Model-based Testing of the Conference Protocol
with Spec Explorer

Matko Botintari, Vedran Novakow*
*University of Zagreb, Department of Mathematics, Zagretmatia
{mabotinc,venovakpg@math.hr

Abstract— This paper presents a case study of model- A. Related work

based testing of the Conference Protocol, a simple multicast
chat box protocol reported in [2], [4], [8], [11], [13], with the The Conference Protocol has been used as a case study

model-based testing tool Spec Explorer [14]. Our approach fOr experimental evaluation of TorX [15] — one of the
differs from previous case studies of the Conference Protocol most influential model-based testing tools developed in
primary in the choice of the employed modeling language academic community so far. The test scenarios in [2] are
Sp:vig;% Eoyot'hfgrpa";é?ﬂ{ra?fodbteeigﬂ%arﬁﬁesﬁfthmexﬁfiﬂgs derived from multiple specification languages (namely,
results on testing the Conference Protocol with other model- LOTOS, Promela and_SDL),and then on.-the.-fly and batch
based testing tools. Additionally, the presented data by itself ~tested with TorX. [4] investigates combinations of TGV
also gives a novel performance measurement of the Spec for abstract test generation and TorX for test execution.
Explorer tool. [11] brings the case study of the Conference protocol with
Phact (Philips Automated Conformance Tester).

|. INTRODUCTION B. Our contributions

Testing refers to activity of executing an implementa- The main coptnbuﬂons of .II:]IS paper are as follows: a
tion of a software product or its components in order torewrite of the informal specification of the Conference

expose defects. It is often one of the costliest aspects (ﬁrotocol in more concise and formal terms than its

the whole software development process. Despite its imgriginal specification [8]; a Spec# model of one aspect

portance, it is still not as developed as other engineerin@'c the Conference Protocol (namely, the one seen by the

disciplines, and lacks adequate tool support onference protocol entities); and experimental results

The model-based testing is a kind of automated black2" model-based testing .Of our mplementaﬂon of the
L . e Conference Protocol against the given Spec# model by
box testing in which the software specification is used as__.)
. . . _using the Spec Explorer model-based testing tool.
an oracle for validating correctness of the implementation . . .
. . . The rest of the paper is organized as follows. In Section
It is one of the most prominent approaches for dealin

.) . ql, we give an overview of concepts and underlying
with shortcomings of the usual testing methodology.
. theoretical foundations of model-based testing with Spec
In model-based testing, tests are generated system

v f del of the imol ion. H da:ﬁ'xplorer. Informal description and a partial Spec# model
cally from a model of the implementation. Here, a modelyt 4,0 conterence Protocol is presented in Section lll.

is a (not necessarily comprehensive) abstraction of th%ection IV reports experimental results of performed

actual system from a particular perspective. Models arg, o hased testing activities. Finally, in Section V we
typically described by a modeling language — these high- ive concluding remarks ’

level programs describe the operational behavior of théJ
implementation at a chosen level of abstraction. [I. MODEL-BASED TESTING WITHSPECEXPLORER

Spec Explorer [14] is a model-based state exploration Thijs section provides an overview of the Spec Explorer
and testing tool for .NET platform developed by the model-based testing tool and its underlying theoretical
Foundations of Software Engineering group in Microsoftfoundations. We start by introducing interface automata
Research. It uses Spec# [1] as its primary languadgnd their syntactic representation in Spec Explorer in
for describing models of the system. Several productorm of model programs. The notion of interface automata
groups in Microsoft use it for testing operating systemiyrns out to be important for precise formulation of
components and .NET framework components on a dailyhe conformance relation between the model and the
basis. implementation by means of the alternating simulation.

The Conference Protocol [6] is a simple multicast chatMoreover, it also serves to describe the test generation in
box protocol which we found interesting and challenginga unified manner, including both the offline and the online
enough to use as a case study for experimental evalugesting.
tion of the Spec Explorer model-based testing tool. Our
primary goal is to provide a set of results on testing the®- Interface automata
Conference Protocol with Spec Explorer that would be One way to describe the behavior of reactive systems
similar to those on testing the Conference Protocol with(i.e., systems reacting with their environment) is by using
other model-based testing tools. the notion of interface automata [7]. In this setting, both

participants of the model-based testing, the model and theith a state dependent boolean predic®e,, (x) rep-
implementation under test (IUT), are viewed as interfacgesenting the precondition of.
automata, and the relationship between them is described Given a model progranP, it defines an interface
by the conformance relation. automatonM as follows. The ses*# of initial states
The Spec Explorer tool adopted the formalism baseaf M contains only the initial state o, i.e., the set
on interface automata [16], and slightly extended it [5] byof initial assignment ofVars members. The se$ then
giving model programs a more rigorous and concise seequals to the set of all states reachable figitt* by the
mantics in terms of abstract state machines [9]. Howeveltransition functions described further.
due to page limitation of this paper, we mostly rely on the An action in M corresponds to an invocation of an
exposition [16] based on interface automata, as it requireaction method inActs with some actual parameters. Let
less preparatory material, while still being sufficient for us denote byn(v)/w an invocation of the action method

the scope of this paper. m on the input parameterg, combined with the output
Interface automaton can be defined as an ordered tupfgarametersw. An actiona = m(v)/w is enabled in a

