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Abstract. Compositional model checking refers to reducing the prob-
lem of model checking some property of the whole system to the problem
of model checking its components. In this paper, we investigate compo-
sitional approach for model checking monadic least fixed point logic on
transition systems assembled from the components by using the H-sum
and the fusion operator.

1 Research Area — Main Themes

The main concern of my recently started PhD research is to investigate possible
applications of suitable algorithmic methods of mathematical logic and (finite)
model theory to the model checking technique [3] with a hope to obtain yet an-
other tool to increase its feasibility. One particular theme I am currently working
on is development of algorithms for solving the model checking problem for cer-
tain variants of fixed point logic by means of solving the corresponding model
checking games, i.e. computing the participating players’ winning strategies [2].
Another theme of my research is use of compositional approach for solving the
model checking problem, i.e. reducing the problem of model checking the whole
system to the problem of model checking its constituents. This paper presents
some of the obtained results related to this second theme.

2 Related Work

The main idea of the compositional approach is to infer the truth value of some
property of a composed structure from informations about truth values of certain
properties of its components. To state this a bit more precisely, suppose that a
structure 2 is composed from the components 24, ..., 2, and that a property to
be checked is ¢. The goal is to find an algorithm which for the given ¢ computes
formulae @1,...,¢@, such that A = ¢ iff A; E ¢1,...,2A, &= @,. The main
difficulty in finding such an algorithm (or proving that, at least in this form,
it does not exist) lies in the choice of (1.) the logical formalisms for expressing



properties of the structures and (2.) the set of operators by which a composed
structure can be assembled from the components (and, in some cases one could
also argue for the choice of (3.) the class of structures).

The compositional approach has first been introduced in the seminal paper
of Feferman and Vaught [6] where it was investigated how to determine the truth
value of a sentence of the first order logic on the generalized product of Tarski’s
(first order) structures by looking at its components and the index structure.
Many interesting theoretical results were obtained by extending this approach,
the most influential probably being the landmark paper of Shelah [12]. However,
only until recently, this method lived in a purely theoretical world. Development
of the model checking technique and increased interest in its algorithmic aspects
brought relevant ideas of the compositional approach to a more practical side
[9, 10, 13], or even (for some fragments of CTL and CTL*) rediscovered them [7,
11].

Therefore, the use of the compositional approach in the context of model
checking is certainly not new. Nevertheless, there are many questions waiting to
be answered, especially those related to the particular choices of (1.) and (2.). In
this paper, we present two rather simple results for the monadic least fixed point
logic as the choice of (1.) and H-sum and the fusion operation for the choice of
(2.) (for brevity, transition systems are taken as the choice of (3.)). The obtained
results have very technical and tedious proofs, thus, we only provide mere hints
for them.

3 Preliminaries

A transition system is a tuple A = (S, (Eqa)a, (P.).), where S is a set of states,
E, C Sx S, for each transition label o, and P, C S, for each atomic proposition
¢. In this paper, we regard each transition system A as a Tarski’s (first order)
relational structure with the universe S, binary relations (F, ), and unary rela-
tions (P,),. We associate to every transition system a signature 7 consisting of
its binary and unary relational symbols. Therefore, for a fixed 7, all 7-transition
systems have the same common set of transitions and atomic propositions.

There exist many logical formalisms for expressing properties of transition
systems. Some of the most important are those equipped with least (and great-
est) fixed points operators (such as, for instance, the modal u-calculus), giving
a good balance between high expressive power and well-behaved algorithmic
complexity. The modal p-calculus is also important for a number of other rea-
sons, in particular, it subsumes a variety of modal and temporal logics used in
verification (i.e. LTL, CTL, CTL*, PDL). However, in this paper we shall be
mainly concerned with a somewhat more expressive monadic least fixed point
logic (MLFP).

