
Distributed Algorithms:

A Case Study of the Java Memory Model

Matko Botinčan, Paola Glavan, and Davor Runje

University of Zagreb

Abstract. The goal of this paper is to give a mathematically precise
specification of the Java memory model and discuss its interpretation in
the ASM context. We have refactored the original specification in order
to clearly stipulate how it conditions the behavior of the environment.
We show how each thread in a multithreaded Java program can be seen
as an ordinary interactive small-step algorithm, and, consequently, how
the Java program gives rise to a distributed ordinary interactive small-
step ASM. Due to rather relaxed conditions on the environment imposed
by the Java memory model, runs of such ASM may, however, exhibit
behavior that is impossible to be observed in sequentially consistent set-
tings. We hope that notions of run and environment capturing this kind
of behavior will serve as a helpful insight for the theory of distributed
algorithms developed so far.

Keywords: Java memory model, distributed algorithms, abstract state machines

1 Introduction

In order to write correct and efficient multithreaded programs that deal with
the shared memory, a programmer needs a precise notion of the shared memory
semantics. The memory model [1, 2] of a multithreaded programming language
specifies how the actions dealing with objects in a shared memory appear to
execute to the programmer. Essentially, the memory model determines the val-
ues the programmer can expect from reads of a shared variable. Namely, due to
transformations on a program code performed by any of the compiler, the run-
ning environment (i.e. the virtual machine) or the actual hardware the program
is executed on, the actual outcomes of reads in a program may vary drastically
from the one that could intuitively be expected from its program code. The
memory model specifies possible outcomes and as such is indispensable for full
understanding of multithreaded programs semantics.

We note that hardware and software transformations on a program code are
in fact restricted in a way so that they maintain the program’s intra-thread
semantics — a thread, when run in isolation, should behave as if no trans-
formations were performed at all. The problem, however, arises when multiple
threads are run at the same time, since program transformations, although safe
for single-threaded executions, may cause unexpected effects in multi-threaded

settings. The memory model then serves as an essential aid for the programmer
by providing her a guarantee on the worst-case possible scenario.

The Java language specification [9] and recent papers on the Java memory
model (JMM) [13, 14] give a precise specification of the behavior of the shared
memory for multithreaded Java programs. Nevertheless, it still lacks a rigorous
mathematical treatment, and the formalization of the JMM (as well as memory
models in general) attracts attention as a topic of growing interest [8, 15].

Following the original work on the Java memory model [12–14], we lay down
the specification of the JMM in a mathematically precise way aiming to elim-
inate potential ambiguities present in the source. The original specification is
refactored in order to clearly separate the notion of a run of a multithreaded
Java program and the notion of an environment. It allows us to explicitly for-
mulate how the memory model conditions the behavior of the environment, and
what the memory model actually represents in a mathematical sense.

The key part of the JMM specification, however, still remains declarative in
style and it is not evident how to effectively check it on a given environment
of a run of a Java program. Also, we have to note that the specification in this
paper does not include all items that are included in [12–14]. For ease of the
presentation, we only consider actions that actually interact with the shared
memory, thus we omit other actions, in particular, observable actions described
in [12–14] (however, it would be relatively straightforward to include them). We
also leave out semantics of final fields.

Later on, we show how each thread in a multithreaded Java program can
be seen as an ordinary interactive small-step algorithm [4–6], and, consequently,
how the Java program gives rise to a distributed ordinary interactive small-
step ASM [10]. To the best of our knowledge, present ASM papers dealing with
distributed algorithms assume that the communication between agents (that is
performed either via shared memory or via message passing) is accomplished in
a sequentially consistent manner. Due to rather relaxed conditions on the envi-
ronment imposed by the JMM, runs of ASM corresponding to a multithreaded
Java program may, however, exhibit behavior that is impossible to be observed
in sequentially consistent settings. A particular instance of such bizarre behavior
is receiving messages that have not yet been sent.

The main contributions of the paper are therefore twofold:

– We give a mathematically precise specification of the JMM in a way so that
we can clearly stipulate how it conditions the behavior of the environment.

– By giving multithreaded Java programs an interpretation in the ASM con-
text, we come to the notion of a run of a distributed algorithm that reveals
counterintuitive behavior not attributed to distributed algorithms in the lit-
erature so far.

The rest of the paper is organized as follows. Section 2 introduces basic
notions needed for formal treatment of multithreaded Java programs, gives the
definition of a run of such programs, and deals with the notion of its justification.
Different restrictions on justifications give rise to different memory models, which

2

is the topic of Section 3. In Section 4, we put multithreaded Java programs into
the ASM context and deal with the new notion of a distributed run that allows
a more general behavior than when having sequential consistency. The final
Section 5 gives concluding remarks.

