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Chapter 1

Sets and Functions

1.1 Basic definitions and properties of sets

A set is a well-defined collection of objects (called elements of the set) considered
as a whole. A set may be described in words, for example:

A is the set of the four largest Croatian towns.
B is the set of all primes.

A set can also be defined by explicitly listing its elements between braces (also called
curly brackets), for example:

C=1{4,2,1,3},

D = {Zagreb, Split, Rijeka, Osijek}.
Two different descriptions may define the same set. For example, for the sets defined
above, A and D are identical, since they have precisely the same members. The
notation A = D is used to express this equality. Set identity does not depend on
the order in which the elements are listed. For example, {4,2,1,3} = {1,2,3,4}.
Repeated elements are ignored, e.g., {4,2,1,3} = {1,4,2,1,3,3}. A third way to
define sets is to include all elements from a universal set X that satisfy certain
properties, {x € X : x satisfies properties}. For example,

E={x € A: xis a coastal town}.

Here, € A is used to denote that = is an element of A. Otherwise, if z is not an
element of A, z & A. The set which contains no element is called the empty set and
is denoted by 0.

The five most important sets in mathematics are:

N = the set of all natural numbers, N={1,2,3,... };

Z = the set of all integers, Z ={...,—2,-1,0,1,2,... };

Q = the set of all rational numbers, Q = {q¢: ¢=a/b,a € Z,b € N};
R = the set of all real numbers;

C = the set of all complex numbers, C ={z: z =z +iy,z € R,y € R}, where i is
the imaginary unit defined by the relationship i = —1.

set
skup

prime
prim broj

universal set
univerzalni skup

empty set
prazan skup

1>

natural number
prirodan broj

1>

integer
cijeli broj

1>

imaginary unit
imaginara jedinica




subset
podskup

proper subset
pravi podskup

intersection
presjek

1>

set theoretic difference
razlika skupova

1>

disjoint
disjunktan
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AUB ANB

A\ B AAB

BN

Figure 1.1. Venn diagrams of set operations.

If every element of a set B is also an element of A then B is called a subset of A.
This is denoted by B C A. If additionally A # B (i.e., there is at least one element
in A which is not an element of B) then B is called a proper subset of A and we
write B C A. For the number sets defined above, we have NCZ C QC R C Z.

Given two sets A and B, both subsets of a universal set X, the following
operations can be defined:

union: AUB ={zx € X: z € Aorx € B};

intersection: ANB ={rx € X: x € A and z € B};

difference: A\B ={zx € X : v € Aand z & B};

symmetric difference: AAB = {x € X : either x € A or x € B};
complement: A ={x € X : v ¢ A}.

Venn diagrams as displayed in Figure 1.1 are often used to visualize such operations
and to show relationships between sets.

Two sets A and B are called disjoint if AN B = (). Accordingly, a family
Ay, Ag, ... A, of sets is called disjoint if A; N A; =0 for all i # j.

C/C++ excursion 1. The C++ standard template library provides the container
class set for defining and manipulating sets.

// Initialize A = {2,4,6,8} and B = {3,5,7,8%}
int s1[] = {2, 4, 6, 8}; int s2[] = {3, 5, 7, 8};
set A (s1, s1 + sizeof sl / sizeof *s1);

set B (s2, s2 + sizeof s2 / sizeof *s2);
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The functions set_difference, set_intersection, set_symmetric difference,
and set_union compute A\ B, AN B, AAB, and AU B, respectively.

set<int> c;
insert_iterator<set<int>> ins_c (c, c.begin ());
// Compute union of A and B.

set_union(A.begin(), A.end(), B.begin(),

B.end (), ins_c);

Theorem 1.1. Given three sets A, B,C C X, the following relations hold:

1. AUA=A, AnNA=A; (idempotency)
2. (AUB)UC =AU (BUC), (ANB)NnC=An(BNC); (associativity)
3. AUB=BUA, ANB=BnNA; (commutativity)
4. AN(BUC) = (ANB)U(ANC), AU(BNC) = (AUB)N(AUC); (distributivity)
5. AUB=ANB, ANB=AUB; (DeMorgan’s law)
6. AUD=A, ANX = A; (identity)
7. AUX = X, An( =0

8. AUA=X, AnNA=0; (complementarity)
9. 4= A. (involution law)

Proof. EFY. O

Theorem 1.1 (in particular 1.-5.) provides examples of an important and powerful
property of set algebra, namely, the principal of duality for sets, which asserts that
for any true statement about sets, the dual statement obtained by interchanging
unions and intersections, interchanging X and () and reversing inclusions is also
true.

The associativity property allows to write AU B U C and AN BN C without
ambiguity. In particular, one can write

U4, Andn--n4, =

j=1

AjUAU---UA, =

for some sets Aq,..., A,.

Definition 1.2. The set of all subsets of a set X is called the power set and is
denoted by 2% .

If X = {1,2,3} then 2% consists of the elements

0.{1},{2}, {3}, {1,2}.{1,3},{2,3},{1,2,3}.

The complement of some subset Y of 2X translates to its subsets, i.e., if Y C 2%
then Y = {A: A e X}. This is not true for other set operations such as U, N.

Definition 1.3. Let Ay,..., A, be sets, then the Cartesian product H?Zl Aj =

idempotency
idempotentnost

involution
involucija

ambiguity
nejasnost

1>

power set
partivni skup

1>

Cartesian product
Kartezijev produkt




tuple
torka
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domain
domena

|»

image
slika

not a function function surjective function
1 .i: A le—————= A 1 A
2 B 2 B 2
3 C 3 3
4 D 4 D 4
injective function bijective function
1 A 1 A
2 B 2 B
T
4 D 4 D

Figure 1.2. Several types of functions.

Ay X Ag X -+- X Ay, is the set which consists of all tuples of the form (aq,...,a,)
with a1 € Al,ag € AQ,...,an cA,.

Two-dimensional Cartesian coordinates can be regarded as tuples of xz— and
y—coordinates, i.e., as elements of R x R.

1.2 Basic definitions and properties of functions

A function f assigns to each element of a set A (the domain) a unique element of
another set B (the codomain). This is denoted by f: A — B. Instead of b = f(a)
one can also write f:a+—b. The image of f is the set

f(A) ={be B: thereisan a € A such that b= f(a)}.

The graph of f is the subset of A x f(A) that consists of all tuples of the form
(a, f(a)) with a € A. Two functions f; : A; — Bj and fy : Ay — Bs are called iden-
tical (denoted by f1 = f2) if they have identical domains (A; = As) and codomains
(B1 = By), and if fi(x) = fa(z) for all € A;.

C/C++ excursion 2. In C, a function which returns the maximum of two integers
can be defined as follows:

int functionl (int numberl, int number?2)
{
return max( numberl, number2 );

}

functionl also defines a function in a mathematical sense; it returns the same
output value for identical input pairs. The co-domain of this function is given by
[INT_MIN, INT_MAX] x [INT_MIN, INT_MAX], where INT_MIN / INT_MAX is the minimal
/ mazimal value that can be represented by a signed int.

Definition 1.4. A function f: A — B is called
surjective if f(A) = B,



1.3. Cardinality, equipotent sets 5

injective if a1 # ag implies f(a1) # f(az2),

bijective if f is surjective and injective.

A bijective function f : A — B admits the definition of the inverse function f=!:
B — A as follows:
f~l:br aifand only if f:a— b.

The simplest bijective function is the identity function id : A — A, which maps
each element to itself, id : a — a.

Definition 1.5. Let f: A — B and g : B — C be functions. Then the function
gof: A— C, defined by go f :a — g(f(a)), is called the composition of f and g.

The inverse of a composition of two bijective functions f and g is the composition
of the inverses of these functions in reversed order: (fog) ' =g to f~1.

1.3 Cardinality, equipotent sets

A set A is called finite if A contains a finite number of distinct elements. In this case,

the elements of A can be numbered, i.e., there is a bijection f : {1,...,n} — A. The
integer n is called the cardinality of A, which is denoted by |A|. Having defined
such a numbering we can write A = {a1,as,...,a,} with a; = f(j) for j=1,...,n.

Sets that are not finite are called infinite. For example, N and R are both
infinite sets. Intuitively N and R seem to have different “levels” of infinity. To catch
this difference, the notion of countability is introduced.

Definition 1.6. Let A be an infinite set. Then A is called

countable: if there is a bijection between N and A, i.e., we can write A = {ay, az,...};

uncountable: otherwise.

From this definition, it is clear that N is countable. But we will see that also Z
and even Q, the set of rational numbers, are countable sets. In contrast, R is
uncountable.

For finite sets, it is quite simple to define the cardinality for comparing the
power of two sets with each other. For infinite sets, particularly for uncountable
sets, defining a similarly useful quantity is more difficult.

Definition 1.7. Two sets A and B are called equipotent if there is a bijection
f:A— B. In this case, we write A ~ B.

By definition, finite sets are equipotent if and only if they have the same cardinality.
Also, a finite set can never be equipotent with an infinite set. The real purpose
of equipotency is to compare infinite sets. Equipotency has a number of useful
properties, which makes it — as we will later see — an equivalence relation.

Theorem 1.8. The following holds for any three sets A, B, and C':
1. A~ A; (reflexivity)

identity
identiteta

composition
kompozicija

finite set
konacan skup

cardinality
kardinalni broj

infinite set
beskonacan skup

countable set
prebrojiv skup

equipotent
ekvipotent

>

equivalence relation
relacija ekvivalencija
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even number
= paran broj

2. A~ B implies B ~ A; (symmetry)

3. A~ B and B~ C imply A~ C. (transitivity)

Proof. All equipotency relations are proven by explicitely constructing a corre-
sponding bijection.

1. The identity id : A — A is a bijection.

2. Since A ~ B, there is a bijection f : A — B. The inverse, f~!: B — A, is
also a bijection, which shows B ~ A.

3. The assumption implies that there are two bijections f: A — B and g: B —
C. The composition go f : A — C' is another bijection, which shows A ~ C.

a

Equipotency also gives rise to a formal extension of the concept of cardinality to
infinite sets. Two sets A and B are said to have the same cardinality if they
are equipotent, in which case we formally write |A| = |B|. If there is an injective
function f : A — B (which is not necessarily surjective), we write |A| < |B|. If,
additionally, A and B are not equipotent then |A| < |B|.

Definition 1.9. Let the set A be countable, then |A| = Ng. The cardinality of R is
called the continuum, denoted by |R| = c.

Example 1.10.

1. The set 2N of all even natural numbers and the set N of all natural num-
bers have the same cardinality, i.e., |2N| = |[N| = Rg. This can be seen by
considering the bijection f : x — x/2.

2. The set of Z of all integers and N are equipotent. A corresponding bijection
f:7Z — N is given by

| 2k for k>0,
f(k) = { 2k|+1 fork <O.

3. The sets (—1,1) and R are equipotent, which can be seen by considering the
bijection f : R+ (—1,1) defined as f : x — tanhz.

Theorem 1.11. FEvery infinite subset of a countable set is countable.
Proof. EFY. O

Surprisingly, also N x N has the same cardinality as N, as shown by the fol-
lowing theorem.

Theorem 1.12. The Cartesian product of a finite number of countable sets is
countable.
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Proof. Let Ay, As, ..., A, be countable sets and let S = A; x Ay x...x A,. Since
each A; is countable there exists a bijective function f;: A; — N. The function
h: S — N defined by

h(al,ag, ... an) — Hpii((li),
=1

where p; is the ith prime is, by the the fundamental theorem of arithmetic, a
bijection between S and a subset of N and therefore S is also countable. O

As Q, the set of all rational numbers, can be identified with an infinite subset
of Z x N, Theorem 1.12 together with Example 1.10 imply that Q is countable.

Theorem 1.13 (Cantor’s theorem). The set R of real numbers is not countable,
n.e., Ny < c.

Proof. Cantor showed that for every given infinite sequence of real numbers
T1,T3,x3,... it is possible to construct a real number x that is not on that list.
Consequently, it is impossible to enumerate the real numbers; they are uncountable.
No generality is lost if we suppose that all the numbers on the list are between 0
and 1. Certainly, if this subset of the real numbers is uncountable, then the full set
is uncountable as well.

Let us write our sequence as a table of decimal representations:

0. din dip diz dug
0. do1 daa doz doy
0. ds31 ds2 dz3 dag
0. dy1 dao dsz dy

where x, = 0. dp1 dn2 dns dpg - .., and the representation avoids an infinite trailing
string of the digit 9.

For each n = 1,2,... we choose a digit ¢, that is different from d,, and
not equal to 9, and consider the real number x with the decimal representation
0. ¢1 ¢ ¢3.... By construction, this number z is different from every member of
the given sequence. For every n, the number z differs from the number z,, in the
nth decimal digit. This concludes the proof. O

Definition 1.14. A real number x with x & Q is called irrational. A real number x
which is a root of a polynomial p(x) = ag + a1 + asx?® + - - - + a,x™ with integer co-
efficients ag, . .. ,an s called algebraic number. Real numbers that are not algebraic
are called transcendental.

Being the root of 2 — 2, /2 is an algebraic number. Examples of transcen-
dental numbers include e, 7, €7, 2‘/5, sinl, In2.

Theorem 1.15. The set of algebraic numbers is countable.

Proof. EFY. O

decimal representation
decimalni prikaz

irrational number
iracionalan broj

1>

algebraic number
algebarski broj

transcendental number
transcendentan broj
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Chapter 2
Mathematical Logic

Mathematical logic provides a general framework for formalizing and verifying
statements. In contrast to natural languages, the language of logic leaves no space
for ambiguity or doubts. This is of great value in many branches of science, partic-
ularly when the verification of a statement is to difficult to be performed by human
mind and must be delegated to a computer. An example we will explore in more de-
tail is the formalization and verification of electric circuits. Be careful not to rely on
logic reasoning in everyday life. It will make look you deliberately and annoyingly
pedantic. In political discussions it is common to conclude some kind of equality
between two statements A and B if both, A and B, imply the same statement C.
The corresponding logic statement [(A = C) A (B = C)] = (A & B), however, is
not always true.
We begin with an example how to formalize statements:

(A) If it does not rain and the temperature is reasonable then I go swimming or
drink coffee outside.

Let us decompose this compound statement into four simpler statements:
A, = It rains.
As = The temperature is reasonable.
A3z =1 go swimming.
Ay =1 drink coffee outside.

By substituting these statements into (A), the logical structure becomes more ap-
parent:

(B) If ((not A1) and Ag) then (As or Ay).
Both statements, (A) and (B), are equivalent. Let Aj,..., Ay denote different
statements. For example:
A; = Somebody is at home.
Ay = The door is left open.
Az = The dog chases the cat.
A4 = The cat chases the dog.

