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Abstract— This paper presents architecture overview of a language. [10] gives the first implementation of futureshimit
.NET runtime for scheduling and executing futures on modern the C++ programming language.
multiprocessor machines that is based on the lazy task creation The first non-nive approach addressing the problem of

technique. The runtime is responsible for efficient load balancing . - . Lo
of fine-grained tasks on platform’s processors and allows any scheduling and executing futuresli@d-based inlinind16].

function accessible from .NET to be called as a future. The basic idea is to create a new task computing a future
only if the system load permits it, i.e. if there exists an
|. INTRODUCTION idle processor. Otherwise, the future becomes inlined. In

The potential concurrency of many programs is inherentlthis settings, however, inlining of futures cannot be reahk
finer-grained than the concurrency of the platform they arius some processors may be assigned large tasks, while the
executing on, i.e. the number of processors in the platforethers stay idle. Also, it is wiser not to create a separate
is typically much smaller than the number of potentiallytask for every future, but to implement futures as “passive”
concurrent tasks in the program. Here (as well as elsewheredbjects containing enough information for carrying outithe
the further text) a processor denotes a logical procesgthein computation, which are then picked up and executed by a
platform, e.g. it may refer to a core in a multi-core processonumber of workers. However, an extra care must be taken in
as well as to a single core processor in a multiprocesstris case in order to avoid possible deadlocks.
platform. A future is a simple abstraction mechanism that Mohr et al. [18] address these issues by an elaborate
allows a programmer to expose the potential concurrency téchnique calledazy task creationIn this approach, each
such programs. The key challenge in achieving a scalalfieture is evaluated in the current task, and the continnatio
performance of programs annotated with futures is efficielf the calling function is moved to a separate task if some pro
partitioning and scheduling of the exposed potentially-corcessor becomes idle, which in turn makes inlining of futures
current tasks regardless of characteristics of the uniderly revokable. This way the program is executed sequentially
platform. until a parallel execution is possible — a principle reused

This paper presents architecture overview of the futurddy many systems targeting fine-grained concurrency (e]g. [5
runtime for .NET that is based on a technique callagy [11], [12], [21]). An approach dual to lazy task creation has
task creation The runtime is responsible for efficient loadalso been proposed [22] — here the futures are saved for
balancing of fine-grained tasks on platform’s processaiis. | later execution, while the current task continues exegtie
designed in such way that it allows any function accessibleontinuation. Although this technique is easier to implame
from .NET to be called as a future. We also introduce thas it does not explicitly need a support for continuationdid
notion of guards. The described constituents give rise taot evidence a performance comparable to the performance
a simple extension of C# that incorporates programmingf lazy task creation.
language constructs for easy and elegant programming withln recent years, as computer systems based on multi-core
futures. processors are becoming increasingly ubiquitous, therdutu

as a programming language construct is being resurrected
A. Related Work in several modern object-oriented languages. In particula

The termfuturewas coined in 1977 in a Baker and Hewitt’sit is available in Java Platform, Standard Edition API since
paper [14], where they use it in discussing garbage catlacti version 5.0 (recently, a lazy task creation implementatbn
issues in eager evaluation of subexpressions in a Lisp-likatures runtime for Java has been described [23]); further,
applicative programming language. The future as a prograrit-is included in X10 on a programming language level as
ming language construct first appears in Halstead's work antype constructor [9]; even more, there is also a proposal
MultiLisp [15], a version of the Lisp dialect Scheme whichto introduce it in the next version of C++ [13]. In their
uses future as a principal construct for expressing péralleurrent version, the .NET platform [4] and in particular C#
tasks. Later on, futures have been employed for integratirfg] lack explicit support for futures, though there exists a
asynchronous remote procedure call mechanism in the donté&P| providing a support for asynchronous computation.
of distributed computing [6], [10], [17]. While [17]'s conae o
is extension of Argus by use of a dedicated communic&: Our Contributions
tion mechanism called call-streams, [6] uses a more liberal In this paper, we present architecture overview of a futures
message-passing environment for a general object-odenteintime for .NET that is based on the lazy task creation. Our



contributions can be summarized as follows: Speedup

« We deal with design issues of an efficient runtime for
scheduling and executing futures on modern machinesaf---------- -
with multiple processors that is based on the lazy task
creation.

o We introduce the notion of guards as a substitute for
future groups [13], [19] with intention to provide a
programmer more complex and elegant constructs for
programming with futures.

