆ A"}.

The function dH is a metric on the space of all closed, bounded subsets
ofX . It is called the Hausdorff distance.
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(Semi)computable sets

A set S in (X; d; ¸) is

• semicomputable, if S ∩ B̂ is compact for each closed ball B̂ and
the set

{(i ; j) ∈ N2 | S ∩ Îi ⊆ Jj}

is c.e.

• computable, if it is semicomputable and the set

{i ∈ N | Ii ∩ S 6= ∅}

is c.e.
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(Semi)computable compact sets

For a compact set S

• semicomputability is equivalent to

{j ∈ N | S ⊆ Jj}

being c.e.

• computability is equivalent to the existence of a c.e. function
k 7→ jk such that

dH(S; {¸(jk )0 ; : : : ; ¸(jk )jk
}) < 2−k
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Computing with rational open sets

The following relations are c.e.:

• Ii � Ij :⇔ d(ci ; cj) > ri + rj

• Ii ⊆∀ Ij :⇔ d(ci ; cj) + ri < rj

• Ji � Jj :⇔ (∀u ∈ [i ])(∀v ∈ [j ])(Iu � Iv )

• Ji ⊆∀ Jj :⇔ (∀u ∈ [i ])(∃v ∈ [j ])(Iu ⊆∀ Iv )

• J[i ] ⊆∀ J[j ] :⇔ (∀u ∈ [i ])(∃v ∈ [j ])(Ju ⊆∀ Jv ).

It holds that

• Ii � Ij implies bIi ∩ bIj = ∅
• Ii ⊆∀ Ij implies bIi ⊆ Ij

• Ji � Jj implies bJi ∩ bIj = ∅
• Ji ⊆∀ Jj implies bJi ⊆ Jj .
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Separation by Jjs

Lemma 1 (Iljazović 2009)

LetK and U be subsets of (X; d) such thatK is nonempty and
compact, U is open andK ⊆ U: Let " > 0. Then there exists j ∈ N
such thatK ⊆ Jj , bJj ⊆ U and fdiam(j) < diamK + ".
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Separation by a semicomputable set

Lemma 2

Let (X; d; ¸) be a computable metric space, let S be a
semicomputable set in this space and letK and U be subsets of S such
thatK is compact, U is open in S andK ⊆ U . Then there exists a
semicomputable compact set S′ ⊆ S such thatK ⊆ S′ ⊆ U .
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Known results: starting point

Theorem 3 (Iljazović 2009)

Let (X; d; ¸) be a computable metric space and let S be a
semicomputable chainable and decomposable continuum in this
space. Then for each " > 0 there exists a computable subcontinuumK
of S such that dH(S;K) < ". Moreover,K can be chosen so that it is
chainable from a to b, where a and b are computable points.

Theorem 4 (Iljazović and Jelić 2024)

Let (X; d; ¸) be a computable metric space and let S be a
semicomputable continuum chainable from a to b, where a is a
computable point. Then for each " > 0 there exists a computable
point b̂ ∈ S and computable subcontinuumK of S chainable from a to
b̂ such that d(b; b̂) < " and dH(S;K) < ".
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Known results: limits

Theorem 5 (Kihara 2012)

There exists a contractible, locally contractible, co-c.e. planar curve
which is not inner approximated by computable continua.

Fact (Kihara 2012)

There exists a co-c.e. homeomorphic copy of the Cantor fan which
contains no computable point.
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Main results



Computable subarc theorem

Theorem 6

Let S be a semicomputable set in a computable metric space
(X; d; ¸). Suppose a point x ∈ S has an open neighborhoodN in S
which is homeomorphic toR. Then there exist computable points
a; b ∈ N and a computable neighbourhoodN ′ ⊆ N of x in S which is
an arc from a to b.

Proof. Let x be a point in a semicomputable set S and let f : R → N
be a homeomorphism, whereN is an open neighbourhood of x in S.
WLOG f (0) = x .

Goal: Find a computable arc N ′ ⊆ N with computable endpoints a
and b which contains x in its interior.

M. Čelar Computable approximations of semicomputable graphs 16/38



Proof of CST: first try

Theorem 7 (Iljazović and Validžić 2017)

Suppose (X; d; ¸) is a computable metric space, S a semicomputable
set in this space and x ∈ S a point which has a neighbourhood in S
homeomorphic toRn for some n ∈ N \ {0}. Then x has a computable
compact neighbourhood in S.