M = (S, St Ac, A° T, T°,5) where: states, i.e.,a € T',,,(s), if Pre,,(v) is true ins and the
— S is a set of states; invocation ofm(v) in s yields the output parameters.
— §init C G is a set of initial states: Given a source state and an actiom = m(v)/w €

— A° and A° are mutually disjoint sets of controllable T'n(s), the transition functiod maps(s,a) to the target
actions and observable actions, respectively; the séttate of the invocatiom(v). Note that the sef(s) of all
A¢ U A° of all actions is denoted byi; enabled actions in a stateequalslJ,, s I'm(s). The
— T 58— P(A°) andl?: S — FP(A°) are enabling setA of all actions is then taken to He,c s T'(s).
functions for controllable and observable actions; in .
addition, T'(s) denotes the sef“(s) UT?(s) of all ~ C- Test generation
enabled actions in a state Still, a model programP serves as an operational
— J§: SxA — Sis atransition function mapping a state contract for the IUT without regard for any particular
s and an actioru enabled in the state (a« € I'(s)) purpose. In many cases the corresponding interface au-
to a target staté(s, a). tomatonM has too large or even infinite number of states
A state s for which I'(s) = (is called terminal. A Of actions. In order to generate an interface automaton
nonterminal states with T°(s) = () is called active, with sets of states and actions of manageable size, various
otherwise we call it passive. techniques for scenario control have to be employed.

The partition of the set of actiond into controllable Their purpose is to generate frofha restricted form of
and observable ones serves to distinguish the behavig¥!, suited for the test goal that wants to be achieved.
that can be controlled from the behavior that can only The Spec Explorer tool incorporates the following tech-
be observed. In the context of model-based testing, theiques for scenario control: parameter selection (spscifie
controllable actions are typically triggered by the modelthe set of values for parameters of action methods in
describing operational behavior of the IUT, while the Acts), method restriction (selects a subset of possible ac-
observable actions are those which are to be observdiPns in A satisfying a given state-based expression), state

about the IUT. filtering (prunes away all states frosthat fail to satisfy
a given state-based condition), directed search (allows th
B. Model programs user to limit and direct the (otherwise nondeterministic)

In the Spec Explorer tool, models of reactive systemdraversal of the state spaceby defining the probability
are not specified directly as interface automata, but vispace of the random variables used for selection; states
model programs written in high level specification lan-and transitions not visited are pruned away), and state
guage AsmL [10] or Spec# [1]. While AsmL is essentially grouping (selects representative states from equivalence
based on abstract state machines, and thus requires a basliasses defined by state-based expressions).
understanding of their underlying theoretical concepts fo The process of model-based testing comprises test
its proper use, Spec# is a design-by-contract extensiogeneration and test execution. In case when from a given
of the mainstream object-oriented imperative languagenodel program tests are generated in advance with an
C#, targeting a possibly larger number of users, that araim to achieve some predefined test goal we speak of
acquainted to the “usual” semantics. We use Spec# asddfline testing. Here the test execution comes only after-
specification language in this paper. wards, taking pregenerated test suites and running them

Every model progran®P consists of a (finite) seActs against the IUT in order to find discrepancies between the
of action methods and a (finite) Sé4rs of state variables. 1UT behavior and the behavior predicted by the model.
A state of P is determined by values of all members in However, it is also possible to combine the test generation
Vars. Note that depending on the types of state variablesand the test execution into a single process where tests are
a model program may have infinitely many states. Theyenerated on-the-fly as the testing advances. This mode
values of variables inVars evolve duringP’s execution of model-based testing is called online testing.
in a way prescribed by action methods. Here each action In both cases, a test suite (or shortly, a test) can be
methodm (having a sequence of variablgsas its input seen as an interface automaton, sAy produced by
parameters) equals to ordinary C# method augmentemaversing the interface automato in some way.7

