
Model-based Testing of the Conference Protocol
with Spec Explorer

Matko Botiňcan∗, Vedran Novakovíc∗
∗University of Zagreb, Department of Mathematics, Zagreb, Croatia

{mabotinc,venovako}@math.hr

Abstract— This paper presents a case study of model-
based testing of the Conference Protocol, a simple multicast
chat box protocol reported in [2], [4], [8], [11], [13], with the
model-based testing tool Spec Explorer [14]. Our approach
differs from previous case studies of the Conference Protocol
primary in the choice of the employed modeling language
and the tool for model-based testing. The set of results
provided by this paper aims to be comparable with existing
results on testing the Conference Protocol with other model-
based testing tools. Additionally, the presented data by itself
also gives a novel performance measurement of the Spec
Explorer tool.

I. I NTRODUCTION

Testing refers to activity of executing an implementa-
tion of a software product or its components in order to
expose defects. It is often one of the costliest aspects of
the whole software development process. Despite its im-
portance, it is still not as developed as other engineering
disciplines, and lacks adequate tool support.

The model-based testing is a kind of automated black-
box testing in which the software specification is used as
an oracle for validating correctness of the implementation.
It is one of the most prominent approaches for dealing
with shortcomings of the usual testing methodology.

In model-based testing, tests are generated systemati-
cally from a model of the implementation. Here, a model
is a (not necessarily comprehensive) abstraction of the
actual system from a particular perspective. Models are
typically described by a modeling language — these high-
level programs describe the operational behavior of the
implementation at a chosen level of abstraction.

Spec Explorer [14] is a model-based state exploration
and testing tool for .NET platform developed by the
Foundations of Software Engineering group in Microsoft
Research. It uses Spec# [1] as its primary language
for describing models of the system. Several product
groups in Microsoft use it for testing operating system
components and .NET framework components on a daily
basis.

The Conference Protocol [6] is a simple multicast chat
box protocol which we found interesting and challenging
enough to use as a case study for experimental evalua-
tion of the Spec Explorer model-based testing tool. Our
primary goal is to provide a set of results on testing the
Conference Protocol with Spec Explorer that would be
similar to those on testing the Conference Protocol with
other model-based testing tools.

A. Related work

The Conference Protocol has been used as a case study
for experimental evaluation of TorX [15] — one of the
most influential model-based testing tools developed in
academic community so far. The test scenarios in [2] are
derived from multiple specification languages (namely,
LOTOS, Promela and SDL) and then on-the-fly and batch
tested with TorX. [4] investigates combinations of TGV
for abstract test generation and TorX for test execution.
[11] brings the case study of the Conference protocol with
Phact (Philips Automated Conformance Tester).

B. Our contributions

The main contributions of this paper are as follows: a
rewrite of the informal specification of the Conference
Protocol in more concise and formal terms than its
original specification [8]; a Spec# model of one aspect
of the Conference Protocol (namely, the one seen by the
Conference protocol entities); and experimental results
on model-based testing of our implementation of the
Conference Protocol against the given Spec# model by
using the Spec Explorer model-based testing tool.

The rest of the paper is organized as follows. In Section
II, we give an overview of concepts and underlying
theoretical foundations of model-based testing with Spec
Explorer. Informal description and a partial Spec# model
of the Conference Protocol is presented in Section III.
Section IV reports experimental results of performed
model-based testing activities. Finally, in Section V we
give concluding remarks.

II. M ODEL-BASED TESTING WITHSPECEXPLORER

This section provides an overview of the Spec Explorer
model-based testing tool and its underlying theoretical
foundations. We start by introducing interface automata
and their syntactic representation in Spec Explorer in
form of model programs. The notion of interface automata
turns out to be important for precise formulation of
the conformance relation between the model and the
implementation by means of the alternating simulation.
Moreover, it also serves to describe the test generation in
a unified manner, including both the offline and the online
testing.

A. Interface automata

One way to describe the behavior of reactive systems
(i.e., systems reacting with their environment) is by using
the notion of interface automata [7]. In this setting, both

participants of the model-based testing, the model and the
implementation under test (IUT), are viewed as interface
automata, and the relationship between them is described
by the conformance relation.

The Spec Explorer tool adopted the formalism based
on interface automata [16], and slightly extended it [5] by
giving model programs a more rigorous and concise se-
mantics in terms of abstract state machines [9]. However,
due to page limitation of this paper, we mostly rely on the
exposition [16] based on interface automata, as it requires
less preparatory material, while still being sufficient for
the scope of this paper.