Then B reads as follows:

formalize
= formalizirati




statement
= sud

truth value
= istinitostna vrijednost

propositional calculus
= algebra sudova

negation
= negacija

conjunction
= konjunkcija

disjunction
= disjunkcija
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(C) If nobody is at home and the door is left open then the dog chases the cat or
vice versa.

Although this statement is quite different from (A), it has the same logical structure
as (A). Mathematical logic is not concerned with the content but only with the
logical structure of statements. From this point of view, (A) and (C) are the same.

Definition 2.1. A statement' is defined as a declarative sentence, or part of
a sentence, that is capable of having a truth value, such as being true or false.
The truth value of a statement A is denoted by 7(A), which can take the values
T(A) =T (if A is true) or 7(A) = L (if A is false).

To simplify notation, we also write A=T and A= L.

2.1 Propositional calculus

Propositional calculus, also known as sentential calculus, studies ways of combining
or altering statements to form more complicated statements. The basic operators
are “not” (), “and” (A), “or” (V), implication (=), equivalence (&).

Definition 2.2. The negation —A is true if A is false. We have the following
truth table?:

A|-A
L] T
T L

Definition 2.3. The conjunction A A B of two statements A and B is true if both

statements are true.
B|AAB

Il
— A
H b

Definition 2.4. The disjunction AV B of two statements A and B is true if one
of the statements is true.

\A/\B

Il

B
L
T
1
T

H -

IThe term proposition is sometimes used synonymously with statement. However, it is also
sometimes used to name something abstract that two different statements with the same meaning
are both said to ”express”. In this usage, the two sentences, ” Callisto orbits Jupiter” and ” Jupiter
is orbited by Callisto” would be considered to express the same proposition. However, the nature
or existence of propositions as abstract meanings is still a matter of philosophical controversy; in
this chapter ”statement” and ”proposition” are used interchangeably.

2Truth tables are a convenient way to determine the truth value of a formula on a given truth
assignment: list all the subformulas of the given formula across the top in order of length and then
fill in their truth values on the bottom from left to right.
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Definition 2.5. The implication A = B is only false if A is true but B is false.

A B|A=B
1 1L T
1 T T
T 1L 1
T T T

In mathematics, the following statements have the same meaning, and each is trans-
lated as A = B:

If A, then B.

A only if B.

A implies Q.

B if A.

B provided A.

B when(ever) A.

A is a sufficient condition for B.
B is a necessary condition for A.

Definition 2.6. The equivalence A < B is true if A and B have the same truth

values.
B|A& B

o

H A
—H -

In mathematics, the following statements have the same meaning, and each is trans-
lated as A = B:

A if and only if B.
A is equivalent to B.
A is a necessary and sufficient condition for B.

Using the defined operators, we can rewrite the sentence from the beginning
as

A= (("Al) AN Ag) = (Ag \Y A4)

Three other frequently used binary operators are “xor” (¥), “nand” (1), “nor” (]).

B|AYB A1B A|B

o
A
e
-
-

C/C++ excursion 3. Boolean variables are declared with the keyword bool and
can take one of two values, true or false.

bool A = true;

implication
= implikacija

equivalence
= ekvivalencija
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There are four logic operators, “not” (1), “and” (&&), “or” (]|), equivalence (==).
Other operators must be expressed by combinations of these operators. The truth of
a statement is checked by the if clause.

if ( 'C A& B ) || ¢ C==D) ) {
cout << "Statement_ is_ true";
} else {

cout << "Statement_ is  false";

}

If two formulas P and @ have the same truth variables for all possible truth
values of their variables then we call P and @ logically equivalent and write P = Q.
An example for a logical equivalence is

(A& B)=(A= B)AN(B=A).

To simplify the appearance of formulas we adopt some conventions for omitting
parentheses. For arithmetic operations, multiplication is ranked higher than addi-
tion, which means that we can write a-b+c = (a-b) + ¢ (if there are no parentheses
multiplication is performed before addition) but (a +b)-¢ # a+b-c. The symbols

—(highest), VvV, A, =, < (lowest),

are ranked in the given order with V and A having equal rank®. The examples below
illustrate the convention:

AV B=C isshort for (AV B)= C;

ANB=C isshort for (AAB)= C;

—-A = -B isshort for (-A)= (-B);
-A= B« (C isshort for ((—A) = B) < C.

Any logic operator can be expressed by a suitable combination of other oper-
ators, for example

A& B=(wAVB)A(=BV A)=~(=(-AV B)V~(=BVA)),

i.e., the logic operator < can be expressed by means of the operators = and V. A
set of logic operations that admits the expression of all possible logic formulas is
called a set of generators. Examples for such sets of generators are {—, A}, {—, V},
and {—,=}. A set of generators is called minimal if none of the generators in the
set can be expressed by combinations of the other generators. All the sets defined
above are minimal. Interestingly, there are sets of generators consisting of only one
elements: {1}, {|}.

Proving logical equivalences by truth tables is always possible but can be
tedious, especially for long formulas with many variables. The following rules con-
siderably simplify propositional calculus.

Theorem 2.7. Given three statements A, B,C, the following relations hold:
1. AVA=A, ANA= A; (idempotency)
2. (AvB)VC=Av(BVC(C),(ANB)ANC=AN(BAC); (associativity)

3Some books adopt the less common convention that V is ranked higher than A.
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3. AVB=BVA, ANB=BAMNA; (commutativity)
4. AN(BVC) = (AANB)V(ANC), AV(BAC) = (AVB)A(AVC); (distributivity)
5 —-(AVvB)=-AAN-B, ~(AANB)=-AV-B; (DeMorgan’s law)
6. AVLI=A ANT =A; (identity)
7. AVT =T, ANL=1;

8 AV-A=T,AN-A=1; (complementarity)

9. ——A=A. (double negation)

Proof. EFY. O
It is informative to compare this theorem with Theorem 1.1; the striking similarity
between sets and statements will be investigated more systematically in Section 2.3.
As in set calculus, we have to principal of duality for statements, which asserts
that for any logical equality about statements, one can obtain the dual equality by
interchanging V and A, interchanging T and L and reversing implications.

The law of associativity (Theorem 2.7.2) admits writing AVBVC and AABAC
without ambiguity, which makes it possible to define the following two operators:

VI Ap = A1V AV V Ay, AT A=A A Ay A A Ay

2.2 Tautologies and deduction rules

Definition 2.8. A formula P is called tautology if it is identical to T, i.e., P =TT.
In this case, we write = P. A formula F satisfying F = L is called a contradiction.
For example, A = A is a tautology while =(A = A) is a contradiction. The

following lemma contains the most prominent examples of tautologies.

Lemma 2.9. Let A, B, C be statements. Then we have the following tautologies.
1. EAV-A
22.EA=BAB=0C)=A=0)
3. E-(AN-A)
4. A A
5 FE (A= B) & (-B= -4)

6. =AV (ANAB) and its dual = AN (AV B)

tautology
= tautologija

contradiction
= kontradikcija
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algebra of propositions
= algebra sudova

logical conclusion
= logicki posljedak

premise
= pretpostavka

syllogism
= silogizm

Proof. All rules can be deduced from the rules of propositional calculus in Theo-
rem 2.7. For example, if we let P = (A= B)A (B = C)= (A= C) then

P = (RAVB)A(-BV(C)=(-AV(O) (P=Q=-PVQ)
= S[(wAVB)A(=BV )]V (-AVO)] (P=Q=-PVQ)
= [(mAVB)V-(=BVCO)]V(-mAV ()] (Theorem 2.7.5)
= (AAN-B)V(BA-C)V(mAV () (Theorem 2.7.2, 5 and 9)
= [FAV(AA-B)]VICV(BA-C) (Theorem 2.7.2)
= [TA(RAV-B)]VI(CVB)AT] (Theorem 2.7.4 and 8)
= TA[(-AV-B)V(CV B)] (Theorem 2.7.4)
= TAT=T. (Theorem 2.7.2, 6, 7 and 8)

0

The rules of propositional calculus in Theorem 2.7 are powerful enough that
there is normally no need to prove logical equivalences by truth tables. This obser-
vation motivates the following definition.

Definition 2.10. The algebra of propositions is a set of statements S, together
with two binary operations V, A\ and one unary operation — such that the rules of
Theorem 2.7 are satisfied.

This definition conceptualizes propositional calculus but it also allows to cover other
frameworks such as binary calculus, see Section 2.4.

In the following, we will introduce and formalize proof techniques (also called
deduction rules). The probably most important technique is conclusion.

Definition 2.11. We call a statement A a (logical) conclusion from some state-
ments Py, ..., P, if the truth of Py,..., P, implies that A is true, and write

Pi,...,P,EA

The statements Py, ..., P, are called premises and A is called consequence or simply
conclusion.

Theorem 2.12. If Pi,..., P, = A then = A]_, P, = A, and vice versa.

Proof. Let Py,...,P, = A. Assume that A}_, P, = A is not a tautology. Then
there are truth values for Pi,..., P, such that A}_; P, = T but A = L. However,
this is not possible as this implies P, = --- = P, = T, which, together with A = 1,
contradicts the definition of Py,..., P, = A

To show that the converse holds, let A7_; P, = A be a tautology. Then
P,=..-=P, =T implies A = T. This proves P,,...,P, FA. O

The first part of this proof illustrates another technique: proof by contradiction, to
which we will come back below. With the help of Theorem 2.12, we can rewrite
Lemma 2.9.2 as

A= B B=CEA=C.

An alternative, more schematic way of writing this so called syllogism is as follows.
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A= B
B=C
A=C
Let us consider a stupid example:
Premise: If the weather is nice, I go swimming.
Premise: If T go swimming, I get wet.

Conclusion: If the weather is nice, I get wet.

(Remember not to use mathematical logic in everyday life. EFY: What is the reason
for this apparent contradiction?)

Lemma 2.13. For two statements A and B we have
A A= BE B,
also called modus ponens (MP).

Proof. EFY. O

Let us modify the stupid example accordingly:

Premise: If the weather is nice, I go swimming.
Premise: The weather is nice.
Conclusion: I go swimming.

Two other deduction rules are modus tollens
A= B,-B ': -A

and the law of excluded middle (tertium non datur in Latin)

AV B,-B |= A.
These correspond to
Premise: If the weather is nice, I go swimming.
Premise: I don’t go swimming.

Conclusion: The weather is not nice.

and
Premise: It rains or I go swimming.

Premise: I don’t go swimming.
Conclusion: It rains.

A very common proof technique is proof by contradiction (also called indirect
proof ). If negating the statement A leads to a contradiction then A must be true:

-A=1FE A

The following lemma illustrates this technique.

law of excluded middle
= pravilo isklju¢enja treceg
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Boolean algebra
= Booleova algebra

Lemma 2.14. Let n be an integer. If n? is even then also n is even.

Proof. The assumption is that n? is even. Let A be the statement: n is even. If
we show that negating A leads to a false statement then, by contradiction, A must
be true.

The statement —A means n is odd, i.e., there is an integer k such that n =
2k + 1. Squaring this equation leads to n? = 2(2k? + 2k) + 1, i.e., n? is odd. This
contradicts the assumption and therefore n is even. 0O

2.3 Relationship between statements and sets

Each row of the following table lists two notions for sets and statements which are
closely related to each other.

disjunction AV B AU B union
conjunction AA B AN B intersection
negation —A A complement
exclusive disjunction AY B AAB symmetric difference
true T X universal set
false L 0 empty set

The relationships become apparent when reconsidering the definitions for the set
operations:

ANB={ze€X: vz € ANz € B},
AUB={zeX: z€ AVzx € B},
A={ze X: ~(ze€ A},
AAB={ze X: x€ AVzx € B},
X={reX: T}
f={xeX: L}
If two statements Ap and Ag satisfy Ap = Ag, then the two sets P = {z € X :
statement Ap is true} and Q = {z € X : statement Ag is true} are equal. In

particular, the statements in Theorem 1.1 follow directly from the corresponding
statements in Theorem 2.7.

2.4 Boolean algebras

The similarities between Theorem 1.1 and Theorem 2.7 motivate the following ab-
stract definition of an algebraic structure.

Definition 2.15. A Boolean algebra is a set B, supplied with two binary operations
+ and -, an unary operation — and two elements 0 and 1, such that, for all elements
a, b and ¢ of B, the following axioms hold:

l.ata=a,a-a=a; (idempotency)
2. (a+b)+c=a+(b+c), (a-b)-c=a-(b-¢); (associativity)

3. a+b=b+a,a-b=b-a; (commutativity)
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4.a-(b+ec)=(a-b)+(a-¢c),a+ (b -¢c)=(a+b) (a+c); (distributivity)
5.a+b=a-b,a-b=a-+b; (DeMorgan’s law)
6. a+0=a,a-1=aq; (identity)
7. a+1=1,a-0=0;

8 a+a=1,a-a=0; (complementarity)
9. a=a. (involution law)

Including the two Boolean algebras we already know, the following list contains
the most popular examples for Boolean algebras.

1. The simplest Boolean algebra, the so called two-element Boolean algebra has
only two elements, 0 and 1, and is defined by the rules:

0

1
We will see that this Boolean algebra is isomorph to the algebra of proposi-
tions, interpreting 0 as false, 1 as true, 4+ as V, - as A, and — as —.

— o+

0
0
1

— | =
O OO
—_ O =

2. By Theorem 1.1, the power set of any given set A forms a Boolean algebra
with the two operations 4+ := U and - = N. The smallest element 0 is the
empty set and the largest element 1 is the set S itself.

3. Other examples of Boolean algebras arise, e.g., in quantum logic.

Lemma 2.16. The elements 0 and 1 of a Boolean algebra B are uniquely defined.
Moreover, the operations + and - satisfy the absorption laws:

a+a-b=a, a-(a+d)=a.

Proof. Let 0; and 03 be two zeros in B. From Definition 2.15.6, we have 0;+02 = 0
and 02 + 0; = 02. By Definition 2.15.3, this implies 0; = 02. The proof of the
uniqueness of 1 is left as exercise.

The first absorption laws follows by writing a+a-b=a-1+a-b=a-(1+b) =
a-1=aqa. Similarly, a- (a+b) =(a+0)-(a+b)=a+(0-b)=a+0=a. O

The two-element Boolean algebra, the algebra of subsets of {x} as well as the
algebra of statements are all Boolean algebras with two elements, which can be
identified with each other by means of an isomorphism.

Definition 2.17. Let By and By be two Boolean algebras. Then the function
f: B1 — Bs is called an isomorphism between By and Bs if f is bijective and

fla-b) = f(a)- f(b), [f(@)= f(a) (2.1)

holds for all a,b € By. If there exists such a function f then By and Bs are called
isomorphic.

absorption laws
= pravila apsorpcije




subalgebra
= podalgebra
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Using DeMorgan’s law, the equalities (2.1) also imply

fla+b)=f(a-b) = f@-5) = f@)- f®) = [@)- T®) = f(a) + f(b).