This theorem ensures x has a computable neighbourhood
... however, it is not necessarily an arcwith computable endpoints!

Computable points are dense in computable sets, so x has a
neighbourhood which is an arc with computable endpoints

... however, is is not necessarily computable!
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Proof of CST: general idea

Let's start over.

Idea: ConstructN ′ as an intersection of a nested sequence of suitably
chosen J[l ]s

• working with rational open sets ensures the resulting
neighbourhood and its endpoints will be computable;

• (effective) topological properties ensure the resulting set will be
an arc.

We will work with formal chains.
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Interlude: chains

Let C = (C0; : : : ; Cn) be a finite sequence of nonempty subsets ofX .

• C is a chain if, for all i ; j , Ci ∩ Cj 6= ∅ ⇔ |i − j | ≤ 1. Each set Ci is
said to be the (i th) link of C.

• Themesh of C is the number mesh(C) := nmax
i=0

diamCi .
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Formal chains

Let l ∈ N.
• (J(l)0 ; : : : ; J(l)l ) is a formal chain if J(l)i � J(l)j for all
i ; j ∈ {0; : : : ; l} such that |i − j | > 1.

• The function fmesh : l 7→ max
j∈[l ]

fdiam(j) is computable.

M. Čelar Computable approximations of semicomputable graphs 20/38



Proof of CST: Setting the stage

By Lemma 2, there exists a semicomputable compact set S′ such that

f ([−3; 3]) ⊆ S′ ⊆ f (〈−4; 4〉).

By Theorem 8, f (−2) and f (2) have computable compact
neighbourhoods in S′.
Since computable points are dense in computable sets, one can find
computable points ã and b̃ arbitrarily close to f (−2) and f (2),
respectively.

f (−2)
f (2)

x

f (−4)
f (4)

ã
b̃
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computable points ã and b̃ arbitrarily close to f (−2) and f (2),
respectively.

f (−2)
f (2)

x

f (−4)
f (4)

ã
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Proof of CST: Induction base

Claim 1

There exist p; l ; q ∈ N such that

(i) (Jp; J(l)0 ; : : : ; J(l)l ; Jq) is a formal chain;

(ii) S′ ⊆ Jp ∪ J[l ] ∪ Jq

(iv) ã ∈ Jp

(vi) d
`
ã; J(l)0

´
< "

2

(iii) fmesh(l) < "
2

(v) b̃ ∈ Jq

(vii) d
`
b̃; J(l)l

´
< "

2 .

ã
b̃x

The setΩ := {l ∈ N | (∃p; q)((i)-(v) holds)} is c.e.
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Proof of CST: Induction step

Claim 2

For each l ∈ Ω, there exists l ′ ∈ Ω such that

(i) J[l ′] ⊆∀ J[l ]

(iii) J(l ′)0 ⊆∀ J(l)0

(ii) fmesh(l ′) < 1
2 fmesh(l)

(iv) J(l ′)
l′
⊆∀ J(l)l .

ã

b̃x
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Proof of CST: final construction

Claim 1 and Claim 2 allow us to define the sequence (ln)n∈N of natural
numbers such that, for each n, (i)-(iv) from Claim 2 hold for l = ln and
l ′ = ln+1.

The set

N ′ :=
\
n∈N

“
Cl(J(ln+1)0 ∩ S′) ∪ · · · ∪ Cl(J(ln+1)ln+1

∩ S′)
”

is an arc with endpoints a to b, where

a ∈
\
n∈N

J(ln)0 and b ∈
\
n∈N

J(ln)ln
.

a and b are uniquely determined due to Cantor's intersection theorem.
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Proof of CST: computability of the subarc

The arc defined in this way is indeed computable: for each k ∈ N, the
centers of rational open balls forming J[l ]s approximateN ′ with
precision 2−k .

A similar argument shows that a and b are computable points.
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Nipping lemma

Lemma 8

Let S be a semicomputable set in a computable metric space (X; d; ¸).
Suppose a point x ∈ S has an open neighborhoodN in S such that
there exists a homeomorphism f : [0; 1〉 → N such that f (0) = x . Let
" > 0. Then there exists a ∈ 〈0; 1〉 such that f (a) is a computable
point, S \ f ([0; a〉) is a semicomputable set and f ([0; a]) ⊆ B(x; ").

