Computability and adjunctions of Euclidean spaces¹

Matea Čelar and Zvonko Iljazović

University of Zagreb Faculty of Science, Department of Mathematics

9th September 2020

Matea Čelar and Zvonko Iljazović

¹This work has been fully supported by Croatian Science Foundation under the project 7459 CompStruct

Computable topological spaces

Computable topological space is a triple $(X, \mathcal{T}, (I_i))$ where

- (X, \mathcal{T}) is a topological space
- $\{I_i \mid i \in \mathbb{N}\}$ is a base for \mathcal{T}
- \bullet there exist computably enumerable sets ${\mathcal C}$ and ${\mathcal D}$ such that:

$$(i,j) \in \mathcal{C} \implies I_i \subseteq I_j;$$

$$(i,j) \in \mathcal{D} \Rightarrow I_i \cap I_j = \emptyset;$$

$$3 \ x \in I_i \cap I_j \ \Rightarrow \ \exists k (x \in I_k \text{ and } (k,i), (k,j) \in \mathcal{C});$$

Computable topological spaces

We denote the finite unions of basis elements I_i by

$$J_j = \bigcup_{i \in [j]} I_i.$$

Here $j \mapsto [j]$ is a function $\mathbb{N} \to \mathcal{P}(\mathbb{N})$ such that the set $\{(i,j) \mid i \in [j]\} \subseteq \mathbb{N}^2$ is computable and there exists a computable function $\phi : \mathbb{N} \to \mathbb{N}$ such that $i \leq \phi(j)$ for each $i \in [j]$.

There exist c.e. sets $C, D \subseteq \mathbb{N}^2$ such that

- $(i,j) \in C$ implies $J_i \subseteq J_j$;
- $(i,j) \in D$ implies $J_i \cap J_j \neq \emptyset$.

Computable and semicomputable sets

Let S be a set in a computable topological space (X, T, (I_i)).
S is computably enumerable if it is closed and

 $\{i \in \mathbb{N} \mid I_i \cap S \neq \emptyset\}$

is c.e.

• S is semicomputable if it is compact and

 $\{j \in \mathbb{N} \mid S \subseteq J_j\}$

is c.e.

• *S* is **computable** if *S* is semicomputable and computably enumerable.

Local computable enumerability

 A is computably enumerable up to B if there exists c.e. set Ω ⊆ N such that

$$I_i \cap A \neq \emptyset \quad \Rightarrow \quad i \in \Omega$$

and

$$i \in \Omega \quad \Rightarrow \quad I_i \cap B \neq \emptyset.$$

- S is computably enumerable at x if there exists a neighborhood U of x in S such that U is computably enumerable up to S.
- S is locally computably enumerable if S is computably enumerable at every point x ∈ S.

Local computable enumerability

- S is computably enumerable iff S is computably enumerable up to S
- If A_i is computably enumerable up to B_i for each i = 1, ..., n, then $A_1 \cup \cdots \cup A_n$ is computably enumerable up to $B_1 \cup \cdots \cup B_n$.
- A compact set is computably enumerable iff it is locally computably enumerable

Computable type

General question: Under which (topological) conditions does the implication

 $S \ semicomputable \ \Rightarrow \ S \ computable$

hold for a set S in a computable topological space?

S semicomputable and
$$S \cong A \Rightarrow S$$
 computable

Topological space A has **computable type** if the implication above holds whenever S is homeomorphic to A.

Local computable enumerability and computable type

The following implications are equivalent:

S semicomputal	ble \Rightarrow <i>S</i> computable,	(1)
<i>S</i> semicomputable =	\Rightarrow S computably enumerable,	(2)
S semicomputable \Rightarrow	S locally computably enumerable.	(3)

(3) motivates a more *local approach* to computable type – it is sufficient to study implications of the form

S semicomputable and
$$x \in S$$
 \Rightarrow S c.e. at x

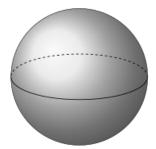
Theorem (Iljazović and Sušić, 2018, [4])

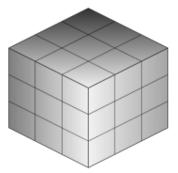
Let $(X, \mathcal{T}, (I_i))$ be a computable topological space and let S be semicomputable set in this space and let $x \in S$. Suppose there exists a neighborhood of x in S which is homeomorphic to some \mathbb{R}^n . Then S is c.e. at x.

Theorem (Iljazović and Sušić, 2018, [4])

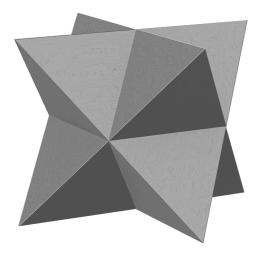
Let $(X, \mathcal{T}, (I_i))$ be a computable topological space and let S be a semicomputable set in this space which is, as a subspace of (X, \mathcal{T}) , a manifold. Then S is a computable set in $(X, \mathcal{T}, (I_i))$.

Topological manifolds have computable type



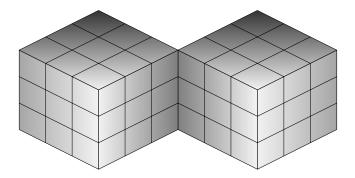


Topological manifolds have computable type



Matea Čelar and Zvonko Iljazović

Adjunctions of manifolds?