is pregenerated in the offline case, while in the online The conformance relation is based on the no-
case it is unfolded dynamically. In generdl, may have tion of alternating simulation [5], [16]. LetM =
additional state variables (e.g. to represent informatiorfSa, Si%, ASq, A%, I'ass T Oa) be the interface au-
about traversals aM) and the set of actions is equipped tomaton generated from the model program, avid=
with a new controllable actio®bserve (representing the (Sar, S, AS., A%, T4 T3, o) the interface automa-
choice of waiting for an observable action) and a newton of the IUT. An alternating simulation frooh to A is
observable actioimeout (representing that no (other a binary relatiort= C S x Sy such that for alls € Sy
thanTimeout) observable actions have happened). Eacland ¢t € Sy with s = ¢, the following conditions are
state of7 inherits all properties of the corresponding statesatisfied:

of M, and each transition iir (other thanObserve and - T54(s) CT%(t) andT'§, CT9;
Timeout) corresponds to a transition 1. — For all actionsa € T9,(s) U I'§(¢), it holds
In offline testing, a traversal algorithm producggrom Sm(s,a) = dn(t, a).

M in advance aiming for a particular test goal — 10 The intuition behind the two conditions is as follows.
reach a state satisfying a given condition, to provide arne first condition expresses the controllable-observable
full coverage ofM's state space or to generate randomgyajity between states in the alternating simulation: yever
walks satisfying some probability distribution on the skt 0 ¢ontrollable action enabled in the model is also enabled in
actions. Depending on the presence of observable actiofge |UT, and conversely, every possible response from the
in M and whetherM is deterministic (i.e., the set of |yT is also enabled in the model. The second condition
enabled actions in each state bt is a singleton set) or aopsures that every step from that corresponds to a
nondeterministic, different traversal algorithms havééo controllable action enabled in the model or an observable
employed. In the general case, Spec Explorer incorporatgg:tion enabled in the implementation can be matched by
a variant of Dijkstra’s shortest path algorithm for alter- 5 step from.

nating reachability and a nondeterministic extensions of A refinement from interface automatowt to interface

the Chinese postman tour algorithm [12]. For generatingytomaton\’ is an alternating simulatios: C S x Sy
tests that optimize the expected cost with respect to actiofom A to A such thatSiit x Sinit C ». We say that
probabilities, adapted algorithms from Markov decision \ specifies\, or A conforms toM, if there exists a
process theory are employed [3]. refinement fromM to .

Instead of using pregenerated tests, in online testing | et us now describe how the Spec Explorer tool
tests are generated on-the-fly as the testing proceeds. Thjgrforms checking of the conformance relation. Spec
technique helps to resolve the nondeterministic behaviogyporer stipulates that action methods from the model
(typically arising in testing reactive systems) by avo@in program are bound to methods with matching signatures
large pregenerated tests from M dealing with all jn the |UT. Therefore, assuming equality of the signatures,
possible responses of the IUT, and taking only a usefthe corresponding actions in interface autonitand\

controlled stochastic sample of the state space. The alggiffer only in their output values (when enabled in both
rithm implemented in Spec Explorer [5], [16] generates \4 and\).

T by UnfoldingM nondeterministica”y. The choices of Given a states c SM: a controllable actiomn =

observable actions correspond to the observable actior;,g(v)/WM is chosen inM such that for the generated
taking place during the test execution, while the control-input parameters/, the preconditionPre,,(v) holds in
lable actions are selected randomly with respect to thg 'After the method caltn(v) has been executed both in
user-defined action weights. the model and the IUT, and produced output parameters
w and wyy, respectively, the values iw; and wys
are compared for equality. In case whemn, # wr, the

The purpose of the test execution is to determineactiona is enabled in the model but not in the IUT, which
whether the IUT meets the specification prescribed by theesults in a conformance failure.
model the test has been generated from. This is achieved On the other hand, an observable action happens im-
by checking the conformance relation between the modgdromptu on the IUT side. In order to track execution of
and the IUT, where the IUT is seen as a restricted form obbservable actions, Spec Explorer instruments the IUT
the model. It is noteworthy to mention that in this context,at the binary level, and the instrumented IUT signals
the IUT is typically a “wrapper” of the actual system the Spec Explorer's conformance engine occurrences of
under test (which often happens to be multi-threaded, evepbservable actions. Upon occurrence of an observable
distributed), or perhaps a particular aspect of it. actiona = m(v)/wyur, Spec Explorer acts as follows.

The behavior of the IUT is formalized through an First, the preconditiorPre,,(v) is checked in the model
interface automaton, say’, obtained in the same way as program, and if it does not hold, thenis not enabled
for model programs and having the set of actions extendeth M and a precondition conformance failure occurs.
with the test action®bserve and Timeout. Here the Otherwise, the method catk(v) is executed in the model
Observe action is the only one leading to states ®f program, yielding either a conformance failure (if invari-
where observable actions are enabled, whilelthecout ant or postcondition does not hold), or output parameters
action is triggered after the amount of time determined tow (. An unexpected return value conformance failure is
wait for occurrence of an observable action runs out. generated ifw; # wr.

