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Abstract— This paper presents architecture overview of a
.NET runtime for scheduling and executing futures on modern
multiprocessor machines that is based on the lazy task creation
technique. The runtime is responsible for efficient load balancing
of fine-grained tasks on platform’s processors and allows any
function accessible from .NET to be called as a future.

I. I NTRODUCTION

The potential concurrency of many programs is inherently
finer-grained than the concurrency of the platform they are
executing on, i.e. the number of processors in the platform
is typically much smaller than the number of potentially
concurrent tasks in the program. Here (as well as elsewhere in
the further text) a processor denotes a logical processor inthe
platform, e.g. it may refer to a core in a multi-core processor,
as well as to a single core processor in a multiprocessor
platform. A future is a simple abstraction mechanism that
allows a programmer to expose the potential concurrency of
such programs. The key challenge in achieving a scalable
performance of programs annotated with futures is efficient
partitioning and scheduling of the exposed potentially con-
current tasks regardless of characteristics of the underlying
platform.

This paper presents architecture overview of the futures
runtime for .NET that is based on a technique calledlazy
task creation. The runtime is responsible for efficient load
balancing of fine-grained tasks on platform’s processors. It is
designed in such way that it allows any function accessible
from .NET to be called as a future. We also introduce the
notion of guards. The described constituents give rise to
a simple extension of C# that incorporates programming
language constructs for easy and elegant programming with
futures.

A. Related Work

The termfuturewas coined in 1977 in a Baker and Hewitt’s
paper [14], where they use it in discussing garbage collection
issues in eager evaluation of subexpressions in a Lisp-like
applicative programming language. The future as a program-
ming language construct first appears in Halstead’s work on
MultiLisp [15], a version of the Lisp dialect Scheme which
uses future as a principal construct for expressing parallel
tasks. Later on, futures have been employed for integrating
asynchronous remote procedure call mechanism in the context
of distributed computing [6], [10], [17]. While [17]’s concern
is extension of Argus by use of a dedicated communica-
tion mechanism called call-streams, [6] uses a more liberal
message-passing environment for a general object-oriented

language. [10] gives the first implementation of futures within
the C++ programming language.

The first non-näıve approach addressing the problem of
scheduling and executing futures isload-based inlining[16].
The basic idea is to create a new task computing a future
only if the system load permits it, i.e. if there exists an
idle processor. Otherwise, the future becomes inlined. In
this settings, however, inlining of futures cannot be revoked,
thus some processors may be assigned large tasks, while the
others stay idle. Also, it is wiser not to create a separate
task for every future, but to implement futures as “passive”
objects containing enough information for carrying out their
computation, which are then picked up and executed by a
number of workers. However, an extra care must be taken in
this case in order to avoid possible deadlocks.

Mohr et al. [18] address these issues by an elaborate
technique calledlazy task creation. In this approach, each
future is evaluated in the current task, and the continuation
of the calling function is moved to a separate task if some pro-
cessor becomes idle, which in turn makes inlining of futures
revokable. This way the program is executed sequentially
until a parallel execution is possible — a principle reused
by many systems targeting fine-grained concurrency (e.g. [5],
[11], [12], [21]). An approach dual to lazy task creation has
also been proposed [22] — here the futures are saved for
later execution, while the current task continues executing the
continuation. Although this technique is easier to implement
as it does not explicitly need a support for continuations, it did
not evidence a performance comparable to the performance
of lazy task creation.

In recent years, as computer systems based on multi-core
processors are becoming increasingly ubiquitous, the future
as a programming language construct is being resurrected
in several modern object-oriented languages. In particular,
it is available in Java Platform, Standard Edition API since
version 5.0 (recently, a lazy task creation implementationof
futures runtime for Java has been described [23]); further,
it is included in X10 on a programming language level as
a type constructor [9]; even more, there is also a proposal
to introduce it in the next version of C++ [13]. In their
current version, the .NET platform [4] and in particular C#
[3] lack explicit support for futures, though there exists an
API providing a support for asynchronous computation.

B. Our Contributions

In this paper, we present architecture overview of a futures
runtime for .NET that is based on the lazy task creation. Our



contributions can be summarized as follows:
• We deal with design issues of an efficient runtime for

scheduling and executing futures on modern machines
with multiple processors that is based on the lazy task
creation.

• We introduce the notion of guards as a substitute for
future groups [13], [19] with intention to provide a
programmer more complex and elegant constructs for
programming with futures.

• We briefly sketch a simple extension of the C# language
with langauge constructs supporting programming with
futures, for which we aim to realize a compiler support.

The rest of the paper is organized as follows. Section 2
gives the rationale behind this work and introduces main
constituents of the futures runtime — the concept of futures,
the lazy task creation technique and the notion of guards. In
Section 3, we present architecture overview of the runtime.
The final Section 5 gives concluding remarks.