Interface automaton can be defined as an ordered tuple
M = (S, Sinit, Ac, Ao,Γc,Γo, δ) where:

– S is a set of states;
– Sinit ⊆ S is a set of initial states;
– Ac andAo are mutually disjoint sets of controllable

actions and observable actions, respectively; the set
Ac ∪ Ao of all actions is denoted byA;

– Γc : S → P(Ac) andΓo : S → P(Ao) are enabling
functions for controllable and observable actions; in
addition, Γ(s) denotes the setΓc(s) ∪ Γo(s) of all
enabled actions in a states;

– δ : S×A ⇀ S is a transition function mapping a state
s and an actiona enabled in the states (a ∈ Γ(s))
to a target stateδ(s, a).

A state s for which Γ(s) = ∅ is called terminal. A
nonterminal states with Γo(s) = ∅ is called active,
otherwise we call it passive.

The partition of the set of actionsA into controllable
and observable ones serves to distinguish the behavior
that can be controlled from the behavior that can only
be observed. In the context of model-based testing, the
controllable actions are typically triggered by the model
describing operational behavior of the IUT, while the
observable actions are those which are to be observed
about the IUT.

B. Model programs

In the Spec Explorer tool, models of reactive systems
are not specified directly as interface automata, but via
model programs written in high level specification lan-
guage AsmL [10] or Spec# [1]. While AsmL is essentially
based on abstract state machines, and thus requires a basic
understanding of their underlying theoretical concepts for
its proper use, Spec# is a design-by-contract extension
of the mainstream object-oriented imperative language
C#, targeting a possibly larger number of users, that are
acquainted to the “usual” semantics. We use Spec# as a
specification language in this paper.

Every model programP consists of a (finite) setActs

of action methods and a (finite) setVars of state variables.
A state ofP is determined by values of all members in
Vars. Note that depending on the types of state variables,
a model program may have infinitely many states. The
values of variables inVars evolve duringP’s execution
in a way prescribed by action methods. Here each action
methodm (having a sequence of variablesx as its input
parameters) equals to ordinary C# method augmented

with a state dependent boolean predicatePrem(x) rep-
resenting the precondition ofm.

Given a model programP, it defines an interface
automatonM as follows. The setSinit of initial states
of M contains only the initial state ofP, i.e., the set
of initial assignment ofVars members. The setS then
equals to the set of all states reachable fromSinit by the
transition functionδ described further.

An action in M corresponds to an invocation of an
action method inActs with some actual parameters. Let
us denote bym(v)/w an invocation of the action method
m on the input parametersv, combined with the output
parametersw. An action a = m(v)/w is enabled in a
states, i.e., a ∈ Γm(s), if Prem(v) is true ins and the
invocation ofm(v) in s yields the output parametersw.
Given a source states and an actiona = m(v)/w ∈
Γm(s), the transition functionδ maps(s, a) to the target
state of the invocationm(v). Note that the setΓ(s) of all
enabled actions in a states equals

⋃
m∈Acts

Γm(s). The
setA of all actions is then taken to be

⋃
s∈S Γ(s).

C. Test generation

Still, a model programP serves as an operational
contract for the IUT without regard for any particular
purpose. In many cases the corresponding interface au-
tomatonM has too large or even infinite number of states
or actions. In order to generate an interface automaton
with sets of states and actions of manageable size, various
techniques for scenario control have to be employed.
Their purpose is to generate fromP a restricted form of
M, suited for the test goal that wants to be achieved.

The Spec Explorer tool incorporates the following tech-
niques for scenario control: parameter selection (specifies
the set of values for parameters of action methods in
Acts), method restriction (selects a subset of possible ac-
tions inA satisfying a given state-based expression), state
filtering (prunes away all states fromS that fail to satisfy
a given state-based condition), directed search (allows the
user to limit and direct the (otherwise nondeterministic)
traversal of the state spaceS by defining the probability
space of the random variables used for selection; states
and transitions not visited are pruned away), and state
grouping (selects representative states from equivalence
classes defined by state-based expressions).

The process of model-based testing comprises test
generation and test execution. In case when from a given
model program tests are generated in advance with an
aim to achieve some predefined test goal we speak of
offline testing. Here the test execution comes only after-
wards, taking pregenerated test suites and running them
against the IUT in order to find discrepancies between the
IUT behavior and the behavior predicted by the model.
However, it is also possible to combine the test generation
and the test execution into a single process where tests are
generated on-the-fly as the testing advances. This mode
of model-based testing is called online testing.