Adjunction spaces

Let X and Y be topological spaces, let A be a subspace of X and let $f : A \to Y$ be a continuous function. Let $X \sqcup Y$ be the disjoint union of X and Y and let $i_X : X \to X \sqcup Y$ and $i_Y : Y \to X \sqcup Y$ be the cannonical inclusion maps. Let \sim be an equivalence relation on $X \sqcup Y$ generated by

$$\imath_X(a) \sim \imath_Y(f(a)), \qquad \quad orall a \in A.$$

We denote the quotient space $X \sqcup Y \searrow$ by $X \cup_f Y$ and we call it **adjunction space** obtained by adjoining X onto Y by way of f.

(In this talk, we consider only the case where $f : A \rightarrow Y$ is an embedding.)

Proposition

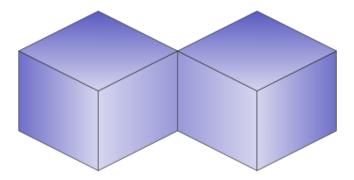
Let $n \ge 2$ and let A be a closed subset of $\mathbb{R}^{n-1} \times \{0\}$ such that $(0, \ldots, 0) \in A$. Let Y be a locally compact topological space and let $\gamma : A \to Y$ be an embedding such that $\gamma(A)$ is closed in Y. Suppose $(X, \mathcal{T}, (I_i))$ is a computable topological space and $f : \mathbb{R}^n \cup_{\gamma} Y \to X$ is an embedding such that $f(\mathbb{R}^n \cup_{\gamma} Y)$ is an open subset of a semicomputable set S. Then the set $f([-1, 1]^n \cup_{\gamma} \emptyset)$ is c.e. up to S.

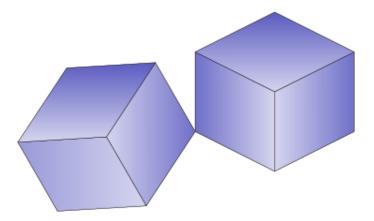
Theorem

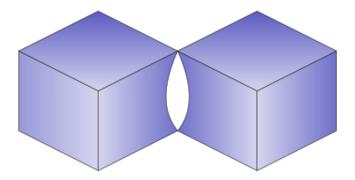
Let $m, n \in \mathbb{N}$, $m, n \ge 2$. Let A be a sufficiently thin set in an m-manifold M and let B be a sufficiently thin set in an n-manifold N. Let $\gamma : A \to B$ be a homeomorphism. Let S be a semicomputable set in a computable topological space $(X, \mathcal{T}, (I_i))$ and let $f : M \cup_{\gamma} N \to S$ be a homeomorphism. Then S is computable at x for any $x \in f(A \cup_{\gamma} B)$.

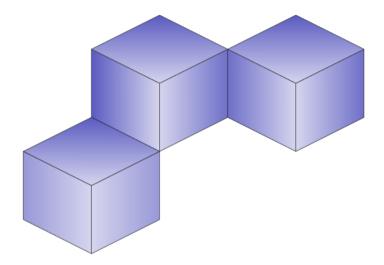
Theorem

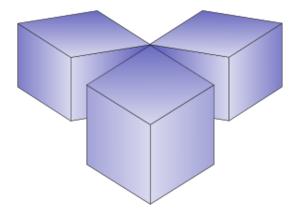
Let $m, n \in \mathbb{N}$, $m, n \ge 2$. Let A be a sufficiently thin set in an m-manifold M and let B be a sufficiently thin set in an n-manifold N. If $\gamma : A \to B$ is a homeomorphism, then the adjunction space $M \cup_{\gamma} N$ has computable type.



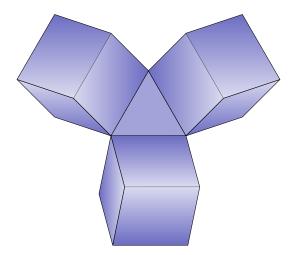








Exceptions



Matea Čelar and Zvonko Iljazović

Further research prompts

Manifolds with boundaries

Theorem

If S is an n-manifold with boundary ∂S in a computable topological space $(X, \mathcal{T}, (I_i))$ such that S and ∂S are semicomputable sets, then S is computable.

- How do we modify boundary conditions for spaces obtained by attaching manifolds along subsets of their boundaries?
- More general ambient spaces
 - ► Can we have similar results for subsets of spaces which are not necessarily effectively T₂?

References

- V. Brattka and G. Presser, *Computability on subsets of metric spaces*, Theoretical Computer Science (2003), no. 305, 43–76.
- R. Brown, *Topology and groupoids*, www.groupoids.org, 2006.
- Z. Iljazović, *Computability of graphs*, Mathematical Logic Quarterly
 66 (2020), 51–64.
- Z. Iljazović and I. Sušić, *Semicomputable manifolds in computable topological spaces*, Journal of Complexity **45** (2018), 83–114.
- K. Weihrauch and T. Grubba, *Elementary computable topology*, Journal of Universal Computer Science 15 (2009), no. 6, 1381–1422.