D. Test execution

[1l. THE CONFERENCEPROTOCOL a message from a partner. That is, messages are received
o asynchronously.
A. Informal description All invocations of a given primitive on a singlesap

The Conference Protocol is a simple distributed protof0rm & sequence. Disregarding their parameters, let them
col that resembles a multicast chat box. At the highesP® noted agrimitive; ;.. cy. Let < denote an irreflexive
level of abstraction, it can be described in the termgnd transitive refation, such that; < p2; iff the i-th
of conferencespartners and messagesA messageis ~ nvocation qf a primitivepl happens st.r|ctly bgfore .the
just a (possibly empty) sequence of no more than 255‘-th |nvocat|0n of a primitivep?2. Every interaction with
Asclil characters that is communicated among all partner@ SINgIECSAP is therefore a partially ordered sef, <)
participating in a given conference. gotential partneris ~ Of made invocations (for some) which — if non-empty
an entity (a physical user, i.e., software component acting Must satisfy the following conditions:
on its behalf) that can opt to participate in an existi_ng (Vi) (¥ # i)(3k) (join, < leavey, < join),
conference or to create a new one. There exists a fixed b RN
set (a universunt/) of all potential partners. A member (Vp € {leave, datareq, dataind}) (Vi) () (k)
of U participating in some conference will be referred to ((Join; < pi) A (join; < leavey, < p;)).
as apartner of all other members taking part in the same |+ follows that every such non-empty partial order of
conference. Aconferencas a named dynamic non-empty i ocations hagoin, for the uniqgue<-minimal element.

set of partners, I.e., each conference is a subsdy.of The universumlJ of all potential partners is available

Any pgtzntLaI par:tnilu can Jr? In amf/ eX|st|n'g conference to everycPEas a sequence of paif§’ I D, I Pendpoint),
(provided that she knows the conference’s name), creal®harel/ 1D € N+ and I Pendpoint — (Host, Port), for

a new one, or leave the one she is currently participatin%n IP address offost and its UDPPort > 1024. UID
in at any time. Asu can participate in no more than one is the unique identifer of a partner (i.e_., hep®), and
conference simultaneously, all conferences are pairwis | I Pendpoints, as network addresses of partners, are
disjoint at any given time, and their union is a subset ofyis0 unique in. The CPE partitionsU into two disjoint

U. setsAU andIU of potential partners — those who are also

Conferences and partners have names not longer thajive partners and those who are not, respectively. At any
10Ascii characters. When a conference ceases to exist, if§ne the basic invariant/ = AU & IT7 must hold. and if

name can be reused to create a new one. Apart from thal,cp s in the idle state (i.e., if it is not participating), it
conferences names are unique. Names of the partners i st ensure thatil/ — (). A oPE also has to maintain a
an arbitrary conference need not be unique, even Morg,,nning Names of partners’ addresses to their names.
any partner can change its name when joining another e generate, send and receive data chunks known as

conference (but not while residing inside a conference).iha protocol Data UnitsPpus), that are binary represen-
When a partner sends a message in the conference,tftions of primitive actions:

is distributed to other partners. The Conference Protocol
is not reliable in the sense that it does not guarantee
the messages being delivered nor the relative order of
them being preserved, since its primary goal is to mimic
multicasting over a connectionless network service. How-
ever, messages that do arrive are unchanged and not
misdelivered.

The Conference Protocol specification is refined by

roviding interfaces of and defining interactions amon .
b 9 9 he names of partners and conferences are encoded in 10

the various protocol entities. i) .
S . octets, without a terminator and left-padded with zeroes:
The conference service is accessed by a partner using

« JoinPDU informs a potential partner that the sender
is joining the named conference.

« LeavePDU informs a partner that the sender is leav-
ing the conference.

o AnswerPDU informs the recipient that the sender is
participating in the same conference.

« DataPDU conveys a message to another partner.

very PDU starts with an octet designating theu type.