MLFP is the logic obtained from the first order logic by adding operators
for forming monadic least and greatest fixed points. Namely, if ¢(R,z) is a
MLFP-formula and R is a unary relational variable occurring only positively in
¥, then [Ifp Rz.¢|(t) and [gfp Rx.1)](t) (where ¢ is an arbitrary term) are also



MLFP-formulae. Semantics of fixed point MLFP-formulae is defined as follows.
Let A = (S,(Eqy)a, (P,),) be a 7-transition system and ¢ a MLFP[r U {R}]-
formula (by MLFP[r U {R}] we denote the set of all MLFP-formulae using bi-
nary and unary relational symbols from 7 U {R}). Formula ¢ gives rise to an
operator 1: P(S) — P(S) assigning to every set R C S the set " (R) =
{s€ S| (A R)}=9(R,s)}. As R occurs in ¢ only positively, the operator ¢
is monotone in R, and thus has a least fixed point 1fp(y*) and a greatest fixed
point gfp()*). Now we define that A = [Ifp Rx.¢](¢) iff the interpretation of ¢
is contained in 1fp(¢*), and analogously for greatest fixed points.

Our choice for considering the MLFP logic is twofold. Firstly, it contains
the modal p-calculus, while its model checking problem still being of polyno-
mial time complexity in the size of a transition system, and thus represents
a highly expressive, but algorithmically manageable logic. Secondly, our main
task is to explore practically applicable techniques from (finite) model theory,
where a convenient game-theoretical characterization of MLFP in terms of a
variant of Ehrenfeucht-Fraissé games with pebbles [1, 5] happens to be of crucial
importance.

Let us start exposition of the compositional approach by first considering the
case (already analyzed in the literature) in which the operation for composing
structures is chosen to be a disjoint union (by AU B we denote the disjoint union
of transition systems .4 and B). The first step towards a composition theorem
for this operation can be stated as follows.

Theorem 1 ([1]). Let A, B, A’, B’ be T-transition systems. If A and B satisfy
the same MLFP[r]-sentences as A" and B’, respectively, then AU B satisfies the
same MLFP|[r]-sentences as A" U B’.

Proof. By combining the winning strategies for the two pairs of transition sys-
tems in the Ehrenfeucht-Fraissé game for MLFP.

Let us denote with T(A) the set of all MLFP[r]|-sentences satisfied in A.
The previous theorem rephrased states that T (AU B) is uniquely determined by
T(A) and T(B). However, the compositional approach requires more, namely,
that it is possible to effectively compute T(A U B) from T(A) and T(B). For
the case of the disjoint union it is indeed possible to obtain such a stronger
statement.

Theorem 2. For every MLFP[7]-formula ¢ one can effectively compute a re-
duction sequence, i.e. a sequence of MLFP[r]-formulae (91,..., 0k, m1,...,m)
and a boolean function F,: {0, 17— 0,1} such that for every A and B we
have AUB = ¢ iff F (ai,...,ak,b1,...,b) =1, where aj = 1 iff A =19, and
bj = 1 iff B |=n;.

The time complexity of the computation of the reduction sequence is exponential
in the quantifier depth of .

Proof. By analyzing the proof of Theorem 1 and tedious book keeping, similarly
as done in [8].



A theorem like this also holds for more general sum-like transition systems,
obtained as images under quantifier free MSO transductions [8] (the correspond-
ing operation is then called sum-like operation). An example of its application
(for the case of first order formulae) is given in [9], where it is shown that tran-
sition systems obtained by uniform graph substitution (pipelines) can be model
checked by model checking their constituents.

4 Results

Our interest is to explore whether previous results can be obtained for some other
(more or less practically motivated) classes of operations on transition systems,
not known to be sum-like. Here we first consider the so called H-sum (also
known as union with indentification by names) which have been evidenced to be
of particular relevance in building large computer chips from small components
8]
Let A = (S4,(E)q, (PA),) and B = (S5, (EB),, (PB),) be two T-transition
systems such that for H := SA N SE it holds B4 N (H x H) = EB N (H x H)
and PANH = P3N H. The H-sum of A and B is given by the transition system
Ady B = (SAUSB (EAUEB),, (PAUPE),). We have obtained that analogues
of Theorems 1 and 2 also hold for H-sums of transition systems.