2 Basic Notions

2.1 Preliminaries

Let R ⊆ X × X be a binary relation on a set X. Denote with Rτ := {(y, x) ∈
X × X | xRy} the transposition of R, and let I = {(x, x) | x ∈ X} be the
identity relation. We say that R is reflexive if I ⊆ R, R is irreflexive if R ⊆ Ic,
R is symmetric if R ⊆ Rτ , R is antisymmetric if R ∩Rτ ⊆ I and R is transitive
if R2 ⊆ R. Further, R is a partial order if it is reflexive, antisymmetric and
transitive relation; R is a strict partial order if it is irreflexive and transitive. R

is a total order if it is a partial order such that R ∪ Rτ = X × X; R is a strict
total order if it is a strict partial order such that R ∪ Rτ = (X × X) \ I.

Proviso: In the rest of the text, binary relations are often denoted with
α

−→,
for some label α. If

α
−→ is a irreflexive relation, its transitive closure (

α
−→)+ is a

strict partial order which we denote with <α. If
α

−→ is a antisymmetric relation,
its reflexive and transitive closure (

α
−→)∗ is a partial order which we denote by

≤α.

We say that partial orders ≤1 and ≤2 are consistent if for all x and y such
that x ≤1 y and y ≤2 x it follows that x = y (or, in other words, if (≤1 ∪ ≤2)

∗

is a partial order). Strict partial orders <1 and <2 are said to be consistent if
for all x and y, either x 6<1 y or y 6<2 x holds (or, equivalently, if (<1 ∪ <2)

+ is
a strict partial order).

R-chain is a subset of X that is totally ordered by R; a descending R-chain
is a Rτ -chain. Relation R is well-founded if there are no infinite descending R-
chains in X. If R is a strict partial order, we say that a is R-maximal element in
X if a ∈ X and there does not exist b ∈ X such that aRb. The set of R-maximal
elements in X is denoted by maxR(X). In cases when maxR(X) is a singleton
set, we identify it with the unique element it contains.

If R is a (strict) partial order, then (X,R) (or, shortly, just X) is called a
(strictly) partially ordered set. An initial segment of such X is a subset Y ⊆ X

ordered by R such that if a ∈ Y and bRa, then b ∈ Y . We say that X satisfies
the finiteness property if all its initial segments are finite.

2.2 Programs

Let P be a multithreaded Java program that spawns a set of threads Threads.
Each thread in Threads is assigned a program text P ∈ P consisting of a sequence
of statements where each statement gives rise to one or more actions. Since we
are interested in P’s semantics with respect to the memory model, we only deal

3

with actions that actually interact with the shared memory. These are reads
and writes (as well as volatile reads and volatile writes) of shared variables,
and locks and unlocks on shared synchronization objects (monitors) in Monitors.
Additionally, in order to deal with threads’ life times we also consider actions for
creating a thread and joining a thread, in which threads are referred by shared
identifiers in Threads.

The shared memory is abstractly seen as a set of locations Locations, where
each location can take on a value from a set of possible values Values. For
simplicity, we additionally assume that Locations ⊆ Values, as well as that
Monitors ⊆ Values and Threads ⊆ Values. Also, the sets Locations, Monitors

and Threads are mutually disjoint.

2.3 Threads

Each thread t ∈ Threads is associated with a set of states St that the thread can
possibly reside in. A state in St abstracts away the representation of t at a time
instance (typically, it would include values of local variables, the call stack, the
program counter, contents of registers, etc.). A t’s state thus contains only a “lo-
cal” snapshot of the thread; e.g. values of global variables in the shared memory
are not part of t’s state. The sequential intra-thread semantics of Java deter-
mines how the thread steps from one state to another. Nevertheless, since we
only want to track the thread’s interaction with the shared memory, we choose
a level of abstraction such that steps are made just between the states at which
actions interacting with the shared memory take place.

In order to capture the thread’s ignorance of the shared memory behav-
ior, we model the interaction of the thread with objects in the shared memory
through a sequence of queries and replies. In each state, the thread issues a query
from a set of potential queries Queries to the shared memory. The set Queries

is the smallest set containing queries 〈read, l〉, 〈write, l, v〉, 〈volatile read, l〉,
〈volatile write, l, v〉, 〈lock,m〉, 〈unlock,m〉, 〈create thread〉, 〈join, t〉, for
all l ∈ Locations, v ∈ Values, m ∈ Monitors and t ∈ Threads. We write ⊢t

X q if t

issues a query q in a state X.