Conference Service Access Poias@P), which serves as] PDU \ 1 octet\ 10 octets \ 10 octets \
an interface for the adjoined Conference Protocol Entity Join 01 PartnerName| ConferenceNameé
(cpp). Eachcsap exposes the following set of control Leave 02 PartnerName| ConferenceName
and data primitives: Answer | 03 | PartnerName| ConferenceNamé
° {Oi”(]:) artnerName, Con ferenceName) The messages are represented as Pascal-style strings:
® |[eave
o datareq(Message) | Pou | 1 octet] 1 octet| < 255 octets|
o dataind(Partner Name, Message) [Data [04 [length | data ‘

Control primitives aregjoin and leave, because they es- PDus are exchanged betweew®es over network and
tablish membership of the partner to a given confercan fit into a single UDP datagram. Communication
ence (providing partner’s name), or terminate the activdacility of a cPe is called Multicasting Protocol Entity
membership, respectively. The rest are data primitives, ofMcPE), and its interface to the corresponderwEe is
which datareq sends a message to other partners, whiléMulticasting Service Access PoimcsaAp, which offers
dataind represents an event triggered upon the arrival othe following primitives:

e send(PDU, User) updatePartners
e multicast(PDU) if PDU.Con ferenceName == CPECon ferenceName
e broadcast(PDU) then CPEAU = cPEAU A {Sender}
o receive(PDU, User) answer
User can be either a partner or a potential partner, ycsap.send(AnswerPDU, Sender)
as we shall see later. The first three primitives can
be synchronous (though in our implementation they ar@ocessDataind
asynchronous), and the fourth is inherently asynchronous.if Sender ¢ CPEAU
Multicasting differs from broadcasting in the intended €N MCSAPsend(JoinPDU, Sender)
set of recepients. Multicast primitive sendsPDU to CSARdataind(CPE Names [Sender], PDU.data)
all members of the associaterbEs AU set (i.e., to all doJoin
partners), in an unspecified manner (it is implemented setcPECon ferenceName (becomeActive
as an iteration throughAU that calls thesend primi- MCSAP.broadcast(JoinPDU)
tive). Broadcast primitive does the same for all pOtemialdoLeave
partners (universurty). Sending and receiving primitives
intentionally resemblesendtoand recvfromPOSIX oper-
ations on UDP sockets, respectively.
Each cPE maintains its internal state, which can be
classified as eitheidle or active The classification is doDataReq
based on the current conference’s name. If it is unde- MCSAP.multicast(DataPDU)
fined _(Qull), the state is idle, and it is active otherwise. B. The Spec# model
Transitions between the two classes of states are governed
by the control primitives invoked. In an idle state there is
no conference apPE actively participates in, therefore, its
set of partnersAU is empty. ACPE becomes active by
join primitive only, and idle again by executinigave,
as depicted in Fig. 1. At the idle state, all incoming
PDUs are disregarded and there are no outg@ngs as
well. All operations in an active state are synchronize
with respect to the entire state. That is, a state can bigpe Name= string where
updated by at most one operation simultaneously. The (value == null) || (value.Length <= 10);
state machine for aPE focusing on incomingPDUs type Message= string! where
and allowed primitives, is summarized briefly in Table value.Length<= 255;
I. Ramifications are ommited for brevity. type Nick = Name

type ConflD = Name
active
State

type UID = int where value > 0;
Fig. 1. A simple automaton view of state transitions

MCSAP.multicast(LeavePDU)
CPEAU =)
unsetcPECon ference Name (becomeldle)

Our Spec# model focuses on thekg emphasizing the
transitions of its internal state and disregarding commu-
nication or user interface parts of an implementation. We
first study types of the state variables, concerning the
ability to restrict their ranges — providing in that way an
upper limit on the cardinality of the set of states of the
gnodel program:

type PeerList= Map<UID ,Nick>;

Type Namerepresents the allowed names of conferences
and partners, and is constrained to null-references and
strings of no more tham0 charactersMessagés a non-
null type restriction of strings with their length not ex-
TABLE | ceeding255 charactersyUID is a type of positive integers,

THE STATE MACHINE FOR A CPE and PeerListis a mapping between unique identifiers of
partners and their (possibly undefined) names.

Each state is a valuation of the following variables:

| pou| Idle [Active

Answer | ignore | updatePartners
Join | ignore | updatePartnerg| answer

Leave | ignore | updatePartners

Data | ignore | processDatalnd

var ConflD conference =null;
readonly UID selfUID = 1,

readonly Name selfNick = “ConfProt”;
var PeerListpartners = Map};

|_primitive | ldle | Active | Variable “conference” is undefined in the initial state,
join doJoin | not allowed and a mapping “partners” (which serves both A&
leave | not allowed| doLeave and Names constituents of acPE observed) is initially
datareq | not allowed| doDataReq empty. Values for “selfUID” and “selfNick” are arbitrarily

chosen, but constant in every state.