« We briefly sketch a simple extension of the C# language 1r
with langauge constructs supporting programming with
futures, for which we aim to realize a compiler support. Granularity

The rest of the paper is organized as follows. Section 2

gives the rationale behind this work and introduces mairig. 1. Performance gain of an abstract runtime with respetiedsize of
constituents of the futures runtime — the concept of futuregxposed potentially concurrent tasks
the lazy task creation technique and the notion of guards. In

Section 3, we present architecture overview of the runtime, ) , i
The final Section 5 gives concluding remarks since the annotated program typically gives rise to tasks of
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1) the cost ofexposingthe potential concurrency,
Il. THE MAIN CONCEPTS 2) the cost ofcreatinga task, and
A. The Rationale Behind 3) the cost ofswitching between tasks in case of their

Many programs contain inherent potential concurrency —  interdependence.
while there might be parts of the code that must be exe- The cost of exposing the potential concurrency is the key to
cuted sequentially, the remaining parts may allow coneuirrescalable performance. If this cost is sufficiently small, caa
execution. Given a sufficient number of processors, one campose the potential concurrency without paying high pgnal
achieve the optimal performance by executing concurrentBnd facilitate the runtime to take advantage of it, say, when
all (sufficiently large) concurrent tasks. In reality, hawwe more processors become available in the underlying phatfor
the number of available processors is limited, and the aggtimObviously, the cost of creating a task should be smaller than
performance would be achieved by partitioning the program ithe cost of exposing the potential concurrency in order for
a number of appropriately sized tasks such that all processathis strategy to make sense. The cost of switching between
are busy throughout the program execution. tasks is related to the fact that an already scheduled task

Since the latter is typically hard (if not impossible) tomay not be completed without completing some other task
achieve, the primary motivation for introducing futureslan first. In such cases, the runtime must suspend execution of
runtime for their execution is to help a programmer to move ahe blocked task and resume execution of another. Although
least near to this goal with as little effort as possible. g this cost is higher than the other two, its contribution te th
the idea is to provide the programmer a way to specify whabtal execution time is typically much smaller. The factttha
can be safely computed in parallel and then let the runtime task might be suspended and resumed later, however, has
to decide how to efficiently carry out the computations. Tha&n impact on costs of exposing and creating tasks.
is, the programmer’s only task should be to expose the Figure 1 shows dependence of performance gain of an
concurrency in the program by using annotations. Howeveapstract runtime on the size (e.g. execution time) of exghose
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2 processors




public class BinaryTree {
BinaryTree |;
BinaryTree r;
int value;

public int FutureSum() {

int s = value;
future<int> f;
if (I !'= null)

f = |.FutureSum();
if (r !'= null)

s += r.FutureSum();
if (1 !'= null) {

wait (f);

s += f; Fig. 3. Execution tree oFutureSum() on 4 processors

}

return s;

}
}

summing the nodes of a binary tree. The code is written
Fig. 2. Summation of a binary tree with futures written in théeexled C# in our proposed e?(Fens.lon (.)f the C# programming Ianguage
syntax (not formally specified in this paper). It uses a generic type
future<T> for denoting values that may be computed in
parallel. Thewait construct designates a synchronization point
potentially concurrent tasks. When exposed tasks are suffit which the caller will remain suspended until the value of a
ciently large, the runtime achieves the optimal perforneancgiven future becomes resolved (actually, it represemsaad
as shown on the right side of the graph. However, morié its most simple form, a notion that we introduce in the
interesting is its left side — it indicates the minimum siZe onext section).
potentially concurrent tasks such that it is sensible toosgp  Annotating the variable in the functionFuturesum() as a
them. This cost is proportional to the cost of exposing corfuture indicates that the recursive call kotureSum() on the
currency. Reducing the cost of exposing concurrency shifteft subtree can proceed in parallel with the recursive call
the curve to the left; this way more potentially concurrenthe right subtree. This natural expression of parallelism i
tasks can be exposed, which in turn leads to a more scalableuresum() gives rise to rather fine-grained concurrency —

performance. namely, for a tree of depth there are2* futures.
) If Futuresum() would have been run with lazy task creation
B. Futures and Lazy Task Creation on 4 processors (say,, p2, ps and p4), an ideal execution

A futureis an object that acts as a placeholder for a result @fould look as shown on Figure 3. Suppose that a call to
a computation. On a programming language level, the futuratureSum() on a tree with rootA is scheduled on processor
as a programming language construct is used to denote that The future atA (representing the call téutureSum() on
some piece of code may be executed in parallel, i.e. to expo8d becomes inlined and executed further by, while its
potentially concurrent tasks. For instance, in its caranic continuation (representing the call koturesum() on C) gets
MultiLisp form, the expression stolen by an available processor, gay Likewise, the futures

at B and C get inlined, while their continuations are stolen
(C (future F)) b e .
y two remaining available processagrs andp,.
denotes that a child task computifigmay proceed in parallel  In the described idealistic situation, the lazy task coeati
with its parent continuatioit. maximizes the run-time task granularity and keeps the syste

As already noted in the introduction, different ways tddeally balanced. In general, it of course need not be the
arrange computation of' and F' are possible. In the most case, however, experiments (e.g. [18], [23]) show that in
straightforward approach, a new task computiigs uncon- non-pathological situations, a user may expect steady and
ditionally spawned, and the parent task resumes computatioell-behaved performance from this technique. However, we
of C. In some cases, it is better to inlidéand compute it by have to note that the cost of maintaining information about
the current task. The load-based inlining approach [16]emakthe caller's continuation is of great importance for effitie
a separate task computirg only if the system load permits implementation of this technique.
it, otherwise it gets inlined. Our runtime is based on the laz
task creation approach [18] in whidh is being evaluated in
the current task, while enough information abduis saved Before using the result of a future, one must make sure
so that if some processor becomes idlecan be moved to that the future is completed and its result is available.réhe
a separate task. also exist complex situations in which a set of futures must