All queries except the ones having read or write as their first component
are called synchronizing. The queries starting with volatile are called volatile.
We say that queries 〈read, l〉 and 〈volatile read, l〉 are reading l, queries
〈write, l, v〉 and 〈volatile write, l, v〉 are writing v to l, the query 〈lock,m〉
is locking m, the query 〈unlock,m〉 unlocking m, the query 〈create thread〉 is
creating a thread,1 and the query 〈join, t〉 is joining a thread t.

1 Formally, the query 〈create thread〉 should have as a parameter a reference to a
program text that the thread that is to be created will execute. Nevertheless, in
our settings, the program text is immutable and fixed in advance, thus we omit this
parameter for simplicity.

4

The shared memory replies to each issued query either with an element of
Values, or with an automatic ok if the query requires no feedback. More pre-
cisely, each reading query is replied with a v ∈ Values, each query creating a
thread is replied with a t ∈ Threads, and a query of any other kind is replied
with an automatic ok. Let Replies stand for the union Values ∪ {ok}.

Possible runs of a thread t are given by a labeled transition system TSt with

a set of states St and transition relations
(q,r)
−−−→

t
⊆ St ×St, where q ∈ Queries and

r ∈ Replies. The labeled transition system represents the intra-thread semantics
of the thread’s program text at our chosen level of abstraction. If in a state X, the
thread t issues a query q (i.e. if ⊢t

X q holds) and receives r as a reply to the query,
let X ′ be the state the thread steps to according to the intra-thread semantics.

We have in TSt a (q, r)-labeled transition X
(q,r)
−−−→

t
X ′, for each possible reply

r ∈ Replies and the corresponding successor state X ′.
A run segment of a thread t is an alternating sequence r = X0α1X1 . . . αnXn

of states and transition labels in TSt such that Xi
αi−→
t

Xi+1, for all 0 ≤ i < n.

If r begins with t’s initial state and ends with the final state of t, we just call
it a run of t. The projection of r to its transition labels α1 . . . αn is called a
trace segment of t in the former case, and just a trace of t in the latter case,
respectively.

2.4 Run

A run of a multithreaded Java program P captures the inter-thread actions
dealing with the shared memory that have been performed by any of the threads
spawned by P. It is important to note, however, that the run represents only P’s
perception of the execution process, and thus does not include any information on
how the shared memory processed the queries issued to it and how it generated
the replies. From P’s point of view, the interaction with shared memory is seen
just as an interaction with an environment that accepts queries and provides
replies. Later on, we shall define different restrictions on such an environment in
order to capture behaviors respecting different memory models.

Definition 1. A run of P is a tuple (A,Π, T , σ, E ,
po
−→) where:

– A is a set of actions;
– Π assigns a program text Π(a) ∈ P to every action a ∈ A;
– T assigns a thread T (a) ∈ Threads to every action a ∈ A such that actions

of the same thread correspond to the same program text, i.e.:

for all a1, a2 ∈ A, T (a1) = T (a2) =⇒ Π(a1) = Π(a2);

– σ assigns a state in ST (a) to every action a ∈ A;
– E assigns a tuple (q, r) to every action a ∈ A, where q is a query such that

⊢
T (a)
σ(a) q and r is a reply with a value in Replies;

5

– The program order
po
−→ is an irreflexive binary relation on A representing

the successor relation induced by the transition system of each thread,2 i.e.:
for all a1, a2 ∈ A such that σ(ai) = Xi and E(ai) = (qi, ri) (i = 1, 2) we

have a1
po
−→ a2 iff the following holds:

• there exists t ∈ Threads such that T (a1) = T (a2) = t, and

• X1
(q1,r1)
−−−−→

t
X2 and there exists X3 ∈ St such that X2

(q2,r2)
−−−−→

t
X3.

Note that
po
−→ satisfies the finiteness property and that <po= (

po
−→)+ is a strict

total order on the set of actions belonging to the same thread.

The notion of a run as given in Definition 1 does not directly correspond
to the notion of the execution from [12–14]. On the one hand, our definition
additionally incorporates states of each thread since they are inherent to the
intra-thread semantics of a program, and, consequently, to the definition of the
program order. On the other hand, we do not include the synchronization order,
the write-seen function as well as their dependents, since their actual purpose,
as we shall see later on, is to justify well-formedness of a particular run.

Nevertheless, the state parts of a run are intrinsic to programs’ threads and
the environment acts without knowing what state a particular thread resides in.
In order to clearly separate the “environmental” part of the run, we introduce
the notion of an environment of a run by simply ignoring the state parts.