Symbol|| should be read as “do both, maybe in paral- Controllable action methods of the model program
lel". By Sender € U we denote a (potential) partner that are just those which correspond to theap primitives.
sends &DuU to the givencpg, and by the symbof\, the They are attributed as “Action” and given preconditions
symmetric difference of two sets. (formulae in therequires clauses) and postconditions (for-

mulae in theensuresclauses). Notice how preconditions requires uid != selfUID;
and postconditions depend on the current state and therequires msg !'=null;

values of the actual parameters. {}

[Action] IV. EXPERIMENTAL RESULTS

void Join(ConfID newC_onferfence) This section gives a partial report of the performed
requires conference —:nuI'I, _ experimental activities regarding model-based testing of
requires newConference ..=nuII, the Conference Protocol against the Spec # model given
requires partners.ISEmpty; in the previous section by using the Spec Explorer model-
ensuresconference == newConference; based testing tool.

{ conference = newConferencg; '

. A. Test architecture
[Action]

In order to make experimental results sensible, we first
briefly describe the test architecture, i.e., the enviramme
ensuresconference ==null: in which the testing process has been performed. The
ensurespartners.ISEmpty: abstract view of the test .archltecture is shown in Fig.
{ 2. The IUT in our case is there However, as the
methods signatures in the IUT and in the Spec# model
do not match, there is a “wrapper” around the IUT (i.e.,

void Leave()
requires conference !=null;

conference = null;
partners = Map;

} a conformance stub in the terminology used by Spec
] Explorer) providing methods with matching signatures
[Action] that can be bound to the methods in the Spec# model.

void DataRegessagemsq)
requires conference !=null;

{

Spec Explorer

]

Observable action methods are specifically attribute

They are triggered by an implementation wrapper upor /7" Testagent Testagentn
the arrival of a correspondingbu. /—‘ ,7
CPE CPE CPE
[Action(Kind=ActionAttributeKind.Observable)] .
void OnJoinUID uid, ConflD conflD, Nick nick) @ Tj 1
requires uid != selfUID; YO ayer
requires conflD != null;

requires (nick != null)
&& (nick.CompareTo(selfNick) !=0);

(The s -
. L e single cPE governed by Spec Explorer is run
i (cotanD —_—dctinfgri.nce) together with a number of otherPEs (governed by test
partnersfuid] = nick; agents simulating user actions) connected to the same
conference. Test agents (assuming that therenawf

Fig. 2. The test architecture

[Action(Kind=ActionAttributeKind.Observable)] them) are assigned names “TestBotl”, ..., “TestBot
void OnAnswer{JID uid, ConfID confID, Nick nick) and havel/I Ds ranging from2 to n+ 1 (the U1 D value
requires uid != selfUID; 1 is assigned to thepPe governed by Spec Explorer). For
requires conflD != null; simplicity and without much loss of generality we have
requires (nick != null) chosen that test agents together with the IUT exchange
&& (nick.CompareTo(selfNick) 1=0); messages having the same content.
{ Test agents simulate typical user actions; agent’s cycle
if (confID == conference) consists of joining a conference, exchanging few mes-
partners[uid] = nick; sages (if any), and leaving the conference. We distinguish
two types of agents with respect to their periodic behavior
[Action(Kind=ActionAttributeKind.Observable)] — those which have pauses of predetermined duration
void OnLeave{ID uid, ConflD confiD, Nick nick) between single steps of a cycle, and those for which

the pauses were randomized. As the experimental results
will show, the latter behavior produces more chaotic
environment with larger number of states, and, therefore,

requires uid != selfUID;
requires conflD != null;
requires (nick != null)

&& (nick.CompareTo(selfNick) !=0); more difficult to test.
ensuresuid_ notin partners; B. Offline and online testing with a single test agent
{ partners[uid] =none; } It is instructive to compare models (i.e., interface
[Action(Kind=ActionAttributeKind.Observable)] automata) generated by performing the offline test gen-

void OnDatalnd{UID uid, Messagemsg) eration (i.e., by running the transition coverage traversa

algorithm) to the ones obtained by the online testing. In V. CONCLUSIONS
order to ensure models of a size small enough to make

sense to visualize them, we present the case obtained k%ym t:'f p?per, \;vethhavg prfesented;\ c?se lstgdy Of. mo?: -
testing the IUT together with a single test agent. ased testing of the tonierence Frotocol by using the

Fig. 3 shows the model obtained by offline testingSpeC Explorer model-based testing tool. Our first goal

the IUT with a single test agent, while Fig. 4 shows V@S to provide a clear and precise specification of the

the corresponding model obtained by online testing. Thé:onference Protocol |n.the natural Ianguagg and rewrite
ne particular aspect of it in the Spec# modeling language.