Acknowledgments.:This work is motivated by an effort
to extend the research language AsmL [1] developed at
Microsoft Research with new ASM constructs for dealing
with the most general type of interaction between algorithm
and its environment as introduced in [7], [8]. The whole
research was initiated by Yuri Gurevich, to whom we are
indebted for clarification of many important issues about the
nature of interactive algorithms. Wolfram Schulte pointedus
to and discussed relevant related work. Lev Nachmanson
helped us to experimentally verify efficiency of an early
prototype of the futures runtime on his GLEE graph layout
engine [2]. We have also benefited greatly from discussions
with Vinod Grover and Daan Leijen.

This work was partially supported by the Phoenix/SSCLI
2006 award from Microsoft Research and Croatian National
Science Foundation.

II. T HE MAIN CONCEPTS

A. The Rationale Behind

Many programs contain inherent potential concurrency —
while there might be parts of the code that must be exe-
cuted sequentially, the remaining parts may allow concurrent
execution. Given a sufficient number of processors, one can
achieve the optimal performance by executing concurrently
all (sufficiently large) concurrent tasks. In reality, however,
the number of available processors is limited, and the optimal
performance would be achieved by partitioning the program in
a number of appropriately sized tasks such that all processors
are busy throughout the program execution.

Since the latter is typically hard (if not impossible) to
achieve, the primary motivation for introducing futures and a
runtime for their execution is to help a programmer to move at
least near to this goal with as little effort as possible. Namely,
the idea is to provide the programmer a way to specify what
can be safely computed in parallel and then let the runtime
to decide how to efficiently carry out the computations. That
is, the programmer’s only task should be to expose the
concurrency in the program by using annotations. However,
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Fig. 1. Performance gain of an abstract runtime with respect tothe size of
exposed potentially concurrent tasks

since the annotated program typically gives rise to tasks of
finer grain than the grain of the platform they are executing
on, the runtime needs to limit the exploited concurrency to a
level allowed by the platform.

The ideal runtime implementation breaks down tasks such
that the run-time task granularity is maximized while the
system is kept load balanced. Naı̈ve implementations of
runtime such as the one based on using a single thread per
future or a thread pool do not scale well and are far from
the ideal implementation. Not only they lead to significant
overhead and degradation in performance, but may even lead
to a deadlock. More elaborate techniques, such as lazy task
creation are needed in order to achieve a robust and scalable
performance.

In general, we can identify three costs related to expos-
ing the potential concurrency and executing the potentially
concurrent tasks by the runtime:

1) the cost ofexposingthe potential concurrency,
2) the cost ofcreatinga task, and
3) the cost ofswitching between tasks in case of their

interdependence.
The cost of exposing the potential concurrency is the key to

scalable performance. If this cost is sufficiently small, wecan
expose the potential concurrency without paying high penalty
and facilitate the runtime to take advantage of it, say, when
more processors become available in the underlying platform.
Obviously, the cost of creating a task should be smaller than
the cost of exposing the potential concurrency in order for
this strategy to make sense. The cost of switching between
tasks is related to the fact that an already scheduled task
may not be completed without completing some other task
first. In such cases, the runtime must suspend execution of
the blocked task and resume execution of another. Although
this cost is higher than the other two, its contribution to the
total execution time is typically much smaller. The fact that
a task might be suspended and resumed later, however, has
an impact on costs of exposing and creating tasks.

Figure 1 shows dependence of performance gain of an
abstract runtime on the size (e.g. execution time) of exposed



public class BinaryTree {
BinaryTree l ;
BinaryTree r ;
i n t value ;

public i n t FutureSum ( ) {
i n t s = value ;
future<int> f ;
i f ( l != nul l )

f = l . FutureSum ( ) ;
i f ( r != nul l )

s += r . FutureSum ( ) ;
i f ( l != nul l ) {

wait ( f ) ;
s += f ;

}
return s ;

}
}

Fig. 2. Summation of a binary tree with futures written in the extended C#
syntax

potentially concurrent tasks. When exposed tasks are suffi-
ciently large, the runtime achieves the optimal performance,
as shown on the right side of the graph. However, more
interesting is its left side — it indicates the minimum size of
potentially concurrent tasks such that it is sensible to expose
them. This cost is proportional to the cost of exposing con-
currency. Reducing the cost of exposing concurrency shifts
the curve to the left; this way more potentially concurrent
tasks can be exposed, which in turn leads to a more scalable
performance.

B. Futures and Lazy Task Creation

A future is an object that acts as a placeholder for a result of
a computation. On a programming language level, the future
as a programming language construct is used to denote that
some piece of code may be executed in parallel, i.e. to expose
potentially concurrent tasks. For instance, in its canonical
MultiLisp form, the expression

(C (future F ))

denotes that a child task computingF may proceed in parallel
with its parent continuationC.