Definition 2. Given a run ̺ = (A,Π, T , σ, E ,
po
−→) of P, the environment of ̺

is the tuple (A,Π, T , E ,
po
−→).

Note, however, that since the environment does not have an insight into the
threads’ states, any partial order on the set of actions could potentially be a
program order of an environment (formally we could define it by inspecting the
order in which the environment has received actions from each thread separately
and then taking the union). Yet, we do not deal with this unnecessary generality
here, since we assume that an environment is defined for a particular run only,
and, thereby respects the program order of the run by the definition.

Given an action a ∈ A, if the query in E(a) is reading, writing, joining thread,
locking or unlocking x, we say that the action a is also reading, writing, joining
thread, locking or unlocking x, respectively. If a is reading from l and its reply
is v, we say that a is reading v from l. If the query in E(a) is creating a thread
and the reply in it is t, we say that a is creating a thread t. If the query in
E(a) is volatile or synchronizing, we also say that the action a is volatile or
synchronizing, respectively.

2 The name “program order” may probably be confusing, since the program order as
it has been defined is not an order. However, we have decided to keep this name (as
well as the names of relations introduced further) in order to be consistent with the
nomenclature in [12–14].

6

2.5 Justification for an environment of a run

The definition of a run of a program P does not include enough information
to see from it how P has actually been executed by the system. The run only
provides what has been perceived by each of P’s threads. From a given run
of P, not only it is not possible to reconstruct the actual execution flow of P,
but it is also not evident whether such run is feasible at all, i.e. whether there
actually exists an environment that would support the run. Here the notion of
environment should be understood in a broader sense than as in Definition 2
— it includes everything outside the scope of a single thread, e.g. the shared
memory behavior, the thread scheduler, etc.

Certain extrinsic components of the environment, however, need to be known
in order to reason about runs of P, and, more particularly, about environments
of runs of P. For memory model issues, it is deemed necessary to know the
total order in which all synchronization actions appear and to know which write
actions caused the values the read actions see. When knowing this information,
we can say that we can justify a particular run of P. The items constituting
the justification, however, do not deal with threads’ states, but only with the
actions the threads have performed, thus, the notion of justification is defined
for an environment of a run.

Definition 3. A justification for an environment (A,Π, T , E ,
po
−→) of a run is

a pair (Θ,
so
−→) with the following properties:

– Θ assigns to each (volatile) read action in A a (volatile) write action in A
such that if Θ(ar) = aw, for some action aw writing v to l, then the action
ar is reading v from l.

– The synchronization order
so
−→ is an irreflexive well-founded relation on the

set of synchronizing actions in A such that:
• <so is a strict total order that is consistent with <po;

in particular, <po |Dom(<so) ⊆<so;
• for each action a such that a is locking m, the number of actions a′ such

that T (a′) 6= T (a), a′ <so a and a′ is locking l equals to the number of
actions a′′ such that T (a′′) 6= T (a), a′′ <so a and a′′ is unlocking l.

3 Memory Models

Given a justification (Θ,
so
−→) for an environment (A,Π, T , E ,

po
−→) of a run, we

define the following two orders:

– The synchronizes-with order
swo
−→ is a restriction of <so that relates roughly

those pairs of actions that are concerned with the same object. It is defined
as the smallest binary relation over the set of synchronizing actions in A
such that:
• if a1 is unlocking l, a2 is locking l, a1 <so a2, then a1

swo
−→ a2;

• if volatile a1 is writing l, volatile a2 is reading l, and a1 <so a2, then
a1

swo
−→ a2;

7

• if a1 is creating a thread t and a2 is the first action performed by t, then
a1

swo
−→ a2;

• if a2 is joining the thread t and a1 is the last action performed by t, then
a1

swo
−→ a2.

– Happens-before order
hbo
−→ is a strict partial order induced by the synchronizes-

with order and the program order:

hbo
−→= (

po
−→ ∪

swo
−→)+.

3.1 Happens-before consistency

The weakest requirement on a justification for an environment of a run is the
happens-before consistency.

Definition 4. A justification (Θ,
so
−→) for an environment η = (A,Π, T , E ,

po
−→)

of a run is happens-before consistent if:

– for each volatile action a such that a is reading l we have:
• it is not the case that a <so Θ(a); and
• there does not exist an volatile action a′ such that a′ is writing to l and

Θ(a) <so a′ <so a.
– for each action a such that a is reading l we have:

• it is not the case that a <hbo Θ(a); and
• there does not exist an action a′ such that a′ is writing to l and Θ(a) <hbo

a′ <hbo a.