In order to illustrate the lazy task creation approach, wbe completed before the computation can be continued. [13]
consider the example given in Figure 2. It illustrates a $gmp and [19] introduce a construct calléature groupin order to
algorithm (inspired by a similar example given in [18])express such conditions. In a typical example, a futurerou

C. Guards



is used to express that the computation can be resumedhés a value r ue if the future f is completed, or undefined

either both futuresf; and f, are completed, or a timeout otherwise.

period has elapsed. Guards representing commonly used future groups can also
In the context of the behavioral theory of algorithmspe built by Kleene connectives. For examplefifand f> are

[7] postulates the most general form of interaction of afutures, and is a timeout event, then the guarfh! A fo!) Y¢!

algorithm with its environment. The progress of an intevact has a defined value only when both futures are completed or

algorithm in the sense of [7] depends not only on values dhe timeout period has elapsed. A reader familiar with [13],

answers provided by the environment but also on the relatiy&9] will easily write an appropriate guard representagy

timing of when those answers became first available to tHature group.

algorithm. In the sequel paper [8], a new language construct

guardis introduced and proved to be sufficient for expressing

any such dependency. A. Basic Constituents

Guards enable programmers not only to express which Threads managed by our runtime are grouped ihtead
events need to happen before further progress of a compugoups A distinct processor in a system is associated with
tion, but also to specify actions to be triggered dependimg Gach thread group, and all threads in the same group have thei
their relative timings. The semantics of guards uses Klsenehread affinity fixed to the same processor. The number of
strong three-valued logic — the value of a guard can eithehread groups defaults to the number of processors awailabl
be undefined, or it can have a boolean valuee or f al se.  in the system.

Intuitively, waiting on a guard blocks the computation as All but at most one thread in a thread group are waiting on
long as its value remains undefined. When its value becomgssynchronization object (manually reset event) managed by
defined, the computation can continue, possibly taking inthe runtime. The thread not waiting on such eventisning
account the exact value of the guard. or scheduledwhile other threads in the group asaspended

The guards implemented by our runtime have the fullf the guard associated with a suspended thread has its value
expressiveness of guards in [8]. Guards are built from zoole defined, we say the thread isnnable
expressions, Kleene’s boolean connectivesr and -, and When a running thread requires results of other futures
the binary operator on futures. The intended meaning of in order to continue its computation, it evaluates a guard
f1 = f2 is that f; completed its computation befor. The expressing the condition for its progress. If the guard has
role of the three-valued logic can be seen from a simplgn undefined value, the runtime suspends the threadd
observation thaff; < f, does not have a defined value untilresumes execution of another runnable thréad the group
at least one off, f> is completed, and its value can eitheras described in the next section. The suspended thread will
betrue or fal se depending on which one completed first.not be scheduled by the runtime before it becomes runnable

More formally, guards are defined by the following induc-again.

I11. A RCHITECTUREOVERVIEW OF THE RUNTIME

tive definition: Each thread in a thread group has its own task queue —
« every boolean expression is a guard, a double ended queue of continuations. When a future is
« if f1 and f, are futures, therf, < f, is a guard, called from a continuation, the continuation gets suspegnde
. if ¢ andy are guards, thep A ¢, ¢ Y 1) and—p are and placed at the end of the thread's task queue, while the
guards. future call isinlined, i.e. it gets called immediately.

An integer depthis assigned to each continuation at its
. . ) _ creation, denoting the number of continuation above in its
« If eis a boolean expression, then it has its usual boolegl}ecytion stack. The depth of a thread is the maximal depth

value. ) . _of continuations in its task queue.
e« fi = fo has a defined value iff eithef; or fs is

completed. Iff, is not completed or is completed afterB. Task Stealing

f1, then the value istrue. Otherwise, the value is  \when a thread running in a thread groug requires the
fal se. value of a guardg to be defined in order to continue its
« ¢ A has a valuerue if both ¢ andy have a value computation, it gets suspended by the runtime and the guard
true, and a value al se if at least one of them has a ; pecomes associated withAfter suspending, the runtime
valuef al se. Otherwise, its value is undefined. tries to find a runnable thread that can be scheduled in the
Y ¢ has a valud al se if both ¢ and+ have a value thread groups.

fal se, and a value rue if at least one of them has a  The runtime first checks if there exists a runnable thréad

The current value of a guard is inductively defined as:

valuet rue. Otherwise, its value is undefined. in the same thread group. If there exists one, tHéyecomes
« —p has the opposite value of, if ¢ has a value. the running thread of the thread group. The exact choice of a
Otherwise, its value is undefined. runnable thread to be resumed is important, and the runtime

The most common use of guards is conditioning furtheslways chooses the one with the highest depth in the group.
progress of the computation on a future to complete. F&uch choice can be justified by noticing that the chosen ¢hrea
such purpose, we definf as a shorthand fof < f, which is probably the one with the most advanced computation and,
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