In both cases, a test suite (or shortly, a test) can be
seen as an interface automaton, sayT , produced by
traversing the interface automatonM in some way.T

is pregenerated in the offline case, while in the online
case it is unfolded dynamically. In general,T may have
additional state variables (e.g. to represent information
about traversals ofM) and the set of actions is equipped
with a new controllable actionObserve (representing the
choice of waiting for an observable action) and a new
observable actionTimeout (representing that no (other
thanTimeout) observable actions have happened). Each
state ofT inherits all properties of the corresponding state
of M, and each transition inT (other thanObserve and
Timeout) corresponds to a transition inM.

In offline testing, a traversal algorithm producesT from
M in advance aiming for a particular test goal — to
reach a state satisfying a given condition, to provide a
full coverage ofM’s state space or to generate random
walks satisfying some probability distribution on the set of
actions. Depending on the presence of observable actions
in M and whetherM is deterministic (i.e., the set of
enabled actions in each state ofM is a singleton set) or
nondeterministic, different traversal algorithms have tobe
employed. In the general case, Spec Explorer incorporates
a variant of Dijkstra’s shortest path algorithm for alter-
nating reachability and a nondeterministic extensions of
the Chinese postman tour algorithm [12]. For generating
tests that optimize the expected cost with respect to action
probabilities, adapted algorithms from Markov decision
process theory are employed [3].

Instead of using pregenerated tests, in online testing
tests are generated on-the-fly as the testing proceeds. This
technique helps to resolve the nondeterministic behavior
(typically arising in testing reactive systems) by avoiding
large pregenerated testsT from M dealing with all
possible responses of the IUT, and taking only a user-
controlled stochastic sample of the state space. The algo-
rithm implemented in Spec Explorer [5], [16] generates
T by unfoldingM nondeterministically. The choices of
observable actions correspond to the observable actions
taking place during the test execution, while the control-
lable actions are selected randomly with respect to the
user-defined action weights.

D. Test execution

The purpose of the test execution is to determine
whether the IUT meets the specification prescribed by the
model the test has been generated from. This is achieved
by checking the conformance relation between the model
and the IUT, where the IUT is seen as a restricted form of
the model. It is noteworthy to mention that in this context,
the IUT is typically a “wrapper” of the actual system
under test (which often happens to be multi-threaded, even
distributed), or perhaps a particular aspect of it.

The behavior of the IUT is formalized through an
interface automaton, sayN , obtained in the same way as
for model programs and having the set of actions extended
with the test actionsObserve and Timeout. Here the
Observe action is the only one leading to states ofN
where observable actions are enabled, while theTimeout
action is triggered after the amount of time determined to
wait for occurrence of an observable action runs out.

The conformance relation is based on the no-
tion of alternating simulation [5], [16]. LetM =
(SM, Sinit

M , Ac
M, Ao

M,Γc
M,Γo

M, δM) be the interface au-
tomaton generated from the model program, andN =
(SN , Sinit

N , Ac
N , Ao

N ,Γc
N ,Γo

N , δN) the interface automa-
ton of the IUT. An alternating simulation fromM to N is
a binary relation< ⊆ SM×SN such that for alls ∈ SM

and t ∈ SN with s < t, the following conditions are
satisfied:

– Γc
M(s) ⊆ Γc

N (t) andΓo
N ⊆ Γo

M;
– For all actionsa ∈ Γo

M(s) ∪ Γc
N (t), it holds

δM(s, a) < δN (t, a).
The intuition behind the two conditions is as follows.

The first condition expresses the controllable-observable
duality between states in the alternating simulation: every
controllable action enabled in the model is also enabled in
the IUT, and conversely, every possible response from the
IUT is also enabled in the model. The second condition
ensures that every step froms that corresponds to a
controllable action enabled in the model or an observable
action enabled in the implementation can be matched by
a step fromt.

A refinement from interface automatonM to interface
automatonN is an alternating simulation< ⊆ SM×SN

from M to N such thatSinit
M × Sinit

N ⊆ <. We say that
M specifiesN , or N conforms toM, if there exists a
refinement fromM to N .

Let us now describe how the Spec Explorer tool
performs checking of the conformance relation. Spec
Explorer stipulates that action methods from the model
program are bound to methods with matching signatures
in the IUT. Therefore, assuming equality of the signatures,
the corresponding actions in interface automataM andN
differ only in their output values (when enabled in both
M andN).

