Enumeration of frequency squares


Frequency squares are a generalization of Latin squares. A frequency square of order n with frequency vector l=(l1,...,ls) is an n x n matrix with entries from {1,2,...,s} such that the number i appears li times in every row and column. Using the computer I enumerated frequency squares of order n<=8 and the corresponding isotopism classes (squares inequivalent under rearrangements of rows, columns and entries). The work is described in the paper Frequency squares of orders 7 and 8, Utilitas Mathematica 72 (2007), 89-95. Through this page lists of isotopism class representatives and the programs used for the computations can be accessed.

 n  l  No. classes   n  l No. classes
6 (2,2,2) 46 8 (5,3) 51
(2,2,1,1) 106 (5,2,1) 624
(2,1,1,1,1) 56 (5,1,1,1) 370
7 (5,2) 4 (4,4) 156
(5,1,1) 4 (4,3,1) 19 041
(4,3) 16 (4,2,2) 112 043
(4,2,1) 92 (4,2,1,1) 347 263
(4,1,1,1) 56 (4,1,1,1,1) 93 561
(3,3,1) 226 (3,3,2) 766 361
(3,2,2) 1 939 (3,3,1,1) 1 211 710
(3,2,1,1) 5 300 (3,2,2,1) 27 865 024
(3,1,1,1,1) 1 398 (3,2,1,1,1) 29 632 348
(2,2,2,1) 15 269 (3,1,1,1,1,1) 4 735 238
(2,2,1,1,1) 22 813 (2,2,2,2) 26 983 466
(2,1,1,1,1,1) 6 941 (2,2,2,1,1) 171 710 120
(1,1,1,1,1,1,1) 564 (2,2,1,1,1,1) 137 000 435
8 (6,2) 7 (2,1,1,1,1,1,1) 29 163 047
(6,1,1) 7 (1,1,1,1,1,1,1,1) 1 676 267

Large lists are gnu-zipped and the largest ones are not on-line due to limited disk space, but I can supply them on DVD upon request.


Vedran Krcadinac, 1.3.2011.