Theorem 3. T(A®y B) is uniquely determined by T(A) and T(B). Moreover,
there exists an algorithm which for every MLFP[r]-sentence computes a reduc-
tion sequence, i.e. a sequence of formulae as described in Theorem 2.

Proof. By using Ehrenfeucht-Fraissé games for MLFP and computing the reduc-
tion sequence similarly as in the proof of Theorem 2.

Another operation on transition systems that we consider is a fusion opera-
tion which fuses all elements of the set of states satisfying some unary predicate
[4]. This operation has shown to be useful in representing relational structures
by (short) algebraic expressions and evaluating MSO-formulae on them. Here
we are interested in it as a possible candidate for propagation of MLFP model
checking results between a transition system and its subsystems.

Let A= (S, (Eu)a, (P,),) be a T-transition system and assume that Py # ().
The 7-transition system A’ := Fusep, (A) is defined as follows. The set of states
of A'is SA" = (S\ Py) U {sp}, where sy is a new element not in S. For unary
relations, we have Pf' = {sg}, and for « # 6, PA = (P, 0 SA) U {sg}, if
P,NPy#(, and PLA/ =P N SA" = P,, otherwise. For binary relations, we have
EX = (B, N (SA x SA)U{(s,s9) | s € SA A 3¢’ € Py such that (s,s') €
E,}U{(sg,s) | s € SA A 3s' € Py such that (s',s) € E,}. In the case when
Py =0, Fusep, (A) is defined to be equal to A.

Although the fuse operation can be defined by using MSO-transduction [4],
the corresponding defining formula is not quantifier free, and therefore, an ana-
logue of Theorem 2 cannot be directly obtained. However, we have established
that an analogue of Theorem 1 does hold.



Theorem 4. T(Fusep,(A)) is uniquely determined by T(A).
Proof. Again by using Ehrenfeucht-Fraissé games for MLFP.

Nevertheless, it is still not clear how to effectively compute (e.g. by some
kind of reduction sequence) T(Fusep, (A)) from T(A). We strongly believe that
this computation is possible, i.e. that an analogue of Theorem 2 should hold,
too.

5 Conclusions and Future Work

In this paper, we have considered the compositional approach for solving the
model checking problem for monadic least fixed point logic. We have shown that
a composition theorem holds for model checking MLFP properties on transition
systems assembled with a use of the H-sum operation. However, for transition
systems obtained with the fusion operation, we were only able to prove a partial
result towards compositionality.

It is hard to expect that the compositional approach would replace any of
the “traditional” methods for model checking due to, in general, high complexity
of computing reduction sequences. However, it could help to make the process
of incremental model checking more efficient [9, 10]. Namely, in realistic situa-
tions, the system under verification is developed in a stepwise manner, i.e. the
system at a certain step of development differs from the one at the next step
only in a small (number of) components. If the compositional approach would
be exploited in such cases, model checking the whole system could be reduced to
(re)computation of the truth values of only a small number of formulae from the
reduction sequence. Our preliminary analysis of the computational complexity
of the whole procedure together with those from [9] and [10] show that for large
systems considerable gains in efficiency could be (at least theoretically) possi-
ble. We hope to obtain more insight into this aspect after making a prototype
implementation of the whole procedure.

A careful reader has probably observed that we have not mentioned the syn-
chronized product as a possible choice for an operator for composing transition
systems, although it is one of the most crucial operations in modeling concurrent
and reactive systems. Unfortunately, it is not difficult to see that Theorems like
1 and 2 do not hold for direct products and MLFP logic (theorems do not hold
even for strictly weaker logics such as e.g. transitive closure logic). However, for
the case of first order logic they do hold (in fact, that was the main result of
[6]). A similar result has been recently obtained for finitely synchronized prod-
ucts of (infinite) transition systems and first order logic extended by reachability
predicates [13]. It would be interesting to investigate this border more precisely,
and to analyze whether such result could be obtained for some stronger logical
formalisms and weaker product-like operations.
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