As an example for such an isomorphism, let us consider the two-element Boolean
algebra By = {0,1}, the algebra of propositions By = {1, T}, and the function
f: B1 — By defined as f(0) = L and f(1) = T. Trivially, f is a bijection and

fla-b) = f(a) A fb), ,f(a)=—f(a),
which shows that f is an isomorphism between B; and Bs.

Definition 2.18. A subalgebra of a Boolean algebra B is a Boolean algebra that
consists of a subset of B supplied with the same operations.

If f is an isomorphism and B; is a subalgebra then the image of f is again a
subalgebra.

2.5 Boolean functions
In the following, B denotes the two-element Boolean algebra B = {0, 1}.

Definition 2.19. A Boolean function is a function F': BX B X ---x B — B.

Any Boolean function can be interpreted as an n-ary logical operation. For
example, the operations + and - in the Boolean algebra are Boolean functions with
n = 2. Another interpretation is to consider a Boolean function as an input-output-
system, having n inputs and 1 outputs.

Lemma 2.20. There are 22" different Boolean functions F : B" — B.
Proof. The set B™ contains 2" different members (as there are 2™ binary numbers
of length n). Each member can be assigned a 0 or a 1, which gives 22" different

possibilities taking all members together. 0O

Here is a table of all Boolean functions for n = 2:

v w | i fo fs fa fs fo fr fs fo fro fu fiz fis fuu fis fie
o o0 0O O O o O o o0 1 1 1 1 1 1 1 1
o 1,0 O O O 1 1 1 1 0 O 0 0 1 1 1 1
1 00 o0 1 1 O O 1 1 O 0 1 1 0 0 1 1
o 10 1 0 1 0 1 0 1 O 1 0 1 0 1 0 1

This table illustrates that every Boolean function can be encoded by a single binary
number of length 2". Furthermore, by the isomorphism between the two-element
algebra and the algebra of propositions, we can identify F5, F7, Fg, Fig, F14 with the
logical operations A, V.V, <, = respectively.

Lemma 2.21. The set of all Boolean functions f : B® — B (n is fized) supplied
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with the operations
(F+G)(x1,...,xn) = F(x1, ..., 2n) + G(x1,...,240),

)
(F-G)(x1,y...,xn) = F(x1,...,2) - G(21,...,2y),
F(zy,...,1mn) = F(z1,...,7,),

!

is a Boolean algebra.

2.6 Normal forms

To check whether a Boolean function F'(z1,za, ..., z,) satisfies F' = 1 (which means
that the isomorphic logical statement is a tautology) requires to test all 2" assign-
ments of the variables z1,...,x,. This task can be simplified if F' is a product of
Boolean functions

F(z1,...,xn) = Fi(x1, ..., 20) - Fa(x1, ... 2n) - Fp(z1, 22, ..., Tp).

Then F' = 1 if and only if each of the k factors satisfies F; = 1. Moreover, if the
factors take the form

iy F Tiy o+ Wiy AT AT+ T

my o

(2.2)

then F; =1 if and only if 7, = [,, for some p, i.e., if a variable appears twice in F},
in its original form and in the negated form. This is much simpler than checking
the value of F for all possible assignments of the variables. In the following, we will
show that any function F' can be rewritten in the form described above.

The following definition provides an important intermediate form.

Definition 2.22. An expression for a Boolean function F is said to be in negation
normal form (NNF) if the unary operation — is only taken w.r.t. variables.

For example, the expression

Fy(21,72,23,74) =71 + T2 - T3 + T4
is in negation normal form while

Fy(w1,22,23,04) =71 -2 + 23 + 74 (2.3)
is not.

Any expression can be transformed into negation normal form by repeated
application of DeMorgan’s law, see Definition 2.15.5. For example, after one appli-
cation of DeMorgan’s law we obtain from (2.3) that

Fy(x1,22,23) = T1 - T2 - T3 + 24,
and after another application,
Fy(w1,29,23) = T1 + T2 - T3 + 14,

which shows that F} and F, are actually equal.
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conjunctive
= konjuktivna

Definition 2.23. An expression for a Boolean function F' is said to be in conjunc-
tive normal form (CNF) if

F(x1,...,xp) = Fi(z1,...,2n) - Fo(x1, ..., 2p) - - Fr(x1,29,. .., Zp),
where each factor F; is an elementary disjunction of the form

iy + Tig oA @, AT AT T

Any Boolean function F' can be expressed in CNF. To obtain this form, we
first assume (without loss of generality) that the expression for F is already in NNF.
The CNF is obtained in a recursive fashion. Since F' is in NNF, it either is already
an elementary disjunction or its expression can be decomposed into F' = F(V) o ()
where where o € {-,+}. If not consisting of elementary disjunctions, F M) and F®)
are further decomposed as F() = F(1) o p(12) and F@) = FCL o F(22) Thig
process is continued until all F' is completely decomposed into. Finally, one obtains
a decomposition tree of the following form with all leafs being (negated) variables?:

F

i

F o F

SN

F(n) o F(].Z) F(21) o F(zz>

SN N

Now, we work from bottom to top as follows. Assuming that U and FU?) are in
CNF, we already have a CNF for F() = F(1) o FUD if o = .. If o = +, we obtain
a CNF from the law of distributivity (see Theorem 2.15.4):

FO = pUD 4 pG2)
ni no
= H vk 4 Hw(l)
k=1 =1

ny N2

LI (v = woy.

k=11=1

where V*) and W® denote elementary disjunctions. Let us illustrate this technique
by an example. If F = (p-q) + (¢ + ) then F = F) 4 F®?) with F(M) = 5.7 and
F®) = ¢+ p. Similarly, FO = D . p(2) with FOY) = p and F1? =g. Now, F
is completely decomposed into the elementary disjunctions F(1V, F(2) and F3),
Also, there is nothing to do for F(1) as F(1) = p(D . p(12) ig already in CNF. To
obtain a CNF for F', we have to apply the distributivity law:

F=({p-q+(@q+p)=p@+q+D) (@+q+D).

From the discussion in the introduction, we can now easily see that F' is a tautology.
There is a dual form to the CNF, which is obtained by interchanging the roles
of + and - in the algorithm described above.

4Tt suffices to decompose the expression until all leafs are in CNF
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Definition 2.24. An expression for a Boolean function F is said to be in disjunc-

tive normal form (DNF') if

F(x1,...,zy) = Fi(z1, ..., 20) + Fo(x1, ..., 2pn) + Fp(z1, 22, . ..

where each summand F; is an elementary conjunction of the form

xil.xiQ.......xi"j.xll.xlz.....xl

m;°
J

2.7 Logic circuits

A logic circuit is an electric circuit whose output depends upon the input in a

axn)7

way that can be expressed as a Boolean function F' : B™ — B in symbolic logic.
Logic circuits that perform particular functions are called logic gates. Basic logic
circuits include the AND® gate, the OR gate, and the NOT gate, which perform
the operations -, +, and —. Nowadays, circuits are often combined from integrated

logic circuits that perform more complex Boolean functions.

name symbol  Boolean statement

AND gate x-y XANY

OR gate §> T4y XVvYy
inverter D - T -X
NAND gate j} g X1Y

NOR gate T4y XY

These symbols can be extended in a direct manner to accept three or more inputs
and to denote that some of the inputs are negated. For example, the expressions

r+y+ 2z and T + ¥y + Z are represented by:

SRS D

To give an example, the logic circuit corresponding to ((y + 2) - T) + = + y is

X

2.8 Predicate calculus

First-order predicate calculus or first-order logic (FOL) permits the formulation of

5Nikola Tesla received the first patents for AND logic gates in July 1900.

disjunctive
= disjuktivna

logic circuit
= logicki sklop

predicate calculus
= predikatni racun
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universal quantifier
= univerzalni kvantifikator

existential quantifier
= egzistencijalni kvant.

bound variable
= vezana varijabla

quantified statements such as “there exists an x such that...” (3z) or “for any z, it
is the case that...” (Vx), where x is a member of the domain under consideration.
First-order logic is mathematical logic that is distinguished from higher-order logic
in that it does not allow quantification over properties; i.e. it cannot express state-
ments such as “for every property P, it is the case that...” (VP) or “there exists a
property P such that...” (3P). Nevertheless, first-order logic is strong enough to
formalize all of set theory and thereby virtually all of mathematics.

Definition 2.25. A predicate is a function P(-) which maps every element of a
given set D (the domain of P) to a statement P(x).

A two-adic predicate has a domain of the form D = D; X Dy and we can write
P(z1,x2) in place of P(x) with * = (z1,22) € D. Similarly, the domain of an
n-adic predicate takes the form D = Dy X --- x D,, and we write P(z1,...,2,)
with the variables x1 € D1,...,x, € D,. Apart from the already introduced logic
operators -, A, and V, predicate calculus admits the use of two other operators.

The phrase “for every x” is called the universal quantifier and we shall write it
as V. For example if P(z) is the statement “z is greedy” on the domain of human
beings then Va P(x) means “All human beings are greedy.” Note that although
Vz means for every x, the restriction to the given domain (of human beings) is
understood.

The phrase “there exists an x such that” is called the existential quantifier
and we shall write it as Jz. For example, with P(z) as above, 3z P(x) means
“There is a greedy human being.” Again the restriction to some given domain is
understood.

Two or more quantifiers may be used in tandem. In the following examples
we write a statement in symbolic form and give possible translations.

VaVy(z +y =y +x)
= For every z, for every y, x +y =y + x.
= Addition of numbers is commutative.

VaVy3z(z +y = 2)
= For every z, for every y, there is a z such that x +y = z.
= The sum of any two numbers is a number.

In the statement .
> k=55 (2.4)
k=1

k is a dummy variable. When (2.4) is written out as
17 +2% + 3% + 4% + 5 =55

k does not appear at all. In (2.4), k can be changed to some other variable without
altering the meaning. In logic, such a dummy variable is called a bound variable.
In the formula

Jx(z < y) (2.5)

z is a bound variable while y is not a bound variable. When (2.5) is written as

There is a number less than y
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x disappears, but y is still present. If we think of y as being some fixed number, (2.5)
says something about y. A variable that is not bound is free. vy is a free variable
in (2.5).

A variable may be bound in different ways, but in the following we shall
consider only variables bound by quantifiers. An occurrence of a variable v in a
formula @ is bound if and only if it is the explicit occurrence in a quantifier Vv or
Jx, or if it is in the scope of a quantifier Vv or Jv. The same variable may be both
free and bound in the same formula. In the formula

Fz(z <T)AN(x+2=28)

the first two occurrences of = are bound, but the third occurrence of x is free because
it is not in the scope of the quantifier 3x. As far as meaning is concerned, the free
and bound occurrences of the same variable in a formula have nothing to do with
each other. Such situations are confusing and should be avoided.

A formula with no free variables can be identified with a statement. A formula
with n free variables can be identified with an n-adic predicate P. If v is a free
variable in an n-adic predicate P then Vv P is an (n — 1)-adic predicate.

Definition 2.25 admits the assignment of truth values for quantifiers. If P(z)
is a predicate then Vx P(z) is true if and only if P(z) = T for every z. 3z P(z) is
true if there is an x such that P(z) = T.

Lemma 2.26 (DeMorgan’s law for quantifiers). For any predicate P(x) the
following equivalences hold:

-z P(z) = 3z -P(x),
-3z P(x) = VYx = P(x).

Proof. We only prove the first equivalence, leaving the second one as an EFY. Let
D be the domain of P. We must show that —=Vz P(x) and 3z —P(z) have the same
truth values. Suppose that 3z —P(z) is true. Then —P(xg) is true for some xo.
Consequently, P(zg) is false and thus Vz P(x) is false, which in turn implies that
—Vz P(z) is true. Now suppose that 3z =P (z) is false. Then =P (z) must be false
for all z, which implies that P(z) is true for all . Hence, -Vz P(z) is false. 0O

A tandem of universal quantifiers commutes. So does a tandem of existential
quantifiers. However, a mixed tandem of existential and universal quantifiers does

in general not commute. In summary, we have the following result.

Theorem 2.27. Let R(z,y) be a predicate. Then the following holds:

1. Va¥y R(z,y) = VyVz R(x, y),
2. 323y R(z,y) = JyFz R(x,y),
3. JaVy R(z,y) E VyIz R(x,y),
4. Vo3y R(x,y) E Jyx R(x,y).

Unlike propositional calculus, first-order logic is undecidable. There is prov-
ably no decision procedure for determining for an arbitrary formula F', whether or
not F is valid (an example for such a problem is the so called Halting problem).

free variable
= slobodna varijabla
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Chapter 3

Integers

In this chapter, we will give a brief introduction to the world of integers. The study
of integers is at the heart of the mathematical field number theory. This field is
concerned with wider classes of problems that have arisen naturally from the study
of integers. Many famous mathematicians have worked in number theory; to quote
Gauss:

Mathematics is the queen of the sciences and number theory is the queen of
mathematics.

The typical public picture of a mathematician is that of a number theorist. In
fact, many movies featuring mathematicians are about number theorists, see for
example II (1998), Cube (1997), Good Will Hunting (1997), The Mirror has Two
Faces (1996).

3.1 Divisors, remainders and modular arithmetic

We say m | n (read: m divides n, or m is a divisor of n) for any integers m and n
iff there exists an integer k such that n = km. Thus, divisors can be negative as
well as positive. 1 and —1 are divisors of every integer, every integer is a divisor of
itself, and every integer is a divisor of 0, while 0 is a divisor only of 0. There are
some rules which allow to recognize small divisors of a number from the number’s
decimal representation; these will be treated in the exercises.

A divisor of n that is not 1, —1, n or —n is known as a non-trivial divisor;
numbers with non-trivial divisors are known as composite numbers, while prime
numbers have no non-trivial divisors.

Definition 3.1. A prime number is a positive integer p > 1 that has no positive
integer divisors other than 1 and p itself.

We call an expression a = bd (a, b, d integers) a factorization of a. A problem
on cryptography we will encounter later in this chapter involves factoring large
numbers. In particular, consider the following question: What is the fastest general
procedure to find the smallest non-trivial positive factor of an integer n > 07 This
question may seem simple but if n is very large the answer is far from obvious. For
example, consider the following 309-digit number

25
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13506641086599522334960321627880596993888147560566702752448514385152
65106048595338339402871505719094417982072821644715513736804197039641
91743046496589274256239341020864383202110372958725762358509643110564
07350150818751067659462920556368552947521350085287941637732853390610
9750544334999811150056977236890927563

This number is called RSA-1024, since it has 1024 binary digits. The sum of its
digits is 1369. If you can factor this number then RSA Security Inc will pay you
one hundred thousand dollars! See http://www.rsasecurity.com/rsalabs/node.
asp?1id=2093 for more details.

However, if n is relatively small then there are some easy strategies to follow
to factor it.

Lemma 3.2 (Basic factoring strategy). If a positive integer n has a factoriza-
tion n = ab (a,b integers) then either a < \/n or b < \/n.

