
Verification of Causality Requirements in Java
Memory Model is Undecidable

Matko Botinčan1, Paola Glavan2, and Davor Runje3

1 Department of Mathematics, University of Zagreb
matko.botincan@math.hr

2 Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb
pglavan@fsb.hr

3 Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb
davor.runje@fsb.hr

Abstract. The purpose of the Java memory model is to formalize the
behavior of the shared memory in multithreaded Java programs. The
subtlest points of its formalization are causality requirements that serve
to provide safety and security guarantees for incorrectly synchronized
Java programs. In this paper, we consider the problem of verifying whether
an execution of a multithreaded Java program satisfies these causality
requirements and show that this problem is undecidable.

Keywords: Java memory model, multithreading, verification.

1 Introduction

The Java language specification [GJSB05] and recent work on formalization of
the Java memory model (JMM) [MPA,MPA05] attempt to give a precise speci-
fication of the behavior of the shared memory for multithreaded Java programs.
The JMM has been designed having two goals in mind. The first one is to provide
safety guarantees to programmers by:

– ensuring sequentially consistent behavior of correctly synchronized (data
race free) programs, and

– promising that even for programs that are incorrectly synchronized with
respect to JMM semantics (i.e., programs with data races) the values should
not appear out of thin air.

The second one aims to guarantee compiler writers that common compiler op-
timization techniques are allowed as long as they do not violate these safety
guarantees.

The original specification of the JMM was shown to have serious flaws, e.g.,
Theorem 1 in [MPA,MPA05] does not hold, infinite executions conflict with
omega ordering of default initialization actions in the definition of the JMM,
it is unclear how to handle dynamic allocation in this setting, etc. Although
subsequent work on JMM [CKS07,AS07a,AS07b] managed to fix some of these

problems, all variations of the JMM definition contain an inherent deficiency
regarding decidability which we address in this paper.

The subtlest points of the JMM definition are causality requirements that
serve to provide safety guarantees for incorrectly synchronized Java programs.
The problem is that they are specified declaratively, and from this definition it
is not evident how to effectively check them. In [PS06], authors deal with the
problem of verifying the JMM causality requirements for a finite execution of a
multithreaded Java program containing no synchronization actions, actions on
final fields and external actions. They show that the problem is NP-complete,
however, their result holds only under additional assumption (implicit from the
proof) that all intermediate executions in the justification sequence are finite and
polynomially bounded, which is generally not true for arbitrary multithreaded
Java programs. In this paper, we consider what happens when this additional
assumption is left out and show that the problem of verifying the JMM causality
requirements for a finite execution of an arbitrary multithreaded Java program
is undecidable.

The rest of the paper is structured as follows. The formal definition of the
JMM is given in Section 3. Section 3 contains the main result of this paper. In
Section 4, we give concluding remarks.

2 The Java Memory Model

Let us first introduce the concepts from [MPA05,MPA] that are needed for un-
derstanding the definition of the Java Memory Model (JMM).

We consider a multithreaded Java program that spawns a set of threads. The
execution of each thread is represented as a sequence of actions. Formally, an
action is a tuple 〈t, k, v, u〉, where t is the thread performing the action; k is the
kind of the action: read, write, volatile read, volatile write, lock, unlock, thread
create, thread join or an external action; v is the variable or monitor involved
in the action; and u is an arbitrary unique identifier of the action (though, for
readability, we do not write u explicitly). Non-volatile read and write actions are
non-synchronization actions, the others are synchronization actions. In the rest
of the text, we do not deal with thread create, thread join and external actions,
however, we use the notion of initialization actions for setting up initial values
of shared variables.

An execution is a tuple E = 〈P,A,
po−→,

so−→, W, V,
swo−→,

hbo
< 〉,4 where

– P is a Java program;
– A is a set of actions;
–

po−→ is the program order — a partial order over actions in A that is a total
order over all actions preformed by the same thread;

– so−→ is the synchronization order — a total order over all synchronization
actions in A;

4 Here we denote binary relations with
α−→, for some label α. Transitive closure of

relation (
α−→)+ is denoted by <α, when it is a strict partial order.

– W is the write-seen function — a function assigning a write action W (r) to
each read action r in A;

– V is the value-written function — a function assigning a value V (w) to each
write action w in A;

– swo−→ is the synchronizes-with order — the smallest relation over synchroniza-
tion actions in A such that:
• if a1 is unlocking and a2 is locking the same object, and a1

so−→ a2, then
a1

swo−→ a2;
• if a1 is volatile writing to and a2 is volatile reading from the same loca-

tion, and a1
so−→ a2, then a1

swo−→ a2;.