Proof. Choose t ∈ 〈0; 1〉 such that f ([0; t]) ⊆ B(x; ").

x

f (0)

f (t)

"

f (a) f (b)
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Proof of the Nipping lemma

f (t) has a neighbourhood homeomorphic toR, so by CST it has a
computable neighbourhood which is an arc with computable
endpoints f (a) and f (b) (where WLOG a < t < b). Obviously
f ([0; a]) ⊆ f ([0; t]) ⊆ B(x; ").

Choose Jm such that f ([0; a]) ⊆ Jm and Jm ∩ S ⊆ f ([0; b〉).

S \ Jm is semicomputable, so

(S \ Jm) ∪ f ([a; b]) = S \ f ([0; a〉)

is semicomputable.
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Applications



Finite topological graphs

LetK be a nonempty finite family of (non-degenerate) line segments in
Rn , each two of which intersect at most at a common endpoint.

Any topological space G homeomorphic to
[
I∈K

I is called a graph.

Equivalently, a topological space G is a graph if and only if there exists
a nonempty finite familyA of subspaces of G such that each A ∈ A is
an arc, G =

S
A∈A A and each two elements ofA intersect at most at

a common endpoint.
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Application to graphs

Theorem 9

Let (X; d; ¸) be a computable metric space and let S be a
semicomputable graph in this space. Then for each " > 0 there exists a
computable graph T in (X; d; ¸) such that all endpoints of T are
computable and such that dH(S; T ) < ".

Proof. By induction on the
number of non-computable
endpoints: each application od
the Nipping lemma reduces the
number of non-computable
endpoints by one.
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Generalized graphs

Let a; v ∈ Rn . The set {a+ tv | t ∈ [0;∞〉} is called a ray inRn . The
point a is the (only) endpoint of this ray.

LetK be a nonempty finite family of line segments and rays inRn each
two of which intersect at most at a common endpoint. Any topological
space G homeomorphic to

S
K is called a generalized graph.
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Application to generalized graphs

Theorem 10

Let (X; d; ¸) be a computable metric space and let S be a
semicomputable generalized graph in this space. Then for each " > 0
there exists a computable generalized graph T in (X; d; ¸) such that
all endpoints of T are computable and such that T ⊆ S ⊆

[
x∈T

B(x; ").
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Special case: 1-manifolds

A 1-manifold with boundary is a second countable Hausdorff space in
which every point has an open neighborhood homeomorphic to [0;∞〉
orR.
The boundary of a manifold is the set of all points which only admit
open neighbourhoods homeomorphic to [0;∞〉.

Classification of 1-manifolds

Each component of a 1-manifold with boundary is homeomorphic to
one of the following:

R; [0;∞〉; S1, or [0; 1]:

Therefore, a 1-manifold with finitely many components is a generalized
graph!
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Bonus result

The following is an immediate consequence of Theorem 7:

Corollary 11

Let (X; d; ¸) be a computable metric space and letM be a
semicomputable 1-manifold in this space such thatM has finitely
many connected components. Then for each " > 0 there exists a
computable 1-manifoldN in (X; d; ¸) such that each point of @N is
computable and such thatN ⊆ M ⊆

[
x∈N

B(x; ").
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More possible applications

This result is a nice supplement to the study of (strong) computable
type.

In general, if (X;A) has computable type, A is finite and each point in
A has a neighbourhood inX homeomorphic to [0; 1〉, then the nipping
lemma can be used to show that any semicomputable set
homeomorphic toX can be inner approximated by a computable
subset (with computable endpoints).
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Closing remarks



Conclusion

We proved that any point in a semicomputable set which has a
neighbourhood homeomorphis toR also has a neighbourhood which
is a computable arc with computable endpoints.

Using this, we proved that every semicomputable generalized graph in
a computable metric space can be approximated, with arbitrary
precision, by its computable subgraph with computable endpoints.

This approach can be applied to a larger class of semicomputable sets.
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Future work

Higher dimensions: manifolds and simplicial complexes
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Thank you!
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