Given a states ∈ SM, a controllable actiona =
m(v)/wM is chosen inM such that for the generated
input parametersv, the preconditionPrem(v) holds in
s. After the method callm(v) has been executed both in
the model and the IUT, and produced output parameters
wM and wN , respectively, the values inwM and wN

are compared for equality. In case whenwM 6= wN , the
actiona is enabled in the model but not in the IUT, which
results in a conformance failure.

On the other hand, an observable action happens im-
promptu on the IUT side. In order to track execution of
observable actions, Spec Explorer instruments the IUT
at the binary level, and the instrumented IUT signals
the Spec Explorer’s conformance engine occurrences of
observable actions. Upon occurrence of an observable
action a = m(v)/wN , Spec Explorer acts as follows.
First, the preconditionPrem(v) is checked in the model
program, and if it does not hold, thena is not enabled
in M and a precondition conformance failure occurs.
Otherwise, the method callm(v) is executed in the model
program, yielding either a conformance failure (if invari-
ant or postcondition does not hold), or output parameters
wM. An unexpected return value conformance failure is
generated ifwM 6= wN .

III. T HE CONFERENCEPROTOCOL

A. Informal description

The Conference Protocol is a simple distributed proto-
col that resembles a multicast chat box. At the highest
level of abstraction, it can be described in the terms
of conferences, partners, and messages. A messageis
just a (possibly empty) sequence of no more than 255
ASCII characters that is communicated among all partners
participating in a given conference. Apotential partneris
an entity (a physical user, i.e., software component acting
on its behalf) that can opt to participate in an existing
conference or to create a new one. There exists a fixed
set (a universumU) of all potential partners. A member
of U participating in some conference will be referred to
as apartner of all other members taking part in the same
conference. Aconferenceis a named dynamic non-empty
set of partners, i.e., each conference is a subset ofU .
Any potential partneru can join any existing conference
(provided that she knows the conference’s name), create
a new one, or leave the one she is currently participating
in at any time. Asu can participate in no more than one
conference simultaneously, all conferences are pairwise
disjoint at any given time, and their union is a subset of
U .

Conferences and partners have names not longer than
10 ASCII characters. When a conference ceases to exist, its
name can be reused to create a new one. Apart from that,
conferences names are unique. Names of the partners in
an arbitrary conference need not be unique, even more,
any partner can change its name when joining another
conference (but not while residing inside a conference).

When a partner sends a message in the conference, it
is distributed to other partners. The Conference Protocol
is not reliable in the sense that it does not guarantee
the messages being delivered nor the relative order of
them being preserved, since its primary goal is to mimic
multicasting over a connectionless network service. How-
ever, messages that do arrive are unchanged and not
misdelivered.

The Conference Protocol specification is refined by
providing interfaces of and defining interactions among
the various protocol entities.

The conference service is accessed by a partner using
Conference Service Access Point (CSAP), which serves as
an interface for the adjoined Conference Protocol Entity
(CPE). Each CSAP exposes the following set of control
and data primitives:

• join(PartnerName,ConferenceName)
• leave()
• datareq(Message)
◦ dataind(PartnerName,Message)

Control primitives arejoin and leave, because they es-
tablish membership of the partner to a given confer-
ence (providing partner’s name), or terminate the active
membership, respectively. The rest are data primitives, of
which datareq sends a message to other partners, while
dataind represents an event triggered upon the arrival of

a message from a partner. That is, messages are received
asynchronously.

All invocations of a given primitive on a singleCSAP

form a sequence. Disregarding their parameters, let them
be noted asprimitiveindex∈N. Let ≺ denote an irreflexive
and transitive relation, such thatp1i ≺ p2j iff the i-th
invocation of a primitivep1 happens strictly before the
j-th invocation of a primitivep2. Every interaction with
a singleCSAP is therefore a partially ordered set(I,≺)
of made invocations (for some≺) which – if non-empty
– must satisfy the following conditions:

(∀i)(∀j 6= i)(∃k)(joini ≺ leavek ≺ joinj),

(∀p ∈ {leave, datareq, dataind})(∀i)(∃j)(∄k)

((joinj ≺ pi) ∧ (joinj ≺ leavek ≺ pi)).

It follows that every such non-empty partial order of
invocations hasjoin0 for the unique≺-minimal element.