Proof. Suppose that the statement of this lemma is false, so a > y/n and b > /n.
Then n = ab > y/ny/n = n. This is a contradiction. 0O

The result above implies that, if n is composite then the smallest non-trivial
factor d of n must satisfy 1 < d < y/n, if n has no factor d where 1 < d < /n then
n must be a prime.

Example 3.3. Let n = 1233. By the above fact, to find a positive factor of 1233,
we need only check if the integers 1,2,3,...,35 divide n since v/1233 = 35.11....
Moreover, any such divisor must be odd is 1233 is odd. Our first try, 1233/3 turns
out to be an integer and we get 1233 = 3 - 411.

What about the factors of 4117 By the above fact, to find a positive factor of
411, we need only check if the integers 1,2, 3, ..., 20 divide 441 since /411 = 20.273....
Again, it must be odd and our first try, 411/3 turns out to be an integer and we
get 411 = 3 - 137.

To factor 137 we check if 1,2, 3, ..., 11 divide 137 since /137 < 12. Trying all
the odd numbers 3,5,7,9,11, we see that none of them are divisors of 137. The
complete factorization is 1233 = 3 -3 - 137.

The next, fundamental result leads to the notion of modular arithmetic and
Euclid’s algorithm.

Theorem 3.4 (Division algorithm). Let a and b > 0 be integers. There are
integers q (the quotient) and r (the remainder) such that

a=bq+r, 0<r<hb.

Furthermore, q and r are unique.

Proof. We begin the proof of the division algorithm by showing that ¢ and r are
unique. Suppose a = bg + 1 = bqy + r1, where 0 < r < b, 0 < r; < b. Then
0="0(¢q—q1)+ (r —r1). Since b divides the left side and the first term of the right
side of this equation, b must divide r —r;. But -b < r —ry < b, sor —r; = 0.
Therefore r is unique. Since bq + r = bg; + r1, this in turn implies that ¢ is also
unique.
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For the proof of the existence of ¢ and r in the division algorithm, consider
the set

S=a+bZ={a+nb|neZ}={.,a—2ba—ba,a+ba+2b,..}

This contains at least one non-negative element, for example, a + |alb > a +
la| > 0. By the well-ordering principle, S contains a least non-negative element,
say r. By definition of S, there is an integer g such that r = a — ¢b. It remains
to show r < b. Suppose not (to get a contradiction), i.e., suppose r > b. Then
0<r—b=a+(—g—1)be S,and r—b < r, so r was not the smallest non-negative
element of S. This contradiction shows that the hypothesis » > b is false. Therefore
r < b and the proof is complete. 0O

About 200 years ago in Germany, at the age of 23 C. F. Gauss published
“Disquisitiones Arithmeticae”, essentially an expanded version of his PhD thesis,
that revolutionized the study of number theory. One piece of new notation which
Gauss introduced is the congruence or modulus notation. Let a,b, m be integers.
We say that a is congruent to b modulo m, written

a=b modm

if m | (a —b). In this case, m is called the modulus and b is a residue of a modulo
m.
The division algorithm may be restated in this new notation as follows.

Theorem 3.5. Ifa and m > 0 are integers then there is an integer r € {0,1,...,m—
1} satisfying
a=r modm.

In other words, each integer has a residue mod m (called the least residue) which
is in the range 0,1, ...,m — 1. Furthermore, this residue can be computed using the
division algorithm. What is a practical way to find r for large numbers such as
a = 331 and m = 817 First, we compute 331/81 ~ 4.0864 ... The obtained result
is truncated (not rounded) to yield the largest integer ¢ = 4 such that 331 > 81 - q.
Then m is given by 331 —¢q-81 = 7.

Example 3.6. We have
1. 71=1 mod 7,
147 =3 mod 12,

km =0 mod m for any integers k and m > 0, and

e

—1 =10 mod 11.

3.2 GCD and LCM

In this section, we are concerned with two already introduced notations in number
theory, the greatest common divisor and least common multiple (we already know
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that this operations form a Boolean algebra). For the sake of a thorough exposition,
let us start with the basic definitions.

Definition 3.7. Let a > 0 and b > 0 be integers. The greatest common divisor of
a,b is the largest integer d > 0 satisfying both d | a and d | b. The greatest common
divisor is denoted by ged(a,b).

In other words, the greatest common divisor of a and b is simply the largest positive
integer which divides both a and b. When ged(a,b) = 1 then we say that a,b are
relatively prime.

Example 3.8. We have ged(12,15) = 3, ged(3,5) = 1, ged(100,46) = 2.
Somewhat analogous to the gcd is the least integer which both a and b divide.
Definition 3.9. Let a > 0 and b > 0 be integers. The least common multiple of
a,b is the smallest integer m > 0 satisfying both a | m and b | m. The least common
multiple is denoted by lem(a,b).

Example 3.10. We have lem(12,15) = 60, lem(3,5) = 15, lem(100, 46) = 2300.

The lem can be computed from the ged (which can be computed using the
Euclidean algorithm) using the following fact.

Lemma 3.11. Let a,b, c be integers.

1. ged(a,b) - lem(a, b) = ab.

2. If a | be then a | ged(a,b)c.

3. If a| be and ged(a,b) =1 then a | c.

4. Ifalc and b | c and ged(a,b) =1 then ab | c.

5. ged(ab, ¢) =1 if and only if ged(a, ¢) = 1 and ged(b, ¢) = 1.

6. If c| a and c | b then c | ged(a, b).

7. Ifa|lc and b | ¢ then lem(a, b) | c.

8. If d = ged(a, b) then ged(a/d,b/d) = 1.

9. For any integers m,n we have ged(a,bd) | (ma + nb).
Proof. Part (1): We will show that W’(’L,b) = lem(a, b). l\aTz)te that m € Z,
since ged(a, b) divides b. Therefore, a - m € Z. Since =10 — gcdé)a’b) € Z, we
know that ﬁz’b) is a multiple of a. Similarly, WE”) = @ d‘(la’b) € Z implies that
ity > lem(a,b). Now 2t € Z and —g— = (% ¢ 7 since b divides

Tem(a,b)

lem(a, b). Therefore, % divides a. Similarly, % divides b. Thus:

ab ab

— < i.e. — < .
Tom(a.D) = ged(a,b) e, aed(ah) = lem(a, b)
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Since we have shown the inequality in both directions, we must have equality.
Part (2): Assume a | be. Let d = ged(a, b). There are integers x,y such that
ax + by = d, so acx + bey = de. Since a divides acz and bey (by assumption), it
divides acx + bey, hence a | ged(a, b)e.
Part (7): We will prove this by contradiction. Suppose that lem(a,b) 1 c.
Then m is not an integer, and we may write it as:

¢
—_— = h 0 1.

1cm(a,b) q+ o, where <a<

Multiplying both sides of the above inequality by the positive integer lem(a, b) gives:
¢ =q-lem(a,b) + « - lem(a,b). Let r = ¢ — ¢ - lem(a, b). Then:

¢=¢q-lem(a,b)+r, with 0<r <lem(a,bd).

But a | r and b | 7, so r is a common multiple of a and b which is less than the
least common multiple lem(a, b), by the above inequality. Thus we have reached a
contradiction, and our original assumption was false. We conclude that lem(a, b) | c.

Part (4) shall be proven later as a consequence of the Fundamental Theorem
of Arithmetic. Parts (3), (6), (8), (9) are EFY. 0O

3.3 The Euclidean algorithm

In this section, we will develop a method for computing ged(a, ). This of practical
importance. The principle which drives the method is the division algorithm, see
Theorem 3.5. Starting with r_; = a and ry = b, the Fuclidean algorithm repeatedly
applies the division algorithm,

Ti—1 = TiQi+1 + Tit1

until 7, = 0 for some k. Then ged(a,b) = rp_1. Before we prove this statement, let
us illustrate the progress of this algorithm by an example:

r-1 = 331 ro = 81
ro = 81 rn = 7
rn = 7 ro = 4
o = 4 rs = 3
rs = 3 ry = 1
ry = 1 rs = 0

Proof. [Euclidean algorithm] We can (and do) assume without loss of generality
that 0 < b < a. Since 0 < ... <ry <rg=0b<r_; = a, at some point the above
algorithm must terminate. Suppose that r, = 0 and k is the smallest such integer.
The claim is ged(a,b) = rx—1. To see that, we first show that ry_; = ax + by
for some integers x,y. Indeed, we claim that every r; ( —1 < i < k) is a integral
linear combination of a,b. This may be proven by mathematical induction. (The
details are left to the reader as an exercise. The cases i = —1,0, 1,2 follow from
a="0bq+71,b=1r1g2 +r2.) Thus ry_1 = ax + by. The fact ry,_1 = ax + by implies
ged(a,b) | rp—1.

Next, to finish the proof of the above claim, we show that ry_; | a and
rg—1 | b. Indeed, we claim that r;_; divides every r; ( —1 < i < k) (Again, the
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details are left to the reader as an exercise. The cases i = k — 1,k — 2, k — 3 follow
from 73 = Tk—oqk—1 + Tk—1, Tk—2 = "k—1qx.) The fact rg_1 | a,rg—1 | b implies
rip—1 | ged(a,b).

The claim follows. 0O

C/C++ excursion 4. The remainder of two integers a and b in C is computed by
a % b. A straight implementation of the Fuclidean algorithm could look as follows:

int gcd(int a, int b) {

while (b "= 0) {
c = b;
b =a % b;
a = b;
}
return a;
}

A more elegant (but less efficient due to stack operations) variant employs recursion:

int gcd(int a, int b) {

if (b == 0)
return a;
else

return gcd(b, a % b);

As well as being extremely useful in practice, the Euclidean algorithm has
important theoretical consequences.

Theorem 3.12. Let a and b be positive integers, and let d = ged(a,b). Then there
are integers m and n such that

d = ma + nb.

Proof. According to the Euclidean algorithm d = r;_1, and using the penultimate
equation we have

Tk—1 =Tk—-3 — Tk—24k—1-
Thus d can be written in the form m/ry_o +n'r_s3, where m’ = —q,_1 and n/ = 1.
Substituting for r;_o in terms of rp_3 and r,_4, we obtain

/ /
d=m'(rr_—4 — TR_3qr—3) +n'Tp_3

which can be written in the form m/”ry_s + n''rp_4, with m” = n’ — m/qx_o and
n' = m’. Continuing this way we eventually obtain an expression for d in the

required form. 0O

For example, from the calculation used to find the ged of 331 and 81 we obtain

1= 4-3x1= 1x4+ (=1)x3
= 4+ ( ) x(7T—4x1)= (1) x 7+ 2x4
= -7+ x (8l—-7x11) = 2x 81+ (-23)x7
= 2x814+ (-2 ) (331 —81x4)= (—23) x331+ 94 x 8l.
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Thus the required expression ged(a,b) = ma + nb is
1=(—23) x 331 + 94 x 81.

As an important application of Theorem 3.12, the following problem can be
addressed:

Suppose that we have two integers n > 0 and ¢ > 1 such that ged(n, ¢) = 1.
Compute an integer s, 0 < s < ¢, such that ns =1 mod ¢.

We call s the inverse of n modulo ¢. Since ged(n, @), we can use the method
explained in the proof of Theorem 3.12 to find numbers s’ and ¢’ such that s'n+t'¢ =
1. Then ns’ = —t’¢ + 1, and, since ¢ > 1, 1 is the remainder. Thus

ns’' =1 mod ¢.

Note that s’ is almost the desired value; the problem is that s’ may not satisfy
0 < 8 < ¢. However, we can convert s’ to the proper value by setting s to the
remainder of s under the integer division by ¢.

3.4 Primes

Recall an integer p is prime if p > 1 and the only positive integers dividing p are 1
and p itself. The first few primes are

2,3,5,7,11,13,17,19, ... .

The primes form “building blocks” for the integers in some sense (made more precise
by the Fundamental Theorem of Arithmetic below). We will later see how primes
occur in the encryption of information passed over the Internet.

It has been know since the times of the Greeks that there are infinitely many
primes. The following result is one of the oldest and best known results in mathe-
matics!

Theorem 3.13 (Euclid’s Second Theorem). There are infinitely many primes.

Proof. Suppose that the number of primes is finite. Then the sequence of primes
2,3,5, ... must end. Let the last prime in this sequence be p. Let n = (2:3-5---p)+1.
Since n is larger than p, n is divisible by some prime ¢. If ¢ is among 2,3,5, ..., p,
then ¢ would be a divisor of n and of the product 2-3-5---p and thus also of the
difference n —2-3-5---p = 1, which is impossible. So p is not the largest prime.
That is, the sequence of primes does not end. 0O

In spite of their basic nature and importance, many questions about primes
remain unknown. Question: Given a “random” integer n is there a “fast” method
of determining if n is a prime or not? It has been a long-standing open problem to
find a method which has an execution time that grows at most like a polynomial in
the number of digits of n. This problem has only recently been solved by Agrawal,
Kayal, and Saxena in 2002. Tt is still not known how to develop a fast method (i.e.,
with polynomial execution time growth) for factorizing a given integer. We will
later see that the existence of such a method would render many of the encryption
schemes used in passing sensible data in the internet insecure.
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The rest of this section will be concerned with the factorization problem. For

example,
825 =3 x5 x5 x 11.

Finding a factorization is not always as easy as this example suggests. Even a
relatively small number such as 1807 presents some difficulty and a number such as
267 _ 1 is really quite hard.

Given any positive integer n > 1, there is a prime factorization of n. This is
a consequence of the following argument. Suppose there is a “bad” positive integer
(a number greater than 1 that cannot be expressed as a product of primes). Then
consider the smallest “bad” number, m. Now m cannot be a prime p, because if so
we have the trivial factorization m = p. Som = rswherel <r <mand1l < s <m.
Since m is the smallest “bad” number, both r and s do have factorizations. But in
that case the equation m = rs yields an expression for m as a product of primes,
contradicting the fact that m is “bad”. Hence there are no “bad” numbers.

We now turn to the question of uniqueness. If we are asked to factorize 990,
we might proceed as follows:

990 =2x495=2x5x99=....
On the other hand, we might start in a different way:
990 =11 x90=11x2x45=....

You are probably confident that the answers will be the same, although possibly
the order of the factors will differ. However, this fact must be proved. The key step
for this proof is the following result.

Lemma 3.14. If p is a prime and x1,%2,...,T, are integers such that
p | T1Xo -« -+ J"n

then p | ; for some x; (1 <i<n).

Proof. We use the principle of induction. The result is plainly true when n = 1
but for reasons that will appear, it is convenient to start by proving the case n = 2.

Suppose then that p | z1z2. We shall prove that if p does not divide x; then
p must divide zo. Now, if p does not divide z; then (since 1 and p are the only
positive divisors of p) we must have ged(p,21) = 1. From Theorem 3.12 there are
integers r and s such that rp 4+ sz = 1. Hence

9 = (rp+ sx1)x2 = (ra2)p + s(x122).