As already noted in the introduction, different ways to
arrange computation ofC and F are possible. In the most
straightforward approach, a new task computingF is uncon-
ditionally spawned, and the parent task resumes computation
of C. In some cases, it is better to inlineF and compute it by
the current task. The load-based inlining approach [16] makes
a separate task computingF only if the system load permits
it, otherwise it gets inlined. Our runtime is based on the lazy
task creation approach [18] in whichF is being evaluated in
the current task, while enough information aboutC is saved
so that if some processor becomes idle,C can be moved to
a separate task.

In order to illustrate the lazy task creation approach, we
consider the example given in Figure 2. It illustrates a simple
algorithm (inspired by a similar example given in [18])

Fig. 3. Execution tree ofFutureSum() on 4 processors

summing the nodes of a binary tree. The code is written
in our proposed extension of the C# programming language
(not formally specified in this paper). It uses a generic type
future<T> for denoting values that may be computed in
parallel. Thewait construct designates a synchronization point
at which the caller will remain suspended until the value of a
given future becomes resolved (actually, it represents aguard
in its most simple form, a notion that we introduce in the
next section).

Annotating the variablef in the functionFutureSum() as a
future indicates that the recursive call toFutureSum() on the
left subtree can proceed in parallel with the recursive callon
the right subtree. This natural expression of parallelism in
FutureSum() gives rise to rather fine-grained concurrency —
namely, for a tree of depthk there are2k futures.

If FutureSum() would have been run with lazy task creation
on 4 processors (say,p1, p2, p3 and p4), an ideal execution
would look as shown on Figure 3. Suppose that a call to
FutureSum() on a tree with rootA is scheduled on processor
p1. The future atA (representing the call toFutureSum() on
B) becomes inlined and executed further byp1, while its
continuation (representing the call toFutureSum() on C) gets
stolen by an available processor, sayp2. Likewise, the futures
at B andC get inlined, while their continuations are stolen
by two remaining available processorsp3 andp4.

In the described idealistic situation, the lazy task creation
maximizes the run-time task granularity and keeps the system
ideally balanced. In general, it of course need not be the
case, however, experiments (e.g. [18], [23]) show that in
non-pathological situations, a user may expect steady and
well-behaved performance from this technique. However, we
have to note that the cost of maintaining information about
the caller’s continuation is of great importance for efficient
implementation of this technique.

C. Guards

Before using the result of a future, one must make sure
that the future is completed and its result is available. There
also exist complex situations in which a set of futures must
be completed before the computation can be continued. [13]
and [19] introduce a construct calledfuture groupin order to
express such conditions. In a typical example, a future group



is used to express that the computation can be resumed if
either both futuresf1 and f2 are completed, or a timeout
period has elapsed.

In the context of the behavioral theory of algorithms,
[7] postulates the most general form of interaction of an
algorithm with its environment. The progress of an interactive
algorithm in the sense of [7] depends not only on values of
answers provided by the environment but also on the relative
timing of when those answers became first available to the
algorithm. In the sequel paper [8], a new language construct
guard is introduced and proved to be sufficient for expressing
any such dependency.

Guards enable programmers not only to express which
events need to happen before further progress of a computa-
tion, but also to specify actions to be triggered depending on
their relative timings. The semantics of guards uses Kleene’s
strong three-valued logic — the value of a guard can either
be undefined, or it can have a boolean valuetrue or false.
Intuitively, waiting on a guard blocks the computation as
long as its value remains undefined. When its value becomes
defined, the computation can continue, possibly taking into
account the exact value of the guard.

The guards implemented by our runtime have the full
expressiveness of guards in [8]. Guards are built from boolean
expressions, Kleene’s boolean connectivesf,g and¬, and
the binary operator on futures�. The intended meaning of
f1 � f2 is thatf1 completed its computation beforef2. The
role of the three-valued logic can be seen from a simple
observation thatf1 � f2 does not have a defined value until
at least one off1, f2 is completed, and its value can either
be true or false depending on which one completed first.

More formally, guards are defined by the following induc-
tive definition:

• every boolean expression is a guard,
• if f1 andf2 are futures, thenf1 � f2 is a guard,
• if ϕ andψ are guards, thenϕ f ψ, ϕ g ψ and¬ϕ are

guards.

The current value of a guard is inductively defined as:

• If e is a boolean expression, then it has its usual boolean
value.

• f1 � f2 has a defined value iff eitherf1 or f2 is
completed. Iff2 is not completed or is completed after
f1, then the value istrue. Otherwise, the value is
false.

• ϕ f ψ has a valuetrue if both ϕ andψ have a value
true, and a valuefalse if at least one of them has a
valuefalse. Otherwise, its value is undefined.