The universumU of all potential partners is available
to everyCPEas a sequence of pairs(UID, IPendpoint),
whereUID ∈ N+ andIPendpoint = (Host, Port), for
an IP address ofHost and its UDPPort ≥ 1024. UID
is the unique identifer of a partner (i.e., herCPE), and
all IPendpoints, as network addresses of partners, are
also unique inU . The CPE partitionsU into two disjoint
setsAU andIU of potential partners – those who are also
active partners and those who are not, respectively. At any
time the basic invariantU = AU ⊎ IU must hold, and if
a CPE is in the idle state (i.e., if it is not participating), it
must ensure thatAU = ∅. A CPE also has to maintain a
mappingNames of partners’ addresses to their names.

CPEs generate, send and receive data chunks known as
the Protocol Data Units (PDUs), that are binary represen-
tations of primitive actions:

• JoinPDU informs a potential partner that the sender
is joining the named conference.

• LeavePDU informs a partner that the sender is leav-
ing the conference.

• AnswerPDU informs the recipient that the sender is
participating in the same conference.

• DataPDU conveys a message to another partner.

Every PDU starts with an octet designating thePDU type.
The names of partners and conferences are encoded in 10
octets, without a terminator and left-padded with zeroes:

PDU 1 octet 10 octets 10 octets

Join 01 PartnerName ConferenceName
Leave 02 PartnerName ConferenceName

Answer 03 PartnerName ConferenceName

The messages are represented as Pascal-style strings:

PDU 1 octet 1 octet ≤ 255 octets

Data 04 length data

PDUs are exchanged betweenCPEs over network and
can fit into a single UDP datagram. Communication
facility of a CPE is called Multicasting Protocol Entity
(MCPE), and its interface to the correspondentCPE is
Multicasting Service Access PointMCSAP, which offers
the following primitives:

• send(PDU,User)
• multicast(PDU)
• broadcast(PDU)
◦ receive(PDU,User)

User can be either a partner or a potential partner,
as we shall see later. The first three primitives can
be synchronous (though in our implementation they are
asynchronous), and the fourth is inherently asynchronous.
Multicasting differs from broadcasting in the intended
set of recepients. Multicast primitive sends aPDU to
all members of the associatedCPE’s AU set (i.e., to all
partners), in an unspecified manner (it is implemented
as an iteration throughAU that calls thesend primi-
tive). Broadcast primitive does the same for all potential
partners (universumU). Sending and receiving primitives
intentionally resemblesendtoand recvfromPOSIX oper-
ations on UDP sockets, respectively.

Each CPE maintains its internal state, which can be
classified as eitheridle or active. The classification is
based on the current conference’s name. If it is unde-
fined (null), the state is idle, and it is active otherwise.
Transitions between the two classes of states are governed
by the control primitives invoked. In an idle state there is
no conference aCPE actively participates in, therefore, its
set of partnersAU is empty. A CPE becomes active by
join primitive only, and idle again by executingleave,
as depicted in Fig. 1. At the idle state, all incoming
PDUs are disregarded and there are no outgoingPDUs as
well. All operations in an active state are synchronized
with respect to the entire state. That is, a state can be
updated by at most one operation simultaneously. The
state machine for aCPE, focusing on incomingPDUs
and allowed primitives, is summarized briefly in Table
I. Ramifications are ommited for brevity.

idle
state

active
state

join
leave

Fig. 1. A simple automaton view of state transitions

TABLE I

THE STATE MACHINE FOR A CPE

PDU Idle Active

Answer ignore updatePartners
Join ignore updatePartners‖ answer

Leave ignore updatePartners
Data ignore processDataInd

primitive Idle Active

join doJoin not allowed
leave not allowed doLeave

datareq not allowed doDataReq

Symbol‖ should be read as “do both, maybe in paral-
lel”. By Sender ∈ U we denote a (potential) partner that
sends aPDU to the givenCPE, and by the symbol△, the
symmetric difference of two sets.

updatePartners:
if PDU.ConferenceName == CPE.ConferenceName

then CPE.AU := CPE.AU △ {Sender}

answer:
MCSAP.send(AnswerPDU, Sender)

processDataInd:
if Sender /∈ CPE.AU

then MCSAP.send(JoinPDU, Sender)
CSAP.dataind(CPE.Names [Sender], PDU.data)

doJoin:
set CPE.ConferenceName (becomeActive)
MCSAP.broadcast(JoinPDU)

doLeave:
MCSAP.multicast(LeavePDU)
CPE.AU := ∅
unsetCPE.ConferenceName (becomeIdle)

doDataReq:
MCSAP.multicast(DataPDU)

B. The Spec# model

Our Spec# model focuses on theCPE, emphasizing the
transitions of its internal state and disregarding commu-
nication or user interface parts of an implementation. We
first study types of the state variables, concerning the
ability to restrict their ranges – providing in that way an
upper limit on the cardinality of the set of states of the
model program:

type Name = string where
(value == null) ‖ (value.Length<= 10);

type Message= string! where
value.Length<= 255;

type Nick = Name;
type ConfID = Name;
type UID = int where value > 0;
type PeerList= Map<UID ,Nick>;

Type Name represents the allowed names of conferences
and partners, and is constrained to null-references and
strings of no more than10 characters.Messageis a non-
null type restriction of strings with their length not ex-
ceeding255 characters,UID is a type of positive integers,
and PeerList is a mapping between unique identifiers of
partners and their (possibly undefined) names.