former model contains both active and passive state he ai Spect del t d out to be rich h
(denoted by circles and diamonds, respectively) as th € given Specw model tured out 1o be Tich enoug
r performing meaningful model-based testing activities

model program contains observable action methods and, . S
his lead us to our second goal of providing a set

the timeout is nonzero. However, as in online testing the]c . tal its which d b ble t
timeout is neglected (or, equivalently, is a priori set tp 0)o experimental results which wou € comparablé 1o

the later model contains only passive states (i.e., astat existing results on testing the Conference Protocol in the

in the model are denoted by diamonds). In a model havin{iterature (that were obtained by using other model-based

the structure like the one on Fig. 4, a controllable actiones'[Ing |t00|§)' d. thi d i ull
is going to be executed by the conformance engine on% As already noted, this paper does not provide a fu

after observing that no observable actions have occurrecfPeC# model of the Conference Protocol, yet only the
model of thecPE Therefore, the primary continuation of

C. Detection of errors in the IUT the present work would be writing the full Spec# model

of the Conference Protocol. Although we have already

In order to quantitatively measure effectiveness of the, ;e certain progress in this direction, there exist subtie
offline and the online approaqh to model—.based tESt'ngproblems with implementing the new model within the
we have made several mutant implementations ott® o, rent version of the Spec Explorer tool. We hope to
containing deliberate errors and counted the number of yqress further discussion of this topic in a subsequent
steps each testing procedure needed to make in order g&per
detect a conformance error. Table Il contains the dat
obtained for three mutant implementations run together
with a single test agent (the data in the table are average
values obtained through 100 testing runs; the obtainefl] M. Barnett, R. Leino, and W. Schulte, “The Spec# prograngnin

values were not dependant on whether the emploved agent System: An overview”. IrConstruction and Analysis of Safe, Secure,
P ploy 9 and Interoperable Smart Devices: International WorkshGpSSIS

REFERENCES

had predetermined or randomized pauses). 2004, Marseille, France, March 10-14, 2004, Revised Setbct
Papers M. Huisman, Editor, vol. 3362 of LNCS. Springer, 2005,
TABLE I pp. 49-69.
NUMBER OF STEPS NEEDED TO DETECT AN ERROR IN MUTANT [2] A. F. E. Belinfante, J. Feenstra, R. G. de Vries, G. J. Magts,

N. Goga, L. M. G Feijs, S. Mauw and A. W. Heerink, “Formal

IMPLEMENTATIONS OF THE CPE Test Automation: A Simple Experiment”, iRroceedings of IFIP

Offline testing | Online testing # 13th International Workshop on Testing Communicating e3yst
Mutant #1 5 50 Method and ApplicationsKluwer Academic Publishers, 1999, pp.
Mutant #2 5 50 179-196.
Mutant #3 3 10 [3] A. Blass, Y. Gurevich, L. Nachmanson and M. Veanes, “Play
to test”. Technical Report MSR-TR-2005-04, Microsoft Resé,
2005.

[4] L. D. Bousquet, S. Ramangalahy, C. Viho, A. Belinfante dd

D. Perf f th l . ith ltiol G. de Vries, “Formal Test Automation: The Conference Protocol
. Performance of the online testing with multiple test i, TGv/Torx”, in Proceedings of IFIP 13th International Con-

agents ference on Testing of Communicating Systems (TestCom,2000)
. . . . Ural, R. L. Probert and G. von Bochmann, Eds. Kluwer Academic
The final experimental result we report in this paper publishers, 2000, pp. 221-228.
concerns performance of the online testing when multiplgS] C. Campbell, W. Grieskamp, L. Nachmanson, W. Schulte, N.

: : : Tillmann and M. Veanes, “Model-based testing of objectiuee
test agents are present in the testing environment. Its goal reactive systems with Spec Explorer”. Technical Report MR-

is to show scalability of the online testing with respect 2005-59, Microsoft Research, 2005.
to the number of present test agents by measuring thé] Conference Protocol Case Study websitettp://fnt.cs.
number of transitions and states revealed during the onling, UtWente. nl/Conf Case/. . ,

. . f] L. de Alfaro and T. A. Henzinger, “Interface automata”, fo-
testlng_process. Itis easy to see that the overall number ceedings of the 8th European Software Engineering Conderand
states in the model whem test agents are present equals the 9th ACM SIGSOFT Symposium on the Foundations of Software
to 2" + 1. Therefore, the state coverage of the model is_ Engineering ACM Press, 2001, pp. 109-120.

| |+ d h . fth b gf di d 38] C. de Barros Barbosa, L. F. Pires and M. van Sinderen.iera
calculated as the ratio of the number of discovered states works for protocol implementation”, ifProceedings of the 16th
over2™ + 1. Brazilian Symposium on Computer Networks (SBRC'@8jtituto

Table 11l and Table IV summarize the obtained results gfagi?qg‘;tgcgg* ggsi"jg?ade Federal Fluminense, Rio derdanei
for online testing of the IUT with respect to the number of [9] Y. Gurevich, “Evolving Algebras 1993: Lipari Guide”. I8pecifica-

test agents with pauses of predetermined duration between tion and Validation MethodsE. Borger, Editor. Oxford University
single steps, and with randomized pauses, respectively Press. 1995, pp. 9-36.) .

the data in the table are average values obtained throué g1 v. Gurevich, B. Rossman and W. Schulte, Semantic essence
(€ g AsmL". Theoretical Computer Scienceol. 343(3), pp. 370-412,

10 testing runs). 2005.

