Logika, skupovi i diskretna matematika

Exercise 7

The assignments are due to 23.01.2006.

Tutorial 7.1

- 1. The population of Utopia increases 5% per year. In 2000 the population was 10000. What was the population in 1970?
- 2. Solve the recurrence relation $S_n = 6S_{n-1} 8S_{n-2}$ with $S_1 = 1$ and $S_2 = 0$.
- 3. Solve the recurrence relation $S_n = 7S_{n-1} 10S_{n-2}$ with $S_1 = 5$ and $S_2 = 16$.
- 4. Consider the sequence S_1, S_2, \ldots where S_n denotes the number of *n*-bit strings that do not contain the pattern 00.
 - (a) Find a recurrence relation and initial conditions for the sequence $\{S_n\}$.
 - (b) Show that $S_n = f_{n+2}$, n = 1, 2, ..., where f denotes the Fibonacci sequence.
 - (c) By considering the number of n-bit strings with exactly i 0's, show that

$$f_{n+2} = \sum_{i=0}^{\lfloor (n+1)/2 \rfloor} {n+1-i \choose i}, \quad n = 1, 2, \dots$$

Tutorial 7.2

- 1. Construct sequences and patterns for which the number of comparisons needed by Algorithm 7.4 in the lecture notes grows proportionally with (n m + 1)m.
- 2. How many iterations does the Euclidean algorithm require for two consecutive Fibonacci numbers? It can be proven that this is the worst-case input for the Euclidean algorithm. Derive an asymptotic upper bound for the time needed by the Euclidean algorithm.
- 3. Show that $n! = \Theta(n^n)$ and $1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} = \Theta(\log n)$.

Homework assignment 7.1

- 1. Assume that a person invests \$3000 at 12 percent annual interest compounded *quarterly*. How long will it take to double the initial investment? How long will it take to double the investment if the interest is compounded *yearly*?
- 2. Solve the recurrence relation $S_n = 2S_{n-1} + 8S_{n-2}$ with $S_1 = 4$ and $S_2 = 10$.
- 3. Solve the recurrence relation $2S_n = 7S_{n-1} 3S_{n-2}$ with $S_1 = 1$ and $S_2 = 1$.
- 4. Consider the sequence S_1, S_2, \ldots where S_n denotes the number of *n*-bit strings that do not contain the pattern 010.
 - (a) Compute S_1, S_2, S_3 , and S_4 .
 - (b) By considering the number of n-bit strings that do not contain the pattern 010 and
 - i. have no leading 0's (i.e., begin with 1);
 - ii. have one leading 0 (i.e., begin with 01);
 - iii. have two leading 0's; and so on,

derive the recurrence relation

$$S_n = S_{n-1} + S_{n-3} + S_{n-4} + S_{n-5} + \dots + S_1 + 3.$$
(1)

(c) By replacing n by n-1 in (1), write a formula for S_{n-1} . Subtract the formula for S_{n-1} from the formula for S_n and use the result to derive a short recurrence relation.

Homework assignment 7.2

- 1. Write an algorithm that returns the largest and the second-largest values in a sequence s_1, \ldots, s_n . Assume that n > 1 and that the values in the sequence are distinct.
- 2. Find a function g(n) of the form A^B such that $\binom{n}{3} = O(g(n))$.
- 3. Consider the following algorithm:

```
Input: m, u (both integers)
Output: power

q = m
bot = 1
top = u
while q > 0 {
    if (q mod 2 == 1)
        bot = top*bot
    top = top*top
    q = q / 2 // integer division
}
power = bot
```

- (a) What does this algorithm compute?
- (b) What is the complexity of the algorithm with respect to the number of decimal digits of m?

Homework assignment 7.3

Get familiar with trees and sorting by reading the material handed out in the lectures (pages 193–199). Solve Exercise 16.2, parts 1–4, on page 199.

7 points

6 points

7 points