Let us denote with Ξ(ar) the set of writing actions that a reading action
ar ∈ A is allowed to observe taking into account the happens-before order.
Namely, if the action ar is reading l, then Ξ(ar) comprise all <hbo-maximal
actions writing to l that do not happen-before after ar, i.e.:

Ξ(ar) = max
<hbo

({aw | aw is writing to l and ¬(ar <hbo aw)})

The second requirement that the happens-before consistency places on an envi-
ronment η can now be rephrased by requiring that for each action a such that a

is reading l, η needs to satisfy Θ(a) ∈ Ξ(a).

3.2 Sequential consistency

Sequential consistency is just a special case of the happens-before consistency in
which all actions occur in a total order (the execution order).

Definition 5. A justification (Θ,
so
−→) for an environment η = (A,Π, T , E ,

po
−→)

of a run is sequentially consistent if:

– η is happens-before consistent; and
– there exists a total order <eo (the execution order) on A consistent with <hbo

such that for each read action a, Θ(a) is <eo-maximal action in Ξ(a), i.e.
Θ(a) = max<eo

(Ξ(a)).

8

3.3 JMM consistency

Although easiest to deal with, sequential consistency gives rise to a memory
model that is too strong to be used as a memory model for Java. It requires
that the total order all actions appear in has to respect the program order,
and thus forbids standard compiler or processor optimizations. On the other
hand, happens-before consistency gives rise to an overly weak memory model
that, although providing undoubtedly necessary guarantees, allows undesirable
behaviors such as appearance of out of thin air values [12–14].

Requirements imposed by JMM lie somewhere strictly between happens-
before consistency and sequential consistency. Its crucial addition to happens-
before consistency is elimination of self-justifying speculative writes, so called
causal loops. The approach to causality taken by authors of [12–14] is based on
reasoning that an action should be allowed to happen if its occurrence is not
dependent on an action reading a value from a data race. Namely, it is perfectly
legal that in the actual execution of a program a write action can occur earlier
than it appears in the program order. That write action, however, must have
been able to appear in the execution without requiring that some read action
gets its value via a data race. Yet, as it turns out, such causality requirement
is not easy to formally define. Due to page limitation we lay out the definition
capturing this notion without much explanation. For the actual motivation and
the intuition behind its conditions we refer the reader to a thorough discussion
in [13].

Justifying an environment (A,Π, T , E ,
po
−→) of a run with a JMM consistent

justification is an iterative process. Sets of actions from A are committed step-
wise so that in each step there exists a happens-before consistent justification
comprising (at least) committed actions which additionally respects the causality
introduced by steps.

Definition 6. A justification (Θ,
so
−→) for an environment η = (A,Π, T , E ,

po
−→)

of a run is JMM consistent if there exists a sequence of actions (Ci)i≥0 (called
committed actions) such that:

– C0 = ∅;
– for each i ≥ 0, we have Ci ⊂ Ci+1;
– A =

⋃
i≥0 Ci;

– (Ci)i≥0 is a finite sequence iff A is finite;

and a sequence of happens-before consistent justifications (Θi,
soi−→)i≥1 of envi-

ronments ηi = (Ai,Πi, Ti, Ei,
poi

−→)i≥1 satisfying the following conditions:3

– each action in Ci corresponds to an action in Ai, i.e. Ci ⊆ Ai;

3 Unlike in [12–14], our definition of JMM consistency includes neither the condition
for so called sufficient synchronizes-with relation (since it is not needed for the JMM
specification), nor the condition for external actions (since we only deal with actions
that interact with the shared memory).

9

– actions in Ci are ordered in ηi by the same synchronization order and happens-

before order as in η, i.e.
soi−→ |Ci

=
so
−→ |Ci

and
hboi−→ |Ci

=
hbo
−→ |Ci

;
– read actions in Ci−1 need to see the same write actions in ηi as in η, i.e.

Θi|Ci−1
= Θ|Ci−1

;
– each read action ar ∈ A\Ci−1 sees a write action that happens-before it, i.e.

Θi(ar) <hboi
ar;

– each read action ar ∈ Ci \ Ci−1 sees (not necessarily the same) writes from
Ci−1 in ηi and η, i.e. Θi(ar) ∈ Ci−1 and Θ(ar) ∈ Ci−1.

3.4 Definition of memory models

We transfer the notions of consistency of justifications to consistency of environ-
ments in a natural way.

Definition 7. An environment of a run is sequentially (happens-before, JMM)
consistent if there exists a sequentially (happens-before, JMM) consistent justi-
fication for it.