Since p divides both terms it follows that p | z2, as required.

Suppose the result holds when n = k, and consider the case n = k + 1, that is
when p is a divisor of the product x1x9 - zpxgy1. Define X = 129 - -z so that
p | Xzpy1. If p | X then, by the induction hypothesis, p | x; for some x; in the
range 1 <14 < k. On the other hand, if p does not divide X, then by the result for
the case n = 2, we must have p | zx41. Thus the induction step is done and the
results holds for all n. 0O

Note that the above result holds only for primes p (and not for other positive
integers). This is a crucial property of primes, which makes prime factorizations
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unique. It is not possible to obtain unique factorizations by other sets of positive
integers.

Theorem 3.15 (The Fundamental Theorem of Arithmetics). A positive
integer n > 2 has a unique prime factorization, apart from the order of the factors.

Proof. We already know the existence of prime factorizations, it remains to prove
their uniqueness. If there is a number for which we have non-uniqueness, then there
is a smallest one N. That is,

N =pip2---p, and N =qg - q,
where the p; and the ¢; are primes, not necessarily distinct. Write
N =p N, where N’ =py---ps.

Since p1 | N and N = ¢q1¢2 - - - qi, it follows from Lemma 3.14 that p; divides one of
the factors, say g;. In fact, since g; is a prime p; = ¢1 (see exercises). Thus we can
cancel the terms p; and ¢; from the two expressions for IV, obtaining

N =po-pr=qq2 " qj—1¢j+1 " Qi

So N’ has two prime factorizations. But N’ < N, so the factorizations must be the
same, apart from the order of the factors. If we now re-introduce the (equal) factors
p1 and g;, we conclude that the original factorizations of N must be the same, apart
from the order of the factors. This contradicts the definition of N. Hence, there
can be no such N, and the theorem is true forn > 2. 0O

We usually collect equal primes in the factorization of n and write

__ 61,62 €
n=p;py P,

where p1,po, ..., p, are distinct primes and e, e, ..., e, are positive integers. For
example, 7000 = 23 x 53 x 7.

Many important results in number theory are proved using prime factoriza-
tions. The following lemma is an immediate consequence of the Fundamental The-
orem of Arithemetic.

Lemma 3.16. Let a = pi'p5* --- pp* and b = p{l Dy’ pi’“ be any positive
integers with the given prime factorizations (e; > 0, f; > 0, for all i, 1 <1i < k).
Then the following is true:

1. ged(a,b) = pi™t py'* -+ py'*, where m; = min(e;, f;),

2. lem(a,b) = p{wl pé\b pjkw’“, where M; = max(e;, f;).

3.5 The Sieve of Eratosthenes

In this section, we briefly present a simple general method for determining if a
number is prime. There are much more efficient (and complicated) primality tests
than the one we discuss here.
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The key fact that is used for the method discussed in this section is the fact
that if n is composite then it must have a prime factor which is less than or equal
to v/n, see Lemma 3.2.

The method to produce all primes up to N > 2:

1. List all integers 2, ..., n.
2. Let a=2.
3. Cross out all multiples of a except for a itself.

4. If all integers between a and N are crossed out then stop. Otherwise, replace
a by then next largest integer which has not been crossed out. If this new a
is greater than v IV then stop.

5. Go to step 3.

This process must terminate after at most v/ N steps. Here is an example for N = 20
(VN =~ 4.5).
Step 1:
2,3,4,5,6,7,8,9,10,11,12, 13, 14, 15, 16,17, 18, 19, 20
Step 2: Cross out multiples of 2:
2,3, A5, 6,7, 8,9, 10,11, 12,13, 14,15, 16,17, 18,19, 20
Step 3: Cross out multiples of 3:
2,3, A5, 6,7, 8, 9, 10,11, 12,13, 14, 15, 16,17, 18,19, 20

All the remaining numbers are prime.

3.6 Encrypting messages

Suppose that Alice wants to send Bob an e-mail that noone else should be able to
read. Sending a plain text message is not an option; always remember that sending
an e-mail is like sending a picture card, easily readable for everyone who has access
to one of the many servers the message must pass before it is transmitted from Alice
to Bob. To keep the message secret, Alice (the sender) encrypts the message into
a seemingly meaningless sequence of letters, and Bob (the receiver) decrypts this
sequence back to the original message. If the cryptosystem is secure, unauthorized
persons will be unable to discover the decryption technique, so even if they read the
encrypted message, they will be unable to decrypt it. For example, if a credit card
number is sent over the Internet, it is important for the number to be read only
by the intended recipient. In this section, we look at some algorithms that support
secure communication.

In one of the oldest and simplest systems, the sender and receiver each have
a key that defines a substitute character for each potential character to be sent.
Moreover, the sender and receiver do not disclose the key. Such keys are said to be
private.

Example 3.17. If a key is defined as (note that the first character in the following
sequence is the space)

characters: ABCDEFGHIJKLMNOPQRSTUVWXYZ
replaced by: EIJFUAXVHWP GSRKOBTQYDMLZNC
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the message SEND MONEY would be encrypted as QARUESKRAN. The encrypted mes-
sage SKRANEKRELIN would be decrypted as MONEY ON WAY.

This system has two fundamental flaws:

1. Long messages can be easily deciphered by frequency analysis. On average,
every letter appears with a certain frequency in an English text. For example,
“e” and “z” have the frequencies 12.7% and 0.1%, respectively. This means
that in a text of 1000 letters it can be expected that e appears approximately
127 times while z appears only approximately 10 times. The longer the text
the more precise these estimates become. Now, if in an encrypted text of 1000
letters the letter “a” appears 120 times, the chances are quite high that “a”
stands for “e” in the original text (“t”, the second most frequent letter, has a
frequency of 9.1%). This technique can be refined by exploiting various other
properties of long texts, e.g., “the” is a frequently encountered word.

2. The need to exchange private keys. The sender needs to send the key to the
receiver in a secure fashion. This might not be a problem for Alice and Bob,
who can meet each other regularly and can exchange keys from person to
person. But key distribution is a difficult problem for companies. Imagine a
bank wants to send some confidential data to a client. The bank picks some
key (because of 1, it cannot use the same key frequently) and encrypts the
message. How does the bank inform the client of the key? The only secure
way to send a set of keys is to hand it over in person, an impracticable and
time-consuming task.

Of the two flaws, the second is the one that really hurts. The first disadvantage
can be addressed by using fancy, complicated encryption schemes such as DES,
but until the mid-1970’s it was believed that the problem of key distribution was
unsolvable. But then Ronald A. Rivest, Adi Shimar and Leonard M. Adleman came
up with the so called RSA public-key cryptosystem which avoids the problem of key
distribution by using different keys for encrypting and decrypting a message. The
idea is that Bob generates a public and a private key, the first is for encrypting
messages and the second for decrypting messages. He keeps the private key secret
(on his computer) and sends the public key to Alice, who uses this key to encrypt
her message. Only Bob knows the private key, so noone besides him (not even
Alice) is able to decrypt the message. While the described concept might sound
pretty simple, its realization requires many of the concepts from number theory we
have had in this chapter.

In the RSA system, messages are represented as numbers. For example, each
character might be represented as a number. If a blank space is represented as 1,
“A” as 2, “B” as 3, and so on, the message SEND MONEY would be represented as 20,
6, 15, 5, 1, 14, 16, 15, 6, 26. The integers can be combined into the single integer

20061505011416150626

by adding leading zeros to all single-digit numbers.

We next describe how RSA works, present a concrete example, and then dis-
cuss why it works. Each prospective recipient (Bob) chooses two primes p and ¢
and computes z = pq. Since the security of the RSA system rests primarily on the
inability of anyone knowing the value of z to discover the numbers p and ¢, the
numbers p and ¢ are typically chosen so that each has 100 or more digits. Next,
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the prospective recipient computes ¢ = (p—1)(¢ — 1) and chooses an integer n such
that ged(n,¢) = 1. In practice, n is often chosen to be a prime. The pair z,n is
then made public. Finally, the prospective recipient computes the unique number
s, 0 < s < ¢, satisfying ns =1 mod ¢ (an efficient way for computing s is given in
Section 3.3). The number s is kept secret and used to decrypt messages.

To send the integer a, 0 < a < z — 1 (in practice, messages are broken into
smaller parts corresponding to integers smaller than z), to the holder of the public
key z,n (Bob), the sender (Alice) computes the remainder ¢ of a™ under division
by z and sends ¢ (how to compute this efficiently will be discussed in the exercises).
To decrypt the message, the recipient computes the remainder of ¢® under division
by z, which can be shown to be equal to a.

Example 3.18. Suppose that we choose p = 23,q = 31, and n = 29. Then
z=pg="T713and ¢ = (p—1)(¢ — 1) = 660. Now s = 569 since

29 x 569 = 16501 =1 mod 660.

Bob makes the pair z = 713, n = 29 publicly available. For Alice to transmit the
message a = 572 to Bob, she computes

a® =572% = 113 mod 713
<~

and sends ¢ = 113. Bob computes
¢* =113 =572 mod 713

in order to decrypt the message.

The main result that makes encryption and decryption work is that
a*=a modz, forall 0<a<zandu=1 mod ¢. (3.1)

Using this result and the following theorem, we will show that decryption produces
the correct result.

Theorem 3.19. Ifa,b, and z are positive integers and a =r mod z, b= q mod z,
then
ab=rq mod z.

Since ns =1 mod ¢, using (3.1) and Theorem 3.19 gives
¢® mod z = (a" mod z)° mod z =a"™ mod z = a,

wich proves that Bob indeed decrypts a. The security of RSA relies heavily on the
fact that currently there is no efficient algorithm for factoring integers.

Cryptology is a fascinating subject still under development. One of the chal-
lenging problems is to hide an encrypted message in an innocently looking piece of
information with noone even able to decide whether the innocent information con-
tains an not-so-innocent encrypted message, leave alone extracting the encrypted
message. An example in this direction are water mark technologies in digital images.
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Relations

Relations generalize the notion of functions. The presence of an ordered pair (a,b)
is interpreted as indicating a relationship from a to b. But in contrast to functions
there might be some ¢ # b for which there is also a relationship from a to c.

Definition 4.1. A (binary) relation R from a set X to a setY is a subset of the
Cartesian product X x Y. If (z,y) € R, we write x Ry and say that x is related to
y. If X =Y, we call R a relation on X.

Similarly as for functions, the set

{reX: (z,y) € R for some y € Y}
is called the domain of R. The set

{yeY: (z,y) € R for some z € X}

is called the range of R. A function f is a special type of relation, additionally
satisfying the following two properties

1. The domain of f is equal to X.

2. For each x € X, there is exactly one y € Y such that (z,y) € f.

Example 4.2. Let R be the relation on X = {1,2,3,4} defined by (z,y) € R if
r <y,y € X. Then

R={(1,1),(1,2),(1,3),(1,4),(2,2),(2,3),(2,4),(3,3), (3,4), (4,4)}.

The domain and range of R are both equal to X.

An informative way to picture a relation on a set is to draw its digraph. To
draw the digraph of a relation on a set X, we first draw dots (called wvertices) to
represent the elements of X. Next, if the element (x,y) is in the relation, we draw
an arrow (called a directed edge) from x to y. In Figure 4.1, we have drawn directed
edges to represent the members of the relation of Example 4.2. Note that an element
of the form (z, z) in a relation corresponds to a directed edge from x to z. Such an
edge is called a loop.

37
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Figure 4.1. The digraph of the relation of Example 4.2.

We next define several properties a relation may have.

Definition 4.3. A relation R on a set X is called reflexive if (x,z) € R for all
zeX.

The relation of Example 4.2 is reflexive. The digraph of a reflexive relation has a
loop at every vertex.

Definition 4.4. A relation R on a set X is called symmetric if for all z,y € X
with (z,y) € R we also have (y,z) € R.

The relation of Example 4.2 is not symmetric. For example (1,3) € Rbut (3,1) € R.
Edges in the digraph of a symmetric relation always go in both directions (usually
denoted by <—»).

Definition 4.5. A relation R on a set X is called antisymmetric if for all x,y € X
with (z,y) € R and x # y, we have (y,z) € R.

The relation of Example 4.2 is antisymmetric. Edges in the digraph of a antisym-
metric relation never go in both directions.

Remark 4.6. A relation which has no members of the form (x,y) with x # y is,
by the definition, antisymmetric.

Definition 4.7. A relation R on a set X is called transitive if for all z,y,z € X
with (z,y) € R and (y,z) € R, we also have (z,z) € R.

The relation of Example 4.2 is transitive. To formally verify that this relation
satisfies Definition 4.7, we can list all pairs (z,y) and (y, z) with z # y and y # z,
and then verify that (z,z) € R:

(z,9) (y.2) | (x,2)
(1,2) (2,3) | (1,3)
(1,2) (2,4) | (1,4)
(1,3)  (3,4) | (1,4)
(2,3) (3,4) | (2,4)



4.1. Partial order 39

This method of listing will be tedious for large X and impossible for infinite X.
A more elegant of proof that the relation of Example 4.2 is transitive could be as
follows:

(,y),(y,2) ER = z<y,y<z = <z = (x,2) € R

4.1 Partial order

Relations can be used to order elements of a set. For example, the relation R defined
on the set of integers by
(x,y) €R ifx <y

orders the integers. Note that the relation R is reflexive, antisymmetric, and tran-
sitive.

Definition 4.8. A relation R on a set X is called a partial order if R is reflexive,
antisymmetric, and transitive.

Example 4.9. The relation defined on the positive integers by
(r,y) € R if © divides y

is reflexive (z | x), antisymmetric (z | y,y | * = x = y), and transitive (v | y,y |
z = x| z). Thus, R is a partial order.

If R is a partial order on a set X, the notation x < y is sometimes used to
indicate that (z,y) € R. This notation suggests that we are interpreting the relation
as an ordering of the elements in X.

Suppose that R is a partial order on a set X. If x,y € X and z < y or y < z,
we say that x and y are comparable. If z,y € X and x £ y and y £ x, we say that
x and y are incomparable. If every pair of elements in X is comparable, we call R a
total order. The less than or equal relation of Example 4.2 is a total order since, if =
and y are integers, we have x < y or y < z. The “divides” relation of Example 4.9
has both comparable and incomparable elements and is therefore not a total order.
For example, 2 and 3 are incomparable (since 2 does not divide 3 and 3 does not
divide 2).

4.2 Equivalence relations

Suppose we have a set X of 10 balls, each of which is either red, blue, or green. If
we divide the balls into sets R, B, and G according to their color, then we have a
partition of X. More formally, a partition of a set is defined as follows.