Each state is a valuation of the following variables:

var ConfID conference =null ;
readonly UID selfUID = 1;
readonly Name selfNick = “ConfProt”;
var PeerListpartners = Map{};

Variable “conference” is undefined in the initial state,
and a mapping “partners” (which serves both asAU
and Names constituents of aCPE observed) is initially
empty. Values for “selfUID” and “selfNick” are arbitrarily
chosen, but constant in every state.

Controllable action methods of the model program
are just those which correspond to theCSAP primitives.
They are attributed as “Action” and given preconditions
(formulæ in therequires clauses) and postconditions (for-

mulæ in theensuresclauses). Notice how preconditions
and postconditions depend on the current state and the
values of the actual parameters.

[Action]
void Join(ConfID newConference)

requires conference ==null ;
requires newConference !=null ;
requires partners.IsEmpty;
ensuresconference == newConference;

{ conference = newConference;}

[Action]
void Leave()

requires conference !=null ;
ensuresconference ==null ;
ensurespartners.IsEmpty;

{
conference = null;
partners = Map;

}

[Action]
void DataReq(Messagemsg)

requires conference !=null ;
{}

Observable action methods are specifically attributed.
They are triggered by an implementation wrapper upon
the arrival of a correspondingPDU.

[Action(Kind=ActionAttributeKind.Observable)]
void OnJoin(UID uid, ConfID confID, Nick nick)

requires uid != selfUID;
requires confID != null ;
requires (nick != null)

&& (nick.CompareTo(selfNick) !=0);
{

if (confID == conference)
partners[uid] = nick;

}

[Action(Kind=ActionAttributeKind.Observable)]
void OnAnswer(UID uid, ConfID confID, Nick nick)

requires uid != selfUID;
requires confID != null ;
requires (nick != null)

&& (nick.CompareTo(selfNick) !=0);
{

if (confID == conference)
partners[uid] = nick;

}

[Action(Kind=ActionAttributeKind.Observable)]
void OnLeave(UID uid, ConfID confID, Nick nick)

requires uid != selfUID;
requires confID != null ;
requires (nick != null)

&& (nick.CompareTo(selfNick) !=0);
ensuresuid notin partners;

{ partners[uid] =none; }

[Action(Kind=ActionAttributeKind.Observable)]
void OnDataInd(UID uid, Messagemsg)

requires uid != selfUID;
requires msg != null ;

{}

IV. EXPERIMENTAL RESULTS

This section gives a partial report of the performed
experimental activities regarding model-based testing of
the Conference Protocol against the Spec # model given
in the previous section by using the Spec Explorer model-
based testing tool.

A. Test architecture

In order to make experimental results sensible, we first
briefly describe the test architecture, i.e., the environment
in which the testing process has been performed. The
abstract view of the test architecture is shown in Fig.
2. The IUT in our case is theCPE. However, as the
methods signatures in the IUT and in the Spec# model
do not match, there is a “wrapper” around the IUT (i.e.,
a conformance stub in the terminology used by Spec
Explorer) providing methods with matching signatures
that can be bound to the methods in the Spec# model.

Fig. 2. The test architecture

The single CPE governed by Spec Explorer is run
together with a number of otherCPE’s (governed by test
agents simulating user actions) connected to the same
conference. Test agents (assuming that there aren of
them) are assigned names “TestBot1”, . . . , “TestBotn”
and haveUIDs ranging from2 to n+1 (theUID value
1 is assigned to theCPE governed by Spec Explorer). For
simplicity and without much loss of generality we have
chosen that test agents together with the IUT exchange
messages having the same content.

Test agents simulate typical user actions; agent’s cycle
consists of joining a conference, exchanging few mes-
sages (if any), and leaving the conference. We distinguish
two types of agents with respect to their periodic behavior
— those which have pauses of predetermined duration
between single steps of a cycle, and those for which
the pauses were randomized. As the experimental results
will show, the latter behavior produces more chaotic
environment with larger number of states, and, therefore,
more difficult to test.