At last, we define a memory model as a set of all environments (each cor-
responding to some run) that satisfy the consistency property of interest. In
particular, we have the following definition.

Definition 8 (Memory models).

– Sequentially consistent memory model is the set {η | η is a sequentially
consistent environment for some run};

– Happens-before memory model model is the set {η | η is a happens-before
consistent environment for some run}

– Java memory model is the set {η | η is a JMM consistent environment for
some run}.

The memory model can thus be seen as a contract that gives to a program a
guarantee on behavior of its environment — a behavior of the environment that
is in accordance with the memory model will be permitted, while all undesired
behaviors will be disallowed.

4 Relations to Abstract State Machines

In order to keep the model as close as possible to the original model [12–14],
we minimized explicit references to ASMs in our exposition so far. However, the
model we just defined is an ASM model. We will make this claim precise in the
current section.

The main contributions of the paper with respect to the ASMs are the fol-
lowing:

– This is one of the first practical applications of the recently developed theory
of interactive algorithms [4–6].

10

– We have extended the notion of distributed computation from the Lipari
guide [10] in two directions:

1. The notion of distributed run is defined with ordinary interactive small-
step algorithms acting as agents. Such extension is natural and not par-
ticulary difficult. One can find an implicit justification for it in the Lipari
guide:

”We do not suppose that agents are deterministic or do only a
bounded amount of work at each step.”

2. We further generalized the new notion of a distributed run by replacing
the coherence condition by more general requirements on environment
behavior such that different requirements corresponds to different mem-
ory models. As a consequence of this generalization, a distributed run
does not have to be sequentially consistent. This is the first model not
requiring sequential consistency in the ASM literature known to us.

We briefly remind the reader of previously written papers and a book that
relate Java and ASM.

Börger and Schulte in [7], and Stärk, Schmid and Börger in the book [16]
define precise semantical description of the Java language using ASMs. They
also verify that compilation of the Java language to the JVM code is correct, by
describing a hierarchy of natural sublanguages from Java to JVM and using re-
finement techniques in order to relate the models. The paper covers the language
features for concurrency, but its focus is on the high-level language aspects. The
former Java language specification contained a (erroneous) memory model def-
inition (although not explicitly referred to as such in the text), however, the
paper does not deal with issues related to this memory model.

Gurevich, Schulte and Wallace in [11] present the concurrent features of Java
using imperative, ASM approach. They follow the earlier version of the Java
Language specification manual [9]. The paper covers all aspects of Java threads
and synchronization, gradually adding the details to the model and obtains a
lower-level concurrency model. The paper presents a clear understanding of the
Java concurrency model and discusses its consequences.

Awhad and Wallace in [3] formalize using ASMs the two memory models that
have been proposed as replacements for the previously erroneous JMM. They
develop a unified representation of them and relate the proposed Java memory
models to the so called Location Consistency memory model and to each other.

4.1 Threads as ordinary interactive small-step algorithms

Execution of multithreaded Java programs can be viewed as a distributed compu-
tation, where threads are concurrently running sequential agents communicating
through a shared global memory. Communication between threads, and between
a thread and the virtual machine, is ordinary in the sense of [6]: thread issues
a query in a state, waits for a reply, and then computes the next state using no
information from the environment other than the reply it received. Existence of
a bound on the amount of work performed between two queries is not important

11

for modeling of memory models, but we claim there is only so much a thread
can do without reading or writing a value to the shared memory. It is easy to
see that threads satisfy postulates from [4–6], i.e. they

1. proceed in discrete global steps;

2. preform only a bounded amount of work in each step;

3. use only such information from the environment as can be regarded as an-
swers to queries; and

4. never complete a step until all queries from that step have been answered,

and therefore are ordinary interactive small-step algorithms. More precisely,

– The (abstract) vocabulary of a thread t is determined by its associated Java
program Π(a), where a is any of its action. States of a thread can be rep-
resented by first order structures of a fixed vocabulary. A sceptical reader is
referred to a wide experience of modeling Java with ASMs [7, 11, 16].

– The finite set of labels Λ used for queries is:

Λ = { read, write, volatile read, volatile write, lock, unlock,

create thread, join}.

– The causality relation ∅ ⊢
T (a)
σ(a) q of a thread t, where a ranges over all actions

of t, was already made explicit. It is a special kind of a causality relation:
in each state, exactly one query is issued. This is simply our design choice
determined by our primary interest — the study of memory models — but
it is not the only one. E.g. we could make a single step of a thread for
each statement in the original Java program. Appropriate causality relations
would potentially be more complex, reflecting numerous reads and writes to
shared memory in a single step at such level of abstraction. Although this
generalization is straightforward, it would complicate our definition with
details unnecessary for our purposes.