–
hbo
< is the happens-before order — a strict partial order induced by the

synchronizes-with order and the program order, i.e.,
hbo
< = (

po−→ ∪ swo−→)+.

An execution E is well-formed if it obeys the Java intrathread semantics,
i.e., if it satisfies the following conditions:

(1) Each read of a variable x sees a write to x. All reads and writes of
volatile variables are volatile actions.

(2) The synchronization order is at most an omega order, i.e., for each
synchronization action x, the set {y | y <so x} is finite.

(3) Synchronization order is a strict total order consistent with pro-
gram order, i.e., <po |Dom(<so) ⊆<so.

(4) Lock operations are consistent with mutual exclusion, i.e., for all
lock actions l on monitor m and all threads t (different from the thread of l)
the number of locks of t before l in <so is the same as the number of unlocks
of t before l in <so.

(5) The execution obeys intra-thread consistency, i.e., for each thread t,
the actions preformed by t in A are executed in the same order that would
be generated if t is run as a single thread in isolation.

(6) The execution obeys synchronization-order consistency, i.e., for ev-
ery volatile read r ∈ A, it is not the case that r <so W (r), and addi-
tionally, there must not exists a write w on the same variable v such that
W (r) <so w <so r.

(7) The execution obeys happens-before consistency, i.e., for every read
r ∈ A, it is not the case that r <hbo W (r), and additionally, there must not
exist a write w on the same variable v such that W (r) <hbo w <hbo r.

A well-formed execution E is JMM-consistent if it satisfies the JMM causality
requirements, i.e., if there exists a committing sequence of sets of actions ∅ =
C0 ⊂ C1 ⊂ C2 ⊂ . . . such that A =

⋃
i Ci, that get justified through a sequence

of well-formed executions E1, E2, . . . of the program P . The sequences (Ci)i and
(Ei)i, where Ei = 〈P,Ai,

poi−→,
soi−→, Wi, Vi,

swoi−→, <hboi〉, are required to satisfy the
following conditions:

1. Ci ⊂ Ai;
2. <hboi |Ci =<hbo |Ci ;

3. soi−→|Ci
= so−→|Ci

;
4. Vi |Ci

= V |Ci
;

5. Wi |Ci−1= W |Ci−1 ;
6. ∀r ∈ Ai\Ci−1, Wi(r) <hboi r;
7. ∀r ∈ Ci\Ci−1, Wi(r) ∈ Ci−1, W (r) ∈ Ci−1.

3 Verification of the JMM Causality Requirements

We define the problem of verifying the JMM causality requirements as follows.
The input to the problem is a finite well-formed execution E of a Java program
P . The question we are interested in is whether E satisfies the JMM causality
requirements, i.e., whether E is JMM-consistent.

Let S be an arbitrary sequential program containing no synchronization ac-
tions, no actions on final fields, no external actions, and no references to global
variables. Let P be a multithreaded program with two threads Ta and Tb de-
scribed as follows:

Ta : y = x; Tb : if (y == 0) { S }
x = 1;

Assume that both x and y are initially set to 0 by initialization actions i1
and i2 in an initialization thread I, and they happen before any other action
in the execution. We represent these facts by extending the program order. Let

E = 〈P,A,
po−→,

so−→, W, V,
swo−→,

hbo
< 〉 be a finite well-formed execution of P defined

by the following components:

- A = {i1 = 〈I, write, x〉, i2 = 〈I, write, y〉, a1 = 〈Ta, read, x〉,
a2 = 〈Ta, write, y〉, b1 = 〈Tb, read, y〉, b2 = 〈Tb, write, x〉};

-
po−→= {(a1, a2), (b1, b2), (i1, i2), (i1, a1), (i2, a1), (i1, b1), (i2, b1)};

- so−→= ∅;
- W = {(a1, b2), (b1, a2)};
- V = {(i1, 0), (i2, 0), (a2, 1), (b2, 1)};
- swo−→= ∅;
-

hbo
< = {(i1, a1), (i2, a1), (i1, b1), (i2, b1), (a1, a2), (b1, b2),
(i1, a2), (i2, a2), (i1, b2), (i2, b2)}.

Then the following lemmas hold.

Lemma 1. If S terminates, i.e., if S run as a singlethreaded program has a
finite execution, then E is JMM-consistent.