B. Offline and online testing with a single test agent

It is instructive to compare models (i.e., interface
automata) generated by performing the offline test gen-
eration (i.e., by running the transition coverage traversal

algorithm) to the ones obtained by the online testing. In
order to ensure models of a size small enough to make
sense to visualize them, we present the case obtained by
testing the IUT together with a single test agent.

Fig. 3 shows the model obtained by offline testing
the IUT with a single test agent, while Fig. 4 shows
the corresponding model obtained by online testing. The
former model contains both active and passive states
(denoted by circles and diamonds, respectively) as the
model program contains observable action methods and
the timeout is nonzero. However, as in online testing the
timeout is neglected (or, equivalently, is a priori set to 0),
the later model contains only passive states (i.e., all states
in the model are denoted by diamonds). In a model having
the structure like the one on Fig. 4, a controllable action
is going to be executed by the conformance engine only
after observing that no observable actions have occurred.

C. Detection of errors in the IUT

In order to quantitatively measure effectiveness of the
offline and the online approach to model-based testing,
we have made several mutant implementations of theCPE

containing deliberate errors and counted the number of
steps each testing procedure needed to make in order to
detect a conformance error. Table II contains the data
obtained for three mutant implementations run together
with a single test agent (the data in the table are average
values obtained through 100 testing runs; the obtained
values were not dependant on whether the employed agent
had predetermined or randomized pauses).

TABLE II

NUMBER OF STEPS NEEDED TO DETECT AN ERROR IN MUTANT

IMPLEMENTATIONS OF THE CPE

Offline testing Online testing #
Mutant #1 5 50
Mutant #2 5 50
Mutant #3 3 10

D. Performance of the online testing with multiple test
agents

The final experimental result we report in this paper
concerns performance of the online testing when multiple
test agents are present in the testing environment. Its goal
is to show scalability of the online testing with respect
to the number of present test agents by measuring the
number of transitions and states revealed during the online
testing process. It is easy to see that the overall number of
states in the model whenn test agents are present equals
to 2n + 1. Therefore, the state coverage of the model is
calculated as the ratio of the number of discovered states
over 2n + 1.

Table III and Table IV summarize the obtained results
for online testing of the IUT with respect to the number of
test agents with pauses of predetermined duration between
single steps, and with randomized pauses, respectively
(the data in the table are average values obtained through
10 testing runs).

V. CONCLUSIONS

In this paper, we have presented a case study of model-
based testing of the Conference Protocol by using the
Spec Explorer model-based testing tool. Our first goal
was to provide a clear and precise specification of the
Conference Protocol in the natural language and rewrite
one particular aspect of it in the Spec# modeling language.
The given Spec# model turned out to be rich enough
for performing meaningful model-based testing activities.
This lead us to our second goal of providing a set
of experimental results which would be comparable to
existing results on testing the Conference Protocol in the
literature (that were obtained by using other model-based
testing tools).

As already noted, this paper does not provide a full
Spec# model of the Conference Protocol, yet only the
model of theCPE. Therefore, the primary continuation of
the present work would be writing the full Spec# model
of the Conference Protocol. Although we have already
made certain progress in this direction, there exist subtle
problems with implementing the new model within the
current version of the Spec Explorer tool. We hope to
address further discussion of this topic in a subsequent
paper.

REFERENCES

[1] M. Barnett, R. Leino, and W. Schulte, “The Spec# programming
system: An overview”. InConstruction and Analysis of Safe, Secure,
and Interoperable Smart Devices: International Workshop,CASSIS
2004, Marseille, France, March 10-14, 2004, Revised Selected
Papers, M. Huisman, Editor, vol. 3362 of LNCS. Springer, 2005,
pp. 49–69.

[2] A. F. E. Belinfante, J. Feenstra, R. G. de Vries, G. J. Tretmans,
N. Goga, L. M. G Feijs, S. Mauw and A. W. Heerink, “Formal
Test Automation: A Simple Experiment.”, inProceedings of IFIP
13th International Workshop on Testing Communicating Systems:
Method and Applications. Kluwer Academic Publishers, 1999, pp.
179–196.

[3] A. Blass, Y. Gurevich, L. Nachmanson and M. Veanes, “Play
to test”. Technical Report MSR-TR-2005-04, Microsoft Research,
2005.