– The communication among threads and the environment’s interactions with
threads, are modeled by sequences of query-reply pairs. Query-reply pairs
model the the interaction of threads with objects in shared memory. The
answer function α, mapping a query q to a reply r, represents the interaction
with an environment and is defined as follows: E assigns (q, r) to every action
a ∈ A, where q is a query issued in action a in accordance with the causality

relation of T (a) in state σ(a): ∅ ⊢
T (a)
σ(a) q, and r is a reply with a value in

Replies.

– Transitions between states are modeled by TSt: for each possible query-

reply pair (q, r) and X, the (q, r)-labeled transition X
(q,r)
−−−→

t
X ′ gives the

corresponding successor state X ′. This is nothing more than rephrasing the

standard definition of a transition function from [6]: if a
po
−→ a′, ∅ ⊢

T (a)
σ(a) q, α is

a function assigning r to q, and σ(a)
(q,r)
−−−→

t
σ(a′), then σ(a′) = τT (a)(σ(a′), α).

12

Note that, contrary to the Lipari guide [10], we do not have a global memory,
and local states of our threads (ASM agents) are not local views of the global
memory - i.e. they are not V iewa(S) reducts of global state S to local agents’
vocabulary. Also, by implicit assumption of the Java language specification, pro-
gram P is finite, and also there are only finitely many threads in each execution
of a multithreaded Java program.

4.2 Multithreaded Java programs as distributed ordinary
interactive small-step ASMs

The notion of a distributed run in the ASM context has first been defined in
the Lipari guide [10] for a particular type of ASMs called the distributed ASMs
(DASMs). DASM, as defined in [10], consists of a finite set of single-agent pro-
grams, each executing at its own pace and eventually communicating through
the global memory. The definition also includes the vocabulary comprising vo-
cabularies of each agent’s program, and the corresponding set of states. The
definition, however, does not presuppose that an agent has to be represented by
a particular kind of ASM — any one known at the time of the writing of [10]
(namely, either a non-interactive small-step or a wide-step ASM) is allowed to be
taken. One can also reason about sequential, quasi-sequential or, most generally,
partially-ordered runs of such DASMs.

A partially ordered run of a DASM consists of a partially ordered set of moves
(representing actions performed by each of the agents) satisfying the finiteness
property, and such that the moves of any single agent are totally ordered. Fur-
ther, there exists a function ς assigning a state to the empty set of moves and to
each finite initial segment of moves. The function ς has to satisfy the coherence
condition requiring that if x is a maximal element in a finite initial segment X

of the set of moves and Y = X \ {x}, then x is a move of the agent it is assigned
to, and the state ς(X) is obtained from the state ς(Y) by performing x at ς(Y).

The coherence condition asserts that actions in a partially ordered run that
do not affect one another may be ordered in any possible way, while those that
do (e.g. due to performing updates to the same location or one performing an
update dependent on a condition that is changed by another) have to be totally
ordered with respect to one another. In particular, the coherence condition im-
plies that the view on the global memory in each of the actions in a partially
ordered run is sequentially consistent.

Each thread in a multithreaded Java program is an ordinary interactive small-
step algorithm represented by an ordinary interactive small-step ASM. Although
not covered by the original definition of a DASM, we consider it plausible to use
such interactive ASMs for representing DASM’s agents. The exposition in [4]
explaining relationship between query templates and external function symbols
might serve as a preliminary justification. A more elaborate treatment of this
issue will, however, have to be provided elsewhere.

In this way, each multithreaded Java program gives rise to a distributed ordi-
nary interactive small-step ASM. Since by the requirements of the Java memory

13

model we do not have a sequentially consistent global memory any more, the
original notion of a partially ordered run of a DASM from [10] does not suffice. As
explained earlier, in order to capture the shared memory behavior, the commu-
nication between agents is modeled by query-reply pairs, thus the environment
providing replies to queries becomes an essential part of the run.

The definition of a run of a distributed ordinary interactive small-step ASM
(henceforth called a distributed run) that we propose is the definition of a run
of a multithreaded Java program as stated in Definition 1. It is not difficult to
rephrase Definition 1 by using the terminology of [10], and one would come out
with a definition that requires all but the last of the conditions in a definition
of a partially ordered run of a DASM from [10] to be satisfied. The coherence
condition, on the other hand, has to be expressed as a consistency requirement
on a justification of an environment of a run.