Definition 4.10. A collection S of nonempty subsets of a set X is said to be a
partition of the set X if every element in X belongs to exactly one member of S

Example 4.11. If X ={1,2,3,4,5,6,7,8} then
S1 = {{17 4, 5}7 {27 6}’ {3}v {7a 8}}

is a partition of X but
S =1{1,3,5,7},{2,4,6}}, Ss=1{{1,3,5,7},{2,4,6,8},{3,4}}
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are not.

Theorem 4.12. Let S be a partition of a set X. Define the relation x Ry to mean
that for some set S in S, both x and y belong to S. Then R is reflexive, symmetric,
and transitive.

Proof. Let x € X. By the definition of a partition,  belongs to some member S
of §. Thus, x Rx and R is reflexive.

Suppose that x Ry. Then both x and y belong to some set S € S. Since both
y and = belong to S, we also have y Rz and R is symmetric.

Finally, suppose x Ry and y R z. Then both = and y belong to some set S € S
and both y and z belong to some set T' € S. Since y belongs to exactly one set of
the partition, we must have S = T. Therefore, both y and z belong to S, which
implies « R z and consequently R is transitive. [0

Example 4.13. Consider the partition S; from Example 4.11. Then the relation R
on X given by Theorem 4.12 contains the ordered pairs (1,1),(1,4),(1,5) because
{1,4,5} is in S;. The complete relation is given by

R={(1,1),(1,4),(1,5),(4,1), (4,4), (4,5), (5,1), (5,4)
(2,2),(2,6),(6,2),(6,6),(3,3),(7,7),(7,8),(8,7), (8,8)}.

Let S and R be as in Theorem 4.12. If S € S, we can regard the members of
S as equivalent in the sense of relation R, which motivates calling relations that are
reflexive, symmetric, and transitive equivalence relations. In the starting example,
the relation is “is the same color as”; hence equivalent means that two balls have
the same color.

Given an equivalence relation on a set X, we can partition X by grouping
related members of X. The following theorem, which can be thought as a converse
of Theorem 4.12, gives the details of this idea.

Theorem 4.14. Let R be an equivalence relation on a set X. For each a € X, let
[a] ={z € X : zRa}.
Then S ={[a] : a € X} is a partition of X.

Proof. We must show that every element in X belongs to exactly one member of
S. Let a € X. Since a Ra, we have a € [a]. Thus every element of X belongs to
at least one member of S. It remains to show that every element in X belongs to
ezactly one member of S, that is

if x € X and = € [a] N [b], then [a] = [b]. (4.1)

We first show that for all ¢,d € X, if ¢ Rd, then [c] = [d]. Suppose that ¢ Rd. Let
x € [¢]. Then z Re. Since ¢ Rd and R is transitive, 2 Rd. Therefore, 2 € [d] and
[c] C [d]. The argument that [d] C [¢] is the same as that just given, but with the
roles of ¢ and d interchanged. Thus [c] = [d]. We now prove (4.1). Assume that
x € X and x € [a] N [b]. Then z Ra and x Rb. Our preceeding result shows that
[x] = [a] and [z] = [b]. Thus [a] = [b]. O
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Definition 4.15. Let R be an equivalence relation on a set X. The sets [a] defined
in Theorem 4.14 are called the equivalence classes of X given by the relation R.

Example 4.16. Let us consider the equivalence relation R from Example 4.13:

R={(1,1),(1,4),(1,5),(4,1), (4,4), (4,5), (5,1),(5,4), (5, 5),
2’2 7(27 ’(6’ b b ) ) b ) b b 7(877 ) b }
The equivalence class [1] containing 1 consists of all « such that (x,1) € R. There-
fore, [1] = {1,4,5} = [4] = [5]. The remaining equivalence classes are found simi-
larly:

2] = [6] = {2,6}, [3]={3}, [7]=1[8={78}.

The equivalence classes appear quite clearly in the digraph of the relation:

The three equivalence classes appear as subgraphs, each of which is completely
connected (in each subgraph there is an edge from every vertex to every other
vertex). The subgraphs themselves, however, are completely disconnected from
each other, i.e., there is no edge from one subgraph to the other.

4.3 Matrices of relations

A matrix is a convenient way to represent a relation R from X to Y if both sets are
finite. Such a representation can be used by the computer to analyse a relation. We
label the rows with the elements of X (in some arbitrary order), and we label the
columns with the elements of Y (in some arbitrary order). We then set the entry
in row z and column y to 1 if x Ry and to 0 otherwise. This matrix is called the
matriz of the relation R.

Example 4.17. The matrix of the relation

R={(1,0),(1,d),(2,¢),(3,¢),(3,0),(4,a)}

from X = {1,2,3,4} to Y = {a, b, ¢, d} relative to the orderings 1,2,3,4 and a,b, c,d
is

=~ O N

_= oo O O Q
O~ O~ o
O =R = O O
OO O~ Q
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A different ordering of the elements in X and Y yields a different matrix. For
example if we use the orderings 2,3,4,1 and d, b, a, ¢ then

d b a c
2 (0 0 0 1
310 1 0 1
410 0 1 0
111 1 0 0

When we write the matrix of a relation R on a set X (i.e., from X to X), we
use the same ordering for the rows as we do for the columns.

Example 4.18. The matrix of the relation

R = {(aaa)v (b7 b)? (C’ C)? (d7 d)? (b7 C)v (C7 b)}

on {a,b,c,d} relative to the ordering a,b, c,d is given by

a b ¢ d
al|l 0 0 O
b {0 1 1 0
c |0 1 1 0
d|0 0 0 1

Note that the matrix of a relation on a set X is always a square matrix.

We can quickly determine whether a relation R on a set X is reflexive by
examining the matrix A of R. The relation R is reflexive if and only if A has 1’s
on the diagonal. We can also quickly determine whether a relation R is symmetric.
The relation R is symmetric if and only if for all ¢ and j, the (¢,7)th entry of A
equals the (j,7)th entry of A. It is more difficult to check whether a given relation
is transitive. For this purpose, we introduce the composition of two relations.

Definition 4.19. If Ry is a relation from X toY and Ry is a relation from'Y to
Z, the composition of Ry and Ro, denoted by Ry o Ry, is the relation from X to Z
defined by

Roo Ry ={(x,2): (x,y) € Ry and (y,2) € Ry for somey € Y}.

The matrix representing the relation Rs o R; can be obtained by multiplying
the matrices representing Ry, and R;. Before we state this result formally, let us
consider an example.

Example 4.20. Let R; be the relation from X = {1,2,3} to Y = {a, b} defined
by
Ry ={(1,a),(2,0),(3,a),(3,b)},

and let Ry be the relation from Y to Z = {x,y, 2z} defined by

Ry = {(avx)a (avy)a (bv y)v (ba Z)}
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Matrices A; and A, representing R; and Ry are given by

a b vy oz
Lo a |l 1 0
Ai=210 11, AZ:b {O 1 1].
3 (1 1
The product of these matrices is given by
1 10
AjAs =10 1 1
1 2 1

The exact values of this matrix are not so much of interest; it is only important
whether an entry is zero or nonzero. We therefore set all nonzeros entries of this
matrix to one and obtain the following matrix representing the relation Rs o Ry,

T Yy z
111 10
2(0 1 1
311 1 1

Theorem 4.21. Let R; be a relation from X to 'Y and let Ry be a relation from'Y
to Z. Choose orderings of X,Y, and Z. Let Ay be the matriz of Ry and let As be
the matriz of Ro with respect to the orderings selected . The matriz of the relation
Ry o Ry with respect to these orderings is obtained by replacing each nonzero term
in the matriz product A1As by 1.

Theorem 4.21 gives a quick test for determining whether a given relation is transi-
tive. If A is the matrix of R (relative to some ordering), we compute A2. We then
compare A and A2. The relation R is transitive if and only if whenever an entry
(i,7) in A? is nonzero, the entry (i,5) in A is also nonzero. The reason is that an
entry (i,j) in A2 is nonzero if and only if there are elements (i,k) and (k,7) in R
(this follows from the rules of matrix-matrix multiplication). Now R is transitive if
and only if whenever (i, k) and (k, j) are in R, then (4,7) is in R. But (i,5) isin R
if and only if the entry (4,7) in A is nonzero.

Example 4.22. The matrix of the relation in Example 4.18 is given by

a b c d

al|ll 0 0 O

b 10 1 1 0

c |0 1 1 0

d|0 0 0 1

Its square is

1 0 0 0
2 |10 2 20
A= 02 2 0
0 0 01



44 Chapter 4. Relations

We see that whenever an entry (i, ) in A? is nonzero, the entry (i,7) in A is also
nonzero. Thus, the underlying relation is transitive.

Example 4.23. The matrix of the relation

R = {(aa a)v (ba b)» (Cv C)» (d7 d)v (aa C)v (Ca b)}

on {a,b,c,d} relative to the ordering a, b, ¢, d is given by

1 010

01 0O

A= 0 1 1 0

0 0 0 1

Its square is

1 1.1 0

2o |01 00

A7 = 0 2 10

0 0 01

The entry (1,2) of A? is nonzero but the corresponding entry in A is zero. Thus,
R is not transitive.



Chapter 5

Principles of Counting

A major theme of this course is the development of effective techniques for counting
a finite set X. When X arises in a complex problem we may require sophisticated
counting methods far removed from the say-and-point technique of constructing
a bijective correspondence between N and X. But before, we recall one of the
most important techniques for proving counting principles. It is also important in
virtually any branch of mathematics and computing science.

5.1 Proof by induction

The principle of mathematical induction can be formally stated in terms of a pred-
icate P(-) on the set of natural numbers.

Axiom 5.1. Suppose that P(n) is a statement with the following properties:
(i) P(1) is true.
(i) if P(k) is true then P(k+ 1) is true for every k € N.

Then P(n) is true for all n € N.

Example 5.2. Suppose we want to prove that the following statement P(n) is true
for all n € N:
P(n) = {n® 4 5n is a multiple of 6}.

We have to check that the two properties of Axiom 5.1 are satisfied:
(i) P(1) is true.
(ii) if P(k) is true then P(k 4 1) is true for every k € N.

Property (i) is satisfied since 13 + 51 = 6 is trivially a multiple of 6. Showing
property (ii) requires more work (this is a typical “feature” of proofs by induction).
Suppose that P(k) is true; that is, & 4+ 5k = 6m, where m is a natural number. We
have to deduce that P(k+ 1) is true. Inserting n = k+ 1 in the expression n? + 5n,
we obtain

(k+1)3+5(k+1) = (K +3k% + 3k + 1) + (5k + 5).

45
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In order to use the assumption that k% 4+ 5k = 6m, we rewrite this as follows:
(K* +5k) +3(k* +k+2) = 6m + 3k(k +1) +6.

It remains to show that this is a multiple of 6. Now, we already know that k(k+1)
is always an even number, say 2r. This shows that the last expression is equal to
6(m + r +1). To summarize, we have shown that P(1) is true and that if P(k)
is true, then P(k + 1) is true. Applying the principle of induction (Axiom 5.1), it
follows that P(n) is true for all n € N.

Often it is convenient to use the following terminology. The statement P(1)
is called the induction basis, the assumption that P(k) is called the induction hy-
pothesis, and the proof that P(k) implies P(k + 1) is called the induction step.

5.2 The addition principle

Our first rule of counting has been used in practice since the dawn of civilization
(not in such a formalized form, though).

Theorem 5.3. If A and B are non-empty finite sets, and A and B are disjoint,
then
|AU B| = |A| + |B|.

Proof. Since A and B are non-empty and finite, we can list A and B in the standard
way as
A:{al,ag,...,ar}, B:{bl,b27...,bs}.

Since A and B are disjoint, AU B can be listed in the standard way as

AUB = {617027‘-~7C7"ac'r+17-~'acr+s}>

o — a; ifi<r,
v bi_p if i >nr.

where

Hence |[AUB| = r+ s = |A| + |B|, as claimed. O It is clear that the rule is

still valid if A, or B, or both A and B, are empty. Furthermore, the rule can be
extended to the union of any number of mutually disjoint sets Ay, Ao, ..., A, in the

obvious way,
[AyUAsU---UA,| = |A1| +|A2| + -+ |An].

This result can be proven by mathematical induction using Theorem 5.3 for the
induction step.

A simple application of this rule leads to the so called pigeonhole principle
Suppose that a number of objects are distributed into n boxes, and A; denotes
the set of objects which are in box ¢, 1 < ¢ < n. Since the sets A; are disjoint
(no object can be in two boxes at the same time), the total number of objects is
|A1| 4+ |A2| + - -+ + |Ay,], and if no box contains more than r objects this number is
at most

r+r+---+r=nr

Putting this argument in reverse, we have the pigeonhole principle:
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If m objects are distributed into n boxes and m > nr, then at least one box
contains at least v + 1 objects.

Example 5.4. Suppose we want to show that in any set of six people there are
either three mutual friends or three mutual strangers.

For this purpose, let a be any one of the people, and distribute the other five
people into two “boxes”, box 1 containing the people who are friends with a, and
box 2 containing those who are strangers to a. Since 5 > 2 + 2, one of these boxes
contains at least three people. Suppose box 1 contains 3,+,¢ (and possibly other
people). If any two of {3,v,d} are friends, say § and =, then {a, 5,7} is a set of
three mutual friends. On the other hand, if no pair of {8,v,0} are friends, then
{B,7,0} is a set of three mutual strangers.

If it happens that box 2 contains three or more people, a parallel argument
with friends and strangers interchanged leads to the same conclusions.

5.3 Counting pairs and the multiplication principle

Quite often we have to count things which can be described more naturally as pairs,
rather than single objects. To illustrate such situations, consider the following menu
of a junk food restaurant:

Appetizers  Main Courses  Beverages

Nachos Hamburger Tea
Salad Cheeseburger  Milk
Fish Filet Cola
Root Beer

If we list all possible dinners consisting of one main course and one beverage,
HT, HM, HC, HR, CT, CM, CC, CR, FT, FM, FC, FR,

we see that there are 12 different dinners. Notice that there are three main courses
and four beverages, and 12 = 3-4. Similarly, there are 24 possible dinners consisting
of one appetizer, one main course, and one beverage. Notice that there are two
appetizers, three main courses and four beverages, and 12 =23 - 4.

If we let X denote the set of all appetizers, Y the set of all main courses, and
Z the set of all beverages, then each element in the set X x Y x Z is a possible
dinner consisting of one appetizer, one main course, and one beverage. What we
have observed above can be stated formally as

X xY x Z| = |X|-|Y]-|2].

Some dinner combinations could be a matter of taste. Let us say a guest excludes
certain combinations and comes up with the following table of admissible combina-
tions

Hamburger Cheeseburger Fish Filet

Tea — — + 1

Milk — + + 2

Cola + + + 3

Root Beer + + — 2
2 3 4
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Here, + denotes an admissible combination. The numbers on the right and on
the bottom denote the number of admissible combinations in each row and column,
respectively. Note that the sums of these numbers yield the same result 1+2+342 =
2 4+ 3+ 3 = 8, which happens to be the number of all admissible combinations of
one main course with one beverage.