[4] L. D. Bousquet, S. Ramangalahy, C. Viho, A. Belinfante andR.
G. de Vries, “Formal Test Automation: The Conference Protocol
with TGV/TORX”, in Proceedings of IFIP 13th International Con-
ference on Testing of Communicating Systems (TestCom 2000), H.
Ural, R. L. Probert and G. von Bochmann, Eds. Kluwer Academic
Publishers, 2000, pp. 221–228.

[5] C. Campbell, W. Grieskamp, L. Nachmanson, W. Schulte, N.
Tillmann and M. Veanes, “Model-based testing of object-oriented
reactive systems with Spec Explorer”. Technical Report MSR-TR-
2005-59, Microsoft Research, 2005.

[6] Conference Protocol Case Study website:http://fmt.cs.
utwente.nl/ConfCase/.

[7] L. de Alfaro and T. A. Henzinger, “Interface automata”, inPro-
ceedings of the 8th European Software Engineering Conference and
the 9th ACM SIGSOFT Symposium on the Foundations of Software
Engineering, ACM Press, 2001, pp. 109-120.

[8] C. de Barros Barbosa, L. F. Pires and M. van Sinderen. “Frame-
works for protocol implementation”, inProceedings of the 16th
Brazilian Symposium on Computer Networks (SBRC’98), Instituto
de Computacao, Universidade Federal Fluminense, Rio de Janeiro,
Brazil, 1998, pp. 385–403.

[9] Y. Gurevich, “Evolving Algebras 1993: Lipari Guide”. InSpecifica-
tion and Validation Methods, E. Börger, Editor. Oxford University
Press, 1995, pp. 9-36.

[10] Y. Gurevich, B. Rossman and W. Schulte,“Semantic essenceof
AsmL”. Theoretical Computer Science, vol. 343(3), pp. 370–412,
2005.

Fig. 3. The model obtained by offline testing the IUT together with a single test agent

Fig. 4. The model obtained by online testing the IUT together with a single test agent

TABLE III

PERFORMANCE OF THE ONLINE TESTING COMPRISING TEST AGENTS WITH PREDETERMINED PAUSES

After 1000 steps After 10000 steps
Test agents # Transitions # States State coverage # Transitions # States State coverage

1 13 3 100% 17 3 100%
2 35 5 100% 44 5 100%
3 57 9 100% 86 9 100%
4 87 17 100% 190 17 100%
5 124 28 85% 292 33 100%
6 138 41 63% 414 59 91%
7 195 59 46% 499 95 74%
8 223 85 33% 844 160 62%

TABLE IV

PERFORMANCE OF THE ONLINE TESTING COMPRISING TEST AGENTS WITH RANDOMIZED PAUSES

After 1000 steps After 10000 steps
Test agents # Transitions # States State coverage # Transitions # States State coverage

1 13 3 100% 17 3 100%
2 36 5 100% 46 5 100%
3 73 9 100% 106 9 100%
4 170 17 100% 236 17 100%
5 205 32 97% 453 33 100%
6 428 61 94% 730 65 100%
7 493 112 87% 1255 128 99%
8 575 152 59% 2260 251 97%
9 689 238 46% 3341 447 87%
10 740 262 26% 4707 756 74%

[11] L. Heerink, J. Feenstra and J. Tretmans, “Formal Test Automation:
The Conference Protocol with PHACT”, in Proceedings of IFIP 13th
International Conference on Testing of Communicating Systems
(TestCom 2000), H. Ural, R. L. Probert and G. von Bochmann,
Eds. Kluwer Academic Publishers, 2000, pp. 211–220.

[12] L. Nachmanson, M. Veanes, W. Schulte, N. Tillmann and W.
Grieskamp, “Optimal Strategies for Testing NondeterministicSys-
tems”, in Proceedings of the 2004 ACM SIGSOFT international
symposium on Software testing and analysis (ISSTA’04), ACM
Press, 2004, pp. 55-64.

[13] V. Novakovic, “Formal Specification and Verification of Software”

(in Croatian). Diploma Thesis, Department of Mathematics, Univer-
sity of Zagreb, 2006.

[14] Spec Explorer website:http://research.microsoft.
com/specexplorer/.

[15] TorX website: http://fmt.cs.utwente.nl/tools/
torx/index.html.

[16] M. Veanes, C. Campbell, W. Schulte and N. Tillmann, “Online
Testing with Model Programs”, inProceedings of the 10th European
Software Engineering Conference held jointly with 13th ACM
SIGSOFT International Symposium on Foundations of Software
Engineering (FSE’05), ACM Press, 2005, pp. 273-282.