Viewed from the perspective that the coherence condition reflects sequential
consistency of the shared memory, this additional requirement is indeed a restric-
tion of the environment. In this particular case, a justification of an environment
of a run that is consistent with a coherence condition would be defined as a jus-
tification that does not introduce any new components in addition to those of
a run, and satisfies the consistency requirement placed on the run. Therefore,
by accepting this way of phrasing, our distributed run generalizes the original
notion of a partially ordered run of a DASM from [10].

5 Conclusions and Future Work

Two main issues that we have dealt with in this paper are a mathematically
precise specification of the Java memory model and analysis of its implications
when multithreaded Java programs are put into the ASM context.

The crucial problem with the JMM specification is that its declarative for-
mulation is hard to check effectively. Namely, we only specify conditions that a
JMM-consistent environment of a run of a Java program needs to satisfy, how-
ever, we do not provide any practical algorithm for checking them. It is the
subject of our future work to try to simplify the original definition as much as
possible and to deal with its algorithmic applications.

The interpretation of multithreaded Java programs as distributed ordinary
interactive small-step ASMs may be considered fairly straightforward. Never-
theless, the potential behavior of such ASMs is not captured by the theory of
distributed algorithms developed so far, and thus, in our opinion, deserves fur-
ther attention. We hope that the notions of an environment and a run introduced
in this paper will give a helpful insight into considerations that will possibly have
to be taken into account in some more general theory of distributed algorithms
that yet has to be developed.

References

1. Sarita V. Adve and Kourosh Gharachorloo. Shared memory consistency models:
A tutorial. IEEE Computer, 29(12):66–76, 1996.

14

2. Sarita V. Adve, Vijay S. Pai, and Parthasarathy Ranganathan. Recent advances in
memory consistency models for hardware shared-memory systems. Proceedings of
the IEEE, special issue on distributed shared-memory, 87(3):445–455, March 1999.

3. Varsha Awhad and Charles Wallace. A unified formal specification and analysis of
the new java memory models. In Abstract State Machines, volume 2589 of Lecture
Notes in Computer Science, pages 166–185. Springer, 2003.

4. Andreas Blass and Yuri Gurevich. Ordinary interactive small-step algorithms, II.
To appear in ACM Transactions on Computational Logic.

5. Andreas Blass and Yuri Gurevich. Ordinary interactive small-step algorithms, III.
To appear in ACM Transactions on Computational Logic.

6. Andreas Blass and Yuri Gurevich. Ordinary interactive small-step algorithms, I.
ACM Transactions on Computational Logic, 7(2):363–419, 2006.

7. E. Börger and W. Schulte. Programmer friendly modular definition of the semantics
of Java. In J. Alves-Foss, editor, Formal Syntax and Semantics of Java, volume
1523 of Lecture Notes in Computer Science. Springer-Verlag, 1998.

8. Pietro Cenciarelli, Alexander Knapp, and Eleonora Sibilio. The Java memory
model: Operationally, denotationally, axiomatically. In Proceedings of the 16th
European Symposium on Programming (ESOP’07), 2007.

9. James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language Spec-
ification, Third Edition. Addison-Wesley, 2005.

10. Y. Gurevich. Evolving algebras 1993: Lipari Guide. In E. Börger, editor, Specifi-
cation and Validation Methods, pages 9–36. Oxford University Press, 1995.

11. Y. Gurevich, W. Schulte, and C. Wallace. Investigating Java concurrency using
Abstract State Machines. In Y. Gurevich, P. Kutter, M. Odersky, and L. Thiele,
editors, Abstract State Machines: Theory and Applications, volume 1912 of Lecture
Notes in Computer Science, pages 151–176. Springer-Verlag, 2000.

12. Jeremy Manson. The Java memory model. PhD thesis, University of Maryland,
College Park, 2004.

13. Jeremy Manson, William Pugh, and Sarita V. Adve. The Java memory model
(expanded version). Submitted to ACM Transactions on Programming Languages
and Systems.

14. Jeremy Manson, William Pugh, and Sarita V. Adve. The Java memory model.
In Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL’05), pages 378–391. ACM Press, 2005.

15. Vijay A. Saraswat, Radha Jagadeesan, Maged Michael, and Christoph von Praun.
A theory of memory models. In Proceedings of the 12th ACM SIGPLAN symposium
on Principles and practice of parallel programming (PPoPP’07), pages 161–172.
ACM Press, 2007.

16. R. F. Stärk, J. Schmid, and E. Börger. Java and the Java Virtual Machine: Defi-
nition, Verification, Validation. Springer-Verlag, 2001.

15