All observations made above are formalized and summarized in the following
theorem.

Theorem 5.5. Let X and Y be finite non-empty sets, and let S be a subset of
X xY. Then the following results hold

1. The size of S is given by

IS =D ra(S) =D ey(S),

reX yeYy

where r5(S) and ¢, (S) are the row and columns totals defined as
ro(S) =y : (z,9) € S}, ¢ (S) = {z: (2,9) € S}H.

2. The size of X XY is given by | X xY| = |X|-|Y].

5.4 Euler’'s function

In this section we shall prove an important and useful theorem using only the most
basic counting principles.

The theorem is concerned with the divisibility properties of integers. Recall
that two integers x and y are relatively prime if ged(z,y) = 1; and for each n > 1
let ¢(n) denote the number of integers z in the range 1 < x < n such that = and
n are relatively prime. We can calculate the first few values of ¢(n) by making a
table:

n relatively prime ton  ¢(n)

ot
D

N O U W N
e e e e e e
LN TT N LN

QOJ
=~
O N R NN =

ot
~ e

8

The function ¢ is called Fuler’s function after Leonhard Euler (1707-1783). When
n is prime, say n = p, each one of the integers 1,2,...,p — 1 is relatively prime to
p, so we have

¢(p) =p—1, (p prime).
In the following, we will show that the sum of the values ¢(d) taken over all divisors

d of a given positive integer n is again n. For example when n = 12, the divisors d
are 1,2,3,4,6, and 12, and we find that

A1)+ 0(2) + d(3) + ¢(4) + d(6) + ¢p(12) =1 +1+2+2+2+4 = 12.
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Theorem 5.6. For any positive integer n,

> ¢(d) =n.
d|n

Proof. Let S denote the set of pairs of integers (d, f) satisfying
dln, 1<f<d, gcd(f,d) =1.

Using the terminology of Theorem 5.5, we find that r4(S) = ¢(d) and we thus have

S| =" ¢(d).

d|n

In order to show |S| = n we shall construct a bijection 3 from S to [1,n].
Given a pair (d, f) € S, we define

B(d, f) = fn/d.

Since d|n, the value of 3 is an integer, and since 1 < f < d, it lies in N. To show
that (3 is an injection we remark that

B, fy=p6d,f) = fn/d=fn/d = fd=/Ffd

But f and d are relatively prime, as are f’ and d’, so we can conclude d = d’ and
f = f'. To show that [ is a surjection, suppose we are given x € N. Let g, denote
the ged of x and n, and let

dm:n/gwa fm:x/gm

Since g, is a divisor of  and n, both d, and f, are integers, and since it is the gcd,
d, and f, are relatively prime. Now

and so [ is a surjection. Thus g is a bijection and |S| = n, as required. O

5.5 Functions, words, and selections

We shall consider functions (not necessarily bijections) defined on a set [1,m], and
with values in a given set Y. The values of such a function determine an m-tuple

(f(), f(2),..., f(m))

of elements of Y. According to the general definition of a product set, this m-tuple
belongs to the set Y X Y x --- x Y (m factors), which is also denoted by Y. Each
element of Y™ is an m-tuple (y1,y2,...,Ym) and corresponds to a function f from
[1,m] to Y defined by the equation

f(]'):yl, f(2):y27 ,f(m):ym
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These remarks lead us to the conclusion that a function from [1,m] to Y is logically
the same thing as an element of the product set Y.

There is another way of looking at this relationship, which is very useful in
practice. If we think of the members of Y as the letters of an alphabet, then
the sequence f(1), f(2),..., f(m) can be regarded as the m letters of a word. For
example, if Y is the simple alphabet {a,b, ¢,d} the words cab and dad correspond
to the functions f and g defined by

fW)=c [f2)=a, [B)=b g(1)=d, g(2)=a, g(3)=d

The function f, the 3-tuple (c,a,b), and the word cab are formally identical, and
so we shall define a word of length m in the alphabet to be a function from [1,m)
to Y.

Theorem 5.7. Let X and Y be non-empty finite sets, and let F' denote the set of
functions from X to Y. If | X| =m and |Y| = n, then

|F| =n™.

Proof. Let X = {x1,xa,...,2Zm,}. Each member f of the set F is a function from X
to Y, and is uniquely determined by the m-tuple of its values (f(1), f(2),..., f(m)).
This tuple belongs to Y™, and so |F| = |[Y™| =|Y|™ =n". O

Equivalently, we may say that the number of words of length m in an alphabet
Y of n symbols is n™. For example, there are 263 = 17576 three-word letters in
the usual Roman alphabet. Note that each word represents an ordered selection of
letters from the alphabet, with repetitions as many times as required. In general
we can say that a function from [1,m] to Y is a mathematical model of an ordered
selection with repetition of m objects from the set Y. (In the subsequent sections,
we will be concerned with selections which may be ordered or unordered, and with
or without repetition.)

Example 5.8. The developed framework provides a clean proof that the power set
2X (the set of all subsets of X) has cardinality 2", where n is the cardinality of X.
For this purpose, suppose X = {z1,z2,...,2,}, and let Y be the alphabet {0,1}.
Any subset S of X corresponds to a word of length n in Y, defined by the function

L fo ifx ¢S,
S(Z)_{l if z; € S.

For example, if n =7 and S = {x1, 22,23}, the word is 0101100. Consequently, the
number of distinct subsets of X is the same as the number of words of length n in
the alphabet {0, 1}, that is 2.

5.6 Injections as ordered selections without
repetition
In many situations we have to make a selection without repetition. For example,

if we are selecting a team for soccer, then no available player can be selected more
than once. The language of functions provides a ready model for this situation.
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We have seen that an ordered selection of m objects from a set Y corresponds to a
function f from [1,m] to Y, where f(1) is the first member of Y selected, and so
on. When repetition is allowed, it is possible that the same object is selected twice,
so that f(r) = f(s) for distinct r and s in [1,m]. If this is prohibited then f is an
injection, yielding a mathematical model of ordered selection without repetition.

Theorem 5.9. The number of ordered selections, without repetition, of m objects
from a setY of size n is the same as the number of injections from [1,m] to Y, and
it 1s given by

nn—1)(n—-2)---(n—m+1).

Proof. Each injection from [1,m] to Y is uniquely determined by the ordered
selection of distinct values i(1),4(2),...,4(m). The first selection can be any one of
the n objects in Y. Since repetition is not allowed, the second selection #(2) must
be one of the remaining n — 1 objects. Similarly, there are n — 2 possibilities for
i(3), and so on. When we come to select i(m), m — 1 objects have already been
selected, and so i(m) must be one of the remaining n — (m — 1) objects. Hence, the
total number is as stated. 0 For example if we have a pool of 20 soccer players

the number of ways of selecting the 11 players to their individual positions in the
game is

20 x 19 x ---10 = 6704425728000.

5.7 Permutations

A permutation of a non-empty finite set X is a bijection from X to X. Frequently
we take X from [1,m] = {1,2,...,m}. For example, a typical permutation of [1, 5]
is the function « defined by

a(l)=2, a2)=4, aB)=5, «ad)=1, «fb)=3. (5.1)

A Dbijection from a finite set to itself is necessarily an injection, and conversely
we already know that any such injection is also a bijection. Thus the number of
permutations of a set of cardinality n is the same as the number of injections from
[1,n] and to itself, and by Theorem 5.9 this number is

nn—1)---1=nl

We denote the set of all permutations of [1,7n] by S,,. For example, S3 contains the
following 3! = 6 permutations

123 123 123 123 123 123
L 2 T e
123 132 213 231 312 321

Permutations are functions; they are combined as in the usual composition of func-
tions. To illustrate this, let « as in (5.1) and consider § € S5 defined by
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The composite function S« is the permutation defined by fa(i) = B(a(i)), 1 <i <
5, that is

fa(l) =5, pa(2)=4, fa(3) =2, pfa(d)=3, pal5)=1.

There are four important properties of the composition of permutations, which are
summarized in the following theorem.

Theorem 5.10. The following properties hold in the set S, of all permutations of
{1,2,...,n}.

1. If m and o are in S, so is 7o
2. For any permutations 7,0,7 in Sy, (mo)T = n(oT).

3. The identity function denoted by id and defined by id(r) = r for all v € [1n],
is a permutation and for any o € S, we have ido = oid = 0.

4. For every permutation ® € S,, there is an inverse permutation 7—' € S,, such
that mo— ! =~ = id.

5.8 Binomial numbers

The mathematical model of an unordered selection without repetition is very simple.
When we are given a set X with n members and we select r of them, the result
is a subset Y of X with |Y| = r. It must be stressed that in this model it is the
result of the selection (the subset Y') which is important, rather than the process of
selection. Also, there is no possibility of repetition, since each member of X is either
in Y or not, and no member can be selected twice. Thus the number of unordered
selections, without repetition, of r objects from a set X of size n is just the number
of subsets having cardinality r. For example, there are six unordered selections,
without repetition, of two objects from the set {a,b, c,d}; they correspond to the
subsets

{a,b}, {a,c}, {a,d}, {b,c}, {b,d}, {ed}.

In general, the number of subsets ¥ with |Y| = r from a set X with |X]| = r is
denoted by the symbol
n
()

This is often spoken as n choose r, and will be referred to as a binomial number.
For example, we have just checked that there are six subsets of cardinality 2 from
a set of cardinality 4, and so
4
=6.
)

The calculation of binomial numbers in general depends on the following result.

Lemma 5.11. Ifn and r are positive integers satisfying 1 < r < n then

() -0+
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Proof. Let Z be a set with n — 1 elements. Choose a ¢ Z. Then (:f) is the number
of subsets of cardinality r from X = Z U {a}. Now these subsets can be divided
into two disjoint classes:

1. Subsets of X not containing a.
2. Subsets of X containing a.

The subsets of class 1 are just subsets of Z and there are (”:1) of these. Each
subset of class 2 consists of a subset of Z having cardinality » — 1 together with
a; there are (271) of these. Since both classes are disjoint the addition principle
mplies (1) = (1) + (%,). 0

Lemma 5.11 provides a recursive method for calculating binomial numbers.
If the numbers (";1) are known for 0 < k < n — 1, then the numbers (Z) can be
computed. This calculation is often displayed in the form of a triangle as follows:

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
1 7 21 35 35 21 7 1

This is sometimes called Pascal’s triangle, after Blaise Pascal (1623-1662). If only
one individual coefficient is of interest, it can be more convenient to use the following
explicit formula.

Theorem 5.12. If n and r are positive integers satisfying 1 < r < n, then

(n) _n(n-D)(a-r+1) ol

r r! ri(n —r)!’

Proof. We use the principle of induction. For the induction basis, we remark that
the result is true when n = 1, since (}) = 1 and the formula reduces to 1/1! = 1.

For the induction hypothesis suppose the result is true when n = k. Then, by
Lemma 5.11 and the induction hypothesis,

(7)) C)
:k(k—l) (k—r+2)+k(k:—1)-~-(k:—r+1)
(r—1)! 7!
k(k — 1)(T ()r+2) <1+k:+1>
(k:—i—l)k(k 1)---(n—r+2)
7! ’

It follows that the result is true when n = k41, and so, by the principle of induction,
it is true for all positive integers n. 0O
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It is simple to show the formulas
(a+b)? = a® + 2ab + b?, (a+b)* = a® + 3a®b + 3ab® + b*.
The general result giving a formula for (a + b)™ is known as the binomial theorem.

Theorem 5.13. Let n be a positive integer. The coefficient of the term a™~"b" in
the expansion of (a + b)™ is the binomial number (:f) Explicitly, we have

(a+0b)" = (g) a™ + <T> a" b+ (Z) a2 4 <Z) b

Proof. Consider what happens when we multiply n factors
(a+0b)(a+Dd) - (a+b).

A term in the product is obtained by selecting either a or b. The number of terms
a™ "h" is just the number of ways of selecting r b’s (and consequently n — r a’s),
and by definition this is the binomial number (:) |

The coefficients in the expansion may therefore be calculated by using the
recursion for the binomial numbers (Pascal’s triangle) or by using the formula. For

example,
6\ 6 6\ 5 6\ 4,2 6\ 3,3 6\ 9,4 6\ .5 6,6
<0>a +<1)ab+<2)ab+ 3ab—|- 4ab+ 1ab+ Ob

= a® + 6a’b + 15a*b? + 20a3b® + 15a%b* + 6ab® + bS.

(a+b)8

The binomial theorem can also be used to derive identities involving binomial num-
bers.

Lemma 5.14. For any positive integer n, we have
2 2 2 2
n n n + n T n\" _ 2n
0 1 2 n n)
Proof. We use the identiy

(1+2)"(1+2)" = (1 +x)*.

According to the binomial theorem the left-hand side is the product of two factors

both equal to
n n
1+(>x+...<>zr+...+zn.
1 T

When then two factors are multiplied, a term in z” is obtained by taking a term
(:f) z" from the first factor and a term (nfT) 2"~ " from the second factor. Hence the
coefficient of ™ in the product is

n\ [n n n n . n n T n\ (n
0/ \n 1/\n—-1 2/)\n—-2 n/\0/)
Since (nﬁr) = (:L), we see that this is the left-hand side of the required identity.

But the right-hand side is (2:) which is also the coefficient of z™ in the expansion
of (1 +z)?", and so we have the equality stated. O
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5.9 Unordered selection with repetition

The binomial number (?) is defined to be the number of unordered selections without
repetition of r objects from a set of n objects. We now turn to unordered selections
with repetition. When the numbers involved are small, it is easy to list all the
possibilities. For example, there are 15 unordered selections of four objects from
the set {a, b, ¢}, with repetition allowed, and they are

aaaa aaab aaac aabb aabe
aacc abbb abbc abce acce
bbbb  bbbc  bbce  beee  cece.

We will show that there is a general formula for the number of such selections,
involving binomial numbers. The proof of this fact involves the representation of
such selections as words in the alphabet {0, 1}; for example, the selection abcc will
be represented by the word 101011. The zeros are markers which seoarate the
different types of objects, and the ones tell us how many of each object there are,
according to the scheme

c
1 0 1 0 1 1.

Since there are two markers which can be placed in any of the two positions, the
total number of selections in this case is (g) = 15, as we found by listing them.

Theorem 5.15. The number of unordered selections, with repetition, of r objects
from a set of n objects is
n+r—1
. .

