English Hrvatski

Slaven Kožić

Associate Professor
Department of Mathematics
Faculty of Science
University of Zagreb
Bijenička cesta 30
10000 Zagreb, Croatia
E-mail: kslaven@math.hr

Research Teaching CV

Research interests

My research interests are in the areas of quantum groups, infinite dimensional Lie algebras and vertex algebras.

Research grants

Editorial boards

Papers and preprints

  1. L. Bagnoli, S. Kožić, Associating deformed phi-coordinated modules for the quantum affine vertex algebra with orthogonal twisted h-Yangians, arXiv:2407.00515 [math.QA].
  2. L. Bagnoli, S. Kožić, Deformed quantum vertex algebra modules associated with braidings, arXiv:2405.04137 [math.QA].
  3. M. Butorac, S. Kožić, A. Meurman, M. Primc, Lepowsky's and Wakimoto's product formulas for the affine Lie algebras Cl(1), J. Algebra 660 (2024), 147-189; arXiv:2403.05456 [math.RT].
  4. L. Bagnoli, S. Kožić, A note on the quantum Berezinian for the double Yangian of the Lie superalgebra glm|n, arXiv:2402.00487 [math.RT].
  5. L. Bagnoli, S. Kožić, Double Yangian and reflection algebras of the Lie superalgebra glm|n, Commun. Contemp. Math. 27, No. 02 (2025), 2450007, (25 pages); arXiv:2311.02410 [math.QA].
  6. L. Bagnoli, S. Kožić, Yangian deformations of S-commutative quantum vertex algebras and Bethe subalgebras, Transform. Groups (2024), https://doi.org/10.1007/s00031-023-09837-w; arXiv:2307.03112 [math.QA].
  7. M. Butorac, N. Jing, S. Kožić, F. Yang, Semi-infinite construction for the double Yangian of type A1(1), J. Algebra 638 (2024), 465-487; arXiv:2301.04732 [math.QA].
  8. M. Butorac, S. Kožić, Combinatorial bases of standard modules of twisted affine Lie algebras in types A2l-1(2) and Dl+1(2): rectangular highest weights, Comm. Algebra 51 (2023), 4012-4032; arXiv:2211.05171 [math.RT].
  9. S. Kožić, M. Sertić, A note on constructing quasi modules for quantum vertex algebras from twisted Yangians, Algebr. Represent. Theory 27 (2024), 363-380; arXiv:2210.12510 [math.QA].
  10. S. Kožić, On the h-adic quantum vertex algebras associated with Hecke symmetries, Comm. Math. Phys. 397 (2023), 607-634; arXiv:2202.08190 [math.QA].
  11. S. Kožić, h-adic quantum vertex algebras in types B, C, D and their phi-coordinated modules, J. Phys. A: Math. Theor. 54 (2021) 485202 (27pp); arXiv:2107.10184 [math.QA].
  12. M. Butorac, S. Kožić, On the Heisenberg algebra associated with the rational R-matrix, J. Math. Phys. 63 (2022) 011701 (23pp); arXiv:2106.03154 [math.QA].
  13. M. Butorac, S. Kožić, Principal subspaces for the quantum affine vertex algebra in type A1(1), J. Pure Appl. Algebra 226 (2022) 106973 (14pp); arXiv:2011.13072 [math.QA].
  14. M. Butorac, S. Kožić, M. Primc, Parafermionic bases of standard modules for affine Lie algebras, Math. Z. 298 (2021), 1003-1032; arXiv:2002.00435 [math.QA].
  15. S. Kožić, On the quantum affine vertex algebra associated with trigonometric R-matrix, Selecta Math. (N.S.) 27 (2021) 45 (49 pages); arXiv:1908.06517 [math.QA].
  16. M. Butorac, N. Jing, S. Kožić, h-Adic quantum vertex algebras associated with rational R-matrix in types B, C and D, Lett. Math. Phys. 109 (2019), 2439-2471; arXiv:1904.03771 [math.QA].
  17. M. Butorac, S. Kožić, Principal subspaces for the affine Lie algebras in types D, E and F, J. Algebraic Combin. 56 (2022), 1063-1096; arXiv:1902.10794 [math.QA].
  18. S. Kožić, Quantum current algebras associated with rational R-matrix, Adv. Math. 351 (2019), 1072-1104; arXiv:1801.03543 [math.QA].
  19. S. Kožić, Quasi modules for the quantum affine vertex algebra in type A, Comm. Math. Phys. 365 (2019), 1049-1078; arXiv:1707.09542 [math.QA].
  20. S. Kožić, Commutative operators for double Yangian DY(sln), Glas. Mat. Ser. III Vol. 53, No. 1 (2018), 97-113.
  21. S. Kožić, Principal subspaces for double Yangian DY(sl2), J. Lie Theory 28 (2018), No. 3, 673-694.
  22. S. Kožić, A. Molev, Center of the quantum affine vertex algebra associated with trigonometric R-matrix, J. Phys. A: Math. Theor. 50 (2017) 325201 (21pp); arXiv:1611.06700 [math.QA].
  23. S. Kožić, Higher level vertex operators for Uq(ŝl2), Selecta Math. (N.S.) 23 (2017), 2397-2436; arXiv:1603.09068 [math.QA].
  24. N. Jing, S. Kožić, A. Molev, F. Yang, Center of the quantum affine vertex algebra in type A, J. Algebra 496 (2018), 138-186; arXiv:1603.00237 [math.QA].
  25. S. Kožić, Vertex operators and principal subspaces of level one for Uq(ŝl2), J. Algebra 455 (2016), 251-290; arXiv:1508.07658 [math.QA].
  26. S. Kožić, A note on the zeroth products of Frenkel-Jing operators, J. Algebra Appl. Vol. 16, No. 3 (2017) 1750053 (25 pages); arXiv:1506.00050 [math.QA].
  27. S. Kožić, M. Primc, Quasi-particles in the principal picture of ŝl2 and Rogers-Ramanujan-type identities, Commun. Contemp. Math. Vol. 20, No. 05 (2018) 1750073 (37 pages); arXiv:1406.1924 [math.QA].
  28. S. Kožić, Principal subspaces for quantum affine algebra Uq(An(1)), J. Pure Appl. Algebra 218 (2014), 2119-2148; arXiv:1306.3712 [math.QA].

Conferences and workshops