Proof. Assume that S terminates. Then the following sequence of actions (Ci)i

and executions (Ei)i satisfy the JMM causality requirements for E:

E1: - C1 = {i1, i2};
- W1 = {(a1, i1), (b1, i2)};

- V1 = {(i1, 0), (i2, 0), (a2, 0), (b2, 1)};
(note that b2 indeed can be executed “after” b1 since S terminates);

E2: - C2 = C1 ∪ {b2};
- W2 = {(a1, i1), (b1, i2)};
- V2 = {(i1, 0), (i2, 0), (a2, 0), (b2, 1)};

E3: - C3 = C2 ∪ {a1};
- W3 = {(a1, b2), (b1, i2)};
- V3 = {(i1, 0), (i2, 0), (a2, 0), (b2, 1)};

E4: - C4 = C3 ∪ {a2};
- W4 = {(a1, b2), (b1, i2)};
- V4 = {(i1, 0), (i2, 0), (a2, 1), (b2, 1)};

E5: - C5 = C4 ∪ {b1};
- W5 = {(a1, b2), (b1, a2)};
- V5 = {(i1, 0), (i2, 0), (a2, 1), (b2, 1)};

Lemma 2. If E is JMM-consistent then S terminates.

Proof. Assume that E is JMM-consistent and S does not terminate. We claim
that then the action b2 cannot be committed through any sequence of actions
(Ci)i, and thus cannot take place in the final execution E, implying that E is
not JMM-consistent. Namely, since C1 contains only initializations actions, it
cannot contain b2. Assume that b2 is not contained in some Ci−1. This means
that in the execution Ei, the read of y in Tb (the action b1) can only see either
the initial write of 0 to y (the action i2) or the write of 0 to y performed by Ta

through the action a2. Since in both cases the condition of the if-statement is
satisfied, statements of the program S get executed infinitely, thus not allowing
b2 to get executed. Therefore, b2 cannot be committed in Ci either.

Since determining whether a sequential program S terminates is undecidable,
from Lemma 1 and Lemma 2 we conclude the following:

Theorem 1. Verification of the JMM causality requirements is undecidable.

4 Conclusions

In this paper, we considered the problem of verifying whether a finite execution
of an arbitrary multithreaded Java program satisfies the causality requirements
stemming from the Java memory model. It has been shown that this problem is
undecidable.

We see this result as an important weakness of the JMM specification since
it shows that one cannot have a dedicated verification algorithm in the general
case. One can, however, employ the JMM definition in order to develop a simple
model checker that solves the problem for some specific cases (“small” with
respect to the number of program instructions, threads, and especially number
of data races, see [Man04]).

The sequential consistency memory model has also been shown to be unde-
cidable [AMP00]. This result, however, did not make a definite verdict on the

practical aspect of the sequential consistency memory model verification [SG05].
Taking into account Java practitioners needs, we could also expect verifiable
fragments of the JMM to appear in the future.

References

[AMP00] Rajeev Alur, Kenneth L. McMillan, and Doron Peled. Model-checking of
correctness conditions for concurrent objects. Inf. Comput., 160(1-2):167–
188, 2000.

[AS07a] David Aspinall and Jaroslav Sevcik. Formalising Java’s data-race-free guar-
antee. In Proceedings of the 20th International Conference on Theorem Prov-
ing in Higher Order Logics (TPHOLs 2007), volume 4732 of Lecture Notes
in Computer Science, pages 22–37. Springer, 2007.

[AS07b] David Aspinall and Jaroslav Sevcik. Java memory model examples: Good,
bad and ugly. In Proceedings of the 1st International Workshop on Veri-
fication and Analysis of Multi-threaded Java-like Programs (VAMP 2007),
2007.

[CKS07] Pietro Cenciarelli, Alexander Knapp, and Eleonora Sibilio. The Java memory
model: Operationally, denotationally, axiomatically. In Proceedings of the
16th European Symposium on Programming (ESOP’07), 2007.

[GJSB05] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language
Specification, Third Edition. Addison-Wesley, 2005.

[Man04] Jeremy Manson. The Java memory model. PhD thesis, University of Mary-
land, College Park, 2004.

[MPA] Jeremy Manson, William Pugh, and Sarita V. Adve. The Java memory
model (expanded version). Submitted to ACM Transactions on Programming
Languages and Systems.

[MPA05] Jeremy Manson, William Pugh, and Sarita V. Adve. The Java memory
model. In Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL’05), pages 378–391. ACM
Press, 2005.

[PS06] Sergey Polyakov and Assaf Schuster. Verification of the Java causality re-
quirements. In Hardware and Software Verification and Testing, First Inter-
national Haifa Verification Conference, Haifa, Israel, November 13-16, 2005,
Revised Selected Papers, volume 3875 of Lecture Notes in Computer Science,
pages 224–246. Springer, 2006.

[SG05] Ali Sezgin and Ganesh Gopalakrishnan. On the decidability of shared mem-
ory consistency verification. In Proceedings of the 3rd ACM & IEEE Inter-
national Conference on Formal Methods and Models for Co-Design (MEM-
OCODE 2005), pages 199–208. IEEE, 2005.