Proof. Since the selections are unordered, we may arrange matters so that, within
each selection, all the objects of one type come first, followed by the objects of
another type, and so on. When this can be done, we can assign to each selection a
word of length n + (r — 1) in the alphabet {0,1}, by the method explained above.
That is, if there k; objects of the ith kind (1 < ¢ < n), then the first k; letters of
the word are 1’s, followed by a single 0, followed by ko 1’s, another 0, and so on.
The function defined by this rule is a bijection from the set of selections to the set
of words of length n+r — 1 which contain exactly n — 1 zeros. The zeros can occupy
any of the n + r — 1 positions, so the number of words is

n+r—1\ (n+r—1
n—1 B T ’

The results of this chapter so far are summarized in Table 5.1.

as requried. [0

5.10 The sieve principle

The most basic counting principle asserts that |A U B is the sum of |A| and |B|
when A and B are disjoint sets. If A and B are not disjoint, the result of adding
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Ordered Unordered

n! n
Without repetition —
7! r
-1
With repetition n" <n T >
r

Table 5.1. Number of selections — ordered and unordered, with and without
repetition — of r objects from a set of n objects.

|A| and |B] is that all members in |A N B| are counted twice. So in order to obtain
the correct answer, we must subtract |A N BJ:
|[AUB|=|A|+|B|—|ANB|.

A similar method can be applied to three sets. When we add |A], |B|, and C the
members of AN B, BNC, and C' N A are counted twice (if they are not in all three
sets). To correct for this we subtract |[AN BJ, |[BN C|, and |C' N A|. But now the
members of |[A N BN, originally counted three times, have been deducted three
times. So, in order to obtain the correct answer, we must add |A N BN C|. Thus,

[AUBUC| = a1 — as + as,
where
a1 =[A|+|B|+[C|, a;=[ANB|+|BNC|+|CNA|, az3=|ANBNC]|.

This result is a simple case of what is called the sieve principle.

Theorem 5.16. If A1, As, | A, are finite sets then
|A1UA2U~-~UAn| = a1 —a2+a3—~-~+(—1)"_1an,

where «; is the sum of the cardinalities of all intersections of i sets.

A simple corollary of Theorem 5.16 is often very useful in practice. Suppose
that Ay, As,..., A, are subsets of a given set X with |X| = N. Then the number
of members of X which are not in any of these subsets is

X\ (A1 UA2U---UA,)| =|X|-]A1UA2U---UA,|
:N—a1+a2—--~—|—(—1)"an.

Example 5.17. There are 73 students in a musics class. Among them a total of
52 can play the piano, 25 can play the violin, and 20 can play the flute; 17 can play
both piano and violin, 12 can play piano and flute and 7 can play violin and flute;
but only one can play all three instruments. How many in this class cannot play
any of these instruments?

Solution: Let P, V, and F denote the sets of students who can play the piano,
violin, and flute, respectively. Using the information given above we have

oy = |P|+|V|+ |F| =524 25+ 20 = 97,
as=|PNV|+|PNF|+|VNF|=174+12+7=36
a3 =|PNVNF|=1.
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Hence the number of students who do not belong to any of the sets P, V, F' is

73—-97+36—-1=11.
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Chapter 6

Recurrence Relations

A recurrence relation for a sequence fo, f1,... is an equation that relates f, to cer-
tain of its predecessors fo, f1,..., fn_1. Initial conditions for the sequence ag, a1, . ..
are explicitly given values for a finite number of terms of the sequence.

In the following, we illustrate the concept of recurrence relations by some
examples.

Example 6.1. A person invests €1000 at 12 percent interest compounded annually.
If A, represents the amount at the end of n years then A, consists of the amount
A, _1 plus the interest. Thus

Ap=Ap 1 +012x Ay =112x Ay_y, n>1. (6.1)

The initial condition is given by Ag = 1000. This allows us to compute the value
of A, for any n. For example,

As = 1.12x Ay = 1.12x1.12x A; = 1.12x1.12x1.12x A = (1.12)3>x 1000 = 1404.93.

Thus, at the end of the third year, the amount is €1404.93. This computation can
be carried out for an arbitrary value of n to obtain

A, = (1.12)" A,.

Note that it is not always possible to find an explicit formula for a recurrence
relation in such an easy manner.

Example 6.2. The Fibonacci sequence is defined by the recurrence relation

f'rL:va—l"'fn—Z, n > 2,

and initial conditions fy = 0, fi = 1. The first elements of this sequence are as
follows:

n|0 1 2

0 7 8 9 10 11 12 13
fa 0O 1 1

5 6
5 8 13 21 34 55 89 144 233

3 4
2 3

59
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6.1 Linear homogenous recursions

In general, it is very difficult to provide an explicit formula for the elements of a
recurrence relation. However, for some classes there is a general way how such for-
mulas can be obtained. In the following, we are concerned with linear homogeneous
recurrence relations with constant coefficients of order k:

Gp = Clap-1 + C2p—2+ -+ Chan_k, cx#0, n>k. (6.2)

Examples 6.1 and 6.2 both belong to this class with £ = 1 and k£ = 2, respectively.
For k = 2, we have the following result.

Theorem 6.3. Let
(p = C10p—1 + C20p_2 (6.3)

be a linear homogeneous recurrence relation of order 2. If two sequences S and T
solve (6.3) then U = bS + dT is also a solution of (6.3).
If r is a oot of the so called characteristic equation

M A= =0 (6.4)

then the sequence r™, n =0,1,..., is a solution of (6.3).
If we additionally have initial conditions ag = Cy,a; = C1 and 1,712 are roots
of (6.4) with r1 # 1o, then there exist constants b and d such that

an, =bri +dry, n=0,1,....

Proof. Since S and T are solutions of (6.3),
Sp = 15,1 + c2Sn—2, T, =c1Th_1+ coT—o.
If we multiply the first equation by b and the second by d and add, we obtain
Up =bSp +dT, = c1(bSy—1 +dTy—1) + c2(bSn—2 + dT5,—2)
=c1Up_1+ U, _s.

Therefore, U is a solution of (6.3), which proves the first part.
Since r is a root of (6.4), we have 12 = ¢;7 + c2. Now

n—2.2 n

2= er o) =" TR =",

ar" et =1p

which proves the second part.
If we set U,, = br]" 4 dry, then we know from the first two parts that U is a
solution of (6.3). To meet the initial conditions, we must have

Uyp=b+d=Cy, Uy = bry +dry = Cf.
If we multiply the first equation by r; and subtract, we obtain
d(ri —r2) = r1Co — Ch.

Since 1y — ro # d, we can solve for d. Similarly, we can solve for b. With these
choices for b and d, we have Uy = Cy and U; = C, which completes the proof. 0O
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Example 6.4. Considering the Fibonacci sequence, see Example 6.2, we have the

characteristic equation
A= A—1=0.

The roots of this equation are given by

145 1+V5

= 2 )

To account for the initial conditions ag = 0 and a; = 1, we have to solve
c+d=0, cry +dre =1,

which gives 1 = ¢(r; —r) = —/5¢ and therefore ¢ = —1/v/5 and d = 1/+/5. Hence,
the explicit formula for the Fibonacci sequence is given by

LU (1-vE\" 1 (145"
TovB\ 2 Vi 2 '

It is possible to extend the results of Theorem 6.3 to general k. The quadratic
characteristic equation (6.3) changes to

LTS Lk P L it Ch—1A —ci = 0.
This polynomial has k roots ry, 72, ..., r; yielding the general solution
U, =bir] + bary + -+ - + by

To determine the coefficients by, bs, . .., bi, k instead of 2 initial conditions must be
provided.
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Chapter 7

Algorithms

An algorithm is a step-by-step method of solving some problem. Although algo-
rithms can be found in many other fields, we will be only concerned with those that
can executed on a computer. Algorithms typically have the following characteristics:

Input The algorithm receives input.
Output The algorithm produces output.
Precisison The steps are precisely stated.

Determinism The intermediate results of each step of execution are unique and
are determined only by the inputs and the results of the preceding steps.

Finiteness The algorithm terminates; that is, it stops after finitely many instruc-
tions have been executed.

Correctness The output produced by the algorithm is correct; that is, the algo-
rithm correctly solves the problem.

Generality The algorithm applies to a nontrivial set of inputs.
Example 7.1. Consider the following algorithm that finds the maximum of three
numbers a, b, and c:

1. large = a.

2. If b > large, then large = b.

3. If ¢ > large, then large = c.

Although ordinary language is sometimes adequate to describe an algorithm,
most computer scientists prefer pseudocode because of its precision, structure, and
universality. Pseudocode is so named because it resembles the actual code of com-
puter language such as C++ and Java but does not include language-specific defini-
tions and overhead which would distract from understanding the algorithm. There
are many versions of pseudocode, any of which is acceptable as long as its instruc-
tions are unambiguous. As our first example, we rewrite Example 7.1 in pseudocode:

Algorithm 7.2 (Maximum of three numbers).

63
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Input: a,b,c
Output: large (the largest of a, b, and c)

max3(a,b,c) {
large = a
if (b > large)
large = b
if (¢ > large)
large = ¢
return large

Our algorithms consists of a title, a brief description of the algorithms, the in-
put to and output from the algorithm, and the functions containing the instructions
of the algorithm. To make it convenient to refer to individual lines, we number the
lines consecutively. The method of Algorithm 7.2 can be used to find the largest
number in a sequence of n numbers.

Algorithm 7.3 (Maximum of a sequence s, $2,...,8,).
Input: s, n
Output: large (the largest value in the sequence s)

max3 (s, n) {
large = s[1]
for i = 2 to n do
if s[i] > large
large = s[i]
return large

We verify that Algorithm 7.3 is correct by proving that
large is the largest value in the subsequence s1,...,s;

is a loop invariant using induction on 1.

For the induction basis (i = 1), we note that just before the for loop begins
executing, large is set to s, so large is surely the largest value in the subsequence
S1.

Assume that large is the largest value in the subsequence sq,...,s;. If i <n
is true (so that the loop body executes again), i becomes ¢ + 1. Suppose first
that s;41 > large. It then follows that s; ;1 is the largest value in the subsequence
S1,-.-,84,Si+1. In this case, the algorithm assigns large the value s; ;1. In this case,
the algorithm assigns large the value of s;11. Now large is equal to the largest value
of the subsequence s1,...,S;, Si+1. Suppose next that s;;1 < large. It then follows
that large is already the largest value of the subsequence si,...,s;, s;+1. In this
case, the algorithm does not change the value of large, thus large remains the
largest value of the subsequence s1, ..., s;, s;41. We have proved the inductive step,
and thus

large is the largest value in the subsequence s1,...,s;

is a loop invariant.
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7.1 Text searching

One of the most frequent tasks performed on a computer is searching. This area
has revived great interest with the advent of the internet (e.g., search engines) and
bioinformatics (e.g., finding gene expressions in a DNA sequence).

Suppose that we are given a text ¢ (e.g., a word processor document) and we
want to find the first occurence of a pattern p in ¢ or determine that p does not occur
in t. We index the characters in ¢ starting at 1. One of the simplest approaches to
searching for p is to check whether p occurs at index 1. If so, we stop, having found
the first occurence of p in t. If not, we check whether p occurs at index 2 in ¢. If
not, we next check whether p occurs at index 3 in ¢, and so on.

Algorithm 7.4 (Text search).

Input: p (indexed from 1 to m), m, t (index from 1 to mn), n
Output: i (the index of the first occurence of p in t, if
it does not occur, i is set to 0)

text_search(p,m,t,n) {
for i = 1 to n-m+1 {
j=1
while (t[i+j-11 == p[jl) {
j=3i+1
if (j > m)
return i
}
}

return O

7.2 Efficiency of algorithms

Roughly speaking, the efficiency of an algorithm is determined by the relationship
between the effort required to solve any specific case of a problem and the size of
that case. In this section we shall attempt to clarify this vague idea.

In order to measure the effort required we usually count the number of signif-
icant operations which the algorithm performs. For example, in Algorithm 7.3 we
need n—1 comparisons and at most n assignments, so we might say that the effort of
the algorithms grows proportionally with n. In contrast, the effort of Algorithm 7.4
heavily depends on the input itself (and not only on its size). If the algorithm finds
the pattern p at the first position of ¢ then only m comparisons are necessary. In
the worst case, the pattern p is not contained in ¢ and the number of comparisons
to discover this fact may grow proportionally with (n —m + 1)m. (There are much
better algorithms for searching.)

The minimum time needed by an algorithm among all possible inputs is called
the best-case time. The maximum time is called the worst-case time. The average
time among all inputs (with the possibility of weighting the influence of inputs
differently) gives the average-case time. Usually, we are less interested in the exact
best-case or worst-case times but only in an approximate estimate how the time
increases as the size of the input increases. For example, assuming n > m, we can
say that the worst-case time of Algorithm 7.4 grows like nm (or like n if we are only
interested in the influence of n). The following definition provides useful tools for
finding such approximate estimates.
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Definition 7.5. Let f and g be functions with domain {1,2,3,...}. We write

and say f(n) is of order at most g(n) if there exists a positive constant Cy such that
|f(n)] < Cilg(n)| for all but finitely many positive integers n. We write

and say f(n) is of order at least g(n) if there exists a positive constant Cy such that
|f(n)| > C2lg(n)| for all but finitely many positive integers n. We write

and say that f(n) is of order g(n) if f(n) = O(g(n)) and f(n) = Q(g(n)).

According to this definition, if f(n) = O(g(n)), all we can conclude is that,
except for a constant factor and a finite number of exceptions, f is bounded above
by g, so g grows at least as fast as f. For example, if f(n) = n and g(n) = 2%,
then f(n) = O(g(n)), but g grows considerably faster than f. The statement
f(n) = O(g(n)) says nothing about a lower bound for f.
Example 7.6. Since

60n* + 5n + 1 < 60n° + 5n° + n® = 66n°,
for all n > 1, we can take C; = 66 in Definition 7.5 to obtain
60n% + 5n + 1 = O(n?).

Since 60n2 + 5n + 1 > 60n2, we also have 60n2 + 5n + 1 = Q(n?). Hence,

60n* + 5n + 1 = O(n?).

A similar method as in Example 7.6 can be used to show the following result.

Lemma 7.7. If f is a polynomial of degree k,

f(n) = apn® + aj_n*!

+ o ain 4 ag
with ay, # 0, then f(n) = O(nk).

In the analysis of algorithms one is often confronted with of integers. The
following result considerably simplifies the task of obtaining simplified expressions.

Theorem 7.8. Let f(k) >0 for all k > 1. Then

f)+F@2)+---+ f(n) = O(g(n)),

where g is a primitive of f.
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For example, we have
1+2+~~~+n—6(/kdk) = 0(n?),
12+22+---+n2:0</k2 dk) = 0(n?),
1nn!:1n1+1n2+~--+1nn=0(/lnk dk) =0O(nlnn).

Many algorithms have logarithmic complexity. Because of log, n = log;, a-log, n, we
have log, n = ©(log, n), i.e., we do not need to worry about the base of logarithms
in estimating the complexity.
Example 7.9. As a simple example, let us consider the following algorithm.
for i = 1 to n

for j =1 to i

x = x + 1

The total number of times the inner loop is executed is
14243+ +n=0(n?.

Hence, the worst- and best-case times of this algorithm are of order n2.
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