DataReq("Msg"

'7'ritlala|nd(2, "Msg")

?0nJoin(2, "Conf", "TestBot1")|?OnAnswer(2, "Conf", "T/e§t§o?l§‘?OnLeave(2, "Conf", "TestBot1")

_
?OnDatalnd(2, "MsgD?OnAnswer(Z "Conf", "TestBot1") Leave()
HDataReq(”Msg”)

oin("Conf") S5

—

—— — —
7 ,n\Join(z, "Conf", "TestBotT>?0OnDatalnd(2, "Msg">>?OnAnswer(2, "Conf", "TestBot1")

Leave() —
-

Fig. 3. The model obtained by offline testing the IUT togeth@&hwa single test agent

70nLeave(2, "Conf", "TestBot1") >?0nAnswer(2, "Conf@b@ (2."Msg=>?0nJoin(2, "Conf", "TestBot1")
’ZJoin("Conf

=

’Leave()
v

Leave() POnleave(2, "Conf", "TestBot1 T>?0nDatalnd(2, "Msg")>DataReq("Msg")

\ 70OnJoin(2, "Conf", "Te@?onAnswer(Z,LQ(ﬂJesmOnLeave(Z "Conf", "TestBot1")

~FOnJoin(2, "Conf", "TestBot11>?0nDatalnd(2, "Msg")_>DataReq("Msg"}=?OnAnswer(2, "Conf", "TestBot1")

Fig. 4. The model obtained by online testing the IUT togethi¢h & single test agent

TABLE Il
PERFORMANCE OF THE ONLINE TESTING COMPRISING TEST AGENTS WHTPREDETERMINED PAUSES
After 1000 steps After 10000 steps
Test agents|| # Transitions| # States| State coveragg| # Transitions| # States| State coverage

1 13 3 100% 17 3 100%

2 35 5 100% 44 5 100%

3 57 9 100% 86 9 100%

4 87 17 100% 190 17 100%

5 124 28 85% 292 33 100%

6 138 41 63% 414 59 91%

7 195 59 46% 499 95 74%

8 223 85 33% 844 160 62%

TABLE IV
PERFORMANCE OF THE ONLINE TESTING COMPRISING TEST AGENTS WHTRANDOMIZED PAUSES
After 1000 steps After 10000 steps
Test agents|| # Transitions| # States| State coveragg| # Transitions| # States| State coverage

1 13 3 100% 17 3 100%

2 36 5 100% 46 5 100%

3 73 9 100% 106 9 100%

4 170 17 100% 236 17 100%

5 205 32 97% 453 33 100%

6 428 61 94% 730 65 100%

7 493 112 87% 1255 128 99%

8 575 152 59% 2260 251 97%

9 689 238 46% 3341 447 87%

10 740 262 26% 4707 756 74%

[11] L. Heerink, J. Feenstra and J. Tretmans, “Formal Test Watmn: (in Croatian). Diploma Thesis, Department of Mathematicsyemni

The Conference Protocol withHACT”, in Proceedings of IFIP 13th sity of Zagreb, 2006.
International Conference on Testing of Communicating eyst [14] Spec Explorer website:http://research. m crosoft.
(TestCom 2000Q)H. Ural, R. L. Probert and G. von Bochmann, conm specexpl orer/.
Eds. Kluwer Academic Publishers, 2000, pp. 211-220. [15] TorX website: http://fnt.cs.utwente.nl/tools/

[12] L. Nachmanson, M. Veanes, W. Schulte, N. Tillmann and W. torx/index. htm .
Grieskamp, “Optimal Strategies for Testing NondeterminiStys- [16] M. Veanes, C. Campbell, W. Schulte and N. Tillmann, “Oalin
tems”, in Proceedings of the 2004 ACM SIGSOFT international Testing with Model Programs”, iRroceedings of the 10th European
symposium on Software testing and analysis (ISSTA'BOM Software Engineering Conference held jointly with 13th ACM
Press, 2004, pp. 55-64. SIGSOFT International Symposium on Foundations of Soéwar
[13] V. Novakovic, “Formal Specification and Verification obfBvare” Engineering (FSE’05)ACM Press, 2005, pp. 273-282.