• ϕg ψ has a valuefalse if both ϕ andψ have a value
false, and a valuetrue if at least one of them has a
valuetrue. Otherwise, its value is undefined.

• ¬ϕ has the opposite value ofϕ, if ϕ has a value.
Otherwise, its value is undefined.

The most common use of guards is conditioning further
progress of the computation on a future to complete. For
such purpose, we definef ! as a shorthand forf � f , which

has a valuetrue if the future f is completed, or undefined
otherwise.

Guards representing commonly used future groups can also
be built by Kleene connectives. For example, iff1 andf2 are
futures, andt is a timeout event, then the guard(f1!ff2!)gt!
has a defined value only when both futures are completed or
the timeout period has elapsed. A reader familiar with [13],
[19] will easily write an appropriate guard representingany
future group.

III. A RCHITECTUREOVERVIEW OF THE RUNTIME

A. Basic Constituents

Threads managed by our runtime are grouped intothread
groups. A distinct processor in a system is associated with
each thread group, and all threads in the same group have their
thread affinity fixed to the same processor. The number of
thread groups defaults to the number of processors available
in the system.

All but at most one thread in a thread group are waiting on
a synchronization object (manually reset event) managed by
the runtime. The thread not waiting on such event isrunning
or scheduled, while other threads in the group aresuspended.
If the guard associated with a suspended thread has its value
defined, we say the thread isrunnable.

When a running threadt requires results of other futures
in order to continue its computation, it evaluates a guardg

expressing the condition for its progress. If the guard has
an undefined value, the runtime suspends the threadt and
resumes execution of another runnable threadt′ in the group
as described in the next section. The suspended thread will
not be scheduled by the runtime before it becomes runnable
again.

Each thread in a thread group has its own task queue —
a double ended queue of continuations. When a future is
called from a continuation, the continuation gets suspended
and placed at the end of the thread’s task queue, while the
future call is inlined, i.e. it gets called immediately.

An integer depth is assigned to each continuation at its
creation, denoting the number of continuation above in its
execution stack. The depth of a thread is the maximal depth
of continuations in its task queue.

B. Task Stealing

When a threadt running in a thread groupG requires the
value of a guardg to be defined in order to continue its
computation, it gets suspended by the runtime and the guard
g becomes associated witht. After suspendingt, the runtime
tries to find a runnable thread that can be scheduled in the
thread groupG.

The runtime first checks if there exists a runnable threadt′

in the same thread group. If there exists one, thent′ becomes
the running thread of the thread group. The exact choice of a
runnable thread to be resumed is important, and the runtime
always chooses the one with the highest depth in the group.
Such choice can be justified by noticing that the chosen thread
is probably the one with the most advanced computation and,



thus, resuming it would most likely complete its computation
and therefore reduce the total number of threads in the system.

If there are no runnable threads in the thread groupG,
the runtime traverses thread groups searching for a thread
with a stealable continuation. Lett′′ be the thread that is
being examined at some time instance. The runtime tries to
remove the continuationC with the minimal depth from the
task queue oft′′, and, if successful, starts a fresh threadt′ in
the thread groupG that resumes the stolen continuation. The
newly started thread is taken from a thread pool.

The stolen continuationC has originally been put into the
task queue oft′′ when t′′ was assigned a future called from
C. When the future called fromC gets completed,t′′ will
try to removeC from its task queue, which is deemed to fail
as C is now being executed byt′. Since a continuation is
just a closure of a function,t′′ cannot proceed beforeC gets
completed, thust′′ will remain suspended on the guardC!
until t′ finishes execution ofC. This way the correct execution
order is guaranteed.

IV. CONCLUSIONS ANDFUTURE WORK

This paper has presented architecture overview of the
futures runtime for .NET that is based on the lazy task
creation technique. The work has been inspired by a vast
amount of research on this topic done previously for other
platforms. To the best of the authors knowledge, the present
paper is the first one discussing this topic in the context of
.NET platform.

Although the lazy task creation is a well-known technique
for efficient execution of futures, we have enriched it with a
novel way of hierarchical organization and traversal of tasks
in order to reflect the cache/memory hierarchy in modern
multi-core processors. Also, our notion of guards is new and
allows easy and elegant programming with futures.

Nevertheless, the efficiency and scalability of our imple-
mentation needs yet to be determined. Although we have
performed some preliminary experimental evaluation on small
pieces of code (with an exception of GLEE [2], an application
of a moderate size for which we have obtained a speedup of
up to 1.7 on a dual-core system by changing only a single
for-loop in the code), we leave further analysis of results to
a subsequent paper. Also, we plan to perform more tests on
larger examples, including some of the benchmarks from the
Multithreaded Java Grande Benchmark Suite [20].
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