Three-dimensional symmetric designs of propriety 3


A three-dimensional (v,k,λ) designs of propriety 3 is a v×v×v array with {0,1}-entries such that every v×v subarray (layer) contains exactly k entries 1, and the scalar product of any pair of parallel layers is λ. These objects are studied in the paper [1]; similar objects were previously studied in [2, 3, 4]. This web page contains online versions of the tables from [1], with links to files containing the actual cubes and difference sets in GAP-readable format. The GAP package PAG contains functions for working with the objects. All files in a single archive can be downloaded here.

The first table contains the results of a complete enumeration of small C33(v,k,λ)-cubes up to equivalence. Each link points to a GAP-file with a list of cubes assigned to the variable c. For example, the C33(4,4,0)-cubes are read into GAP and tested by typing the following commands.

gap> LoadPackage("PAG");
gap> Read("4-4.cube");
gap> List(c,Cube3Test);
[ [ 4, [ 4 ], [ 0 ] ], [ 4, [ 4 ], [ 0 ] ] ]

 v  k  λ No. cubes
3202
3301
11
3411
4208
4304
4402
45λ0
462117
4724
32
48419
52023
530251
54040
620157

Table 1. Numbers of inequivalent C33(v,k,λ)-cubes.

Tables 2 and 3 contain small cubes constructed from difference sets of propriety 3. The underlying groups are from the GAP Small Groups library. Here is an example of how to read (7,13,2) difference sets, transform them to cubes and test them using PAG-commands.

gap> Read("C7-13-2.ds");
gap> g:=SmallGroup(7,1);
<pc group of size 7 with 1 generator>
gap> c:=List(ds,x->OrthogonalArrayToCube(Development3(g,x)));;
gap> Collected(List(c,Cube3Test));
[ [ [ 7, [ 13 ], [ 2 ] ], 5 ] ]

 v  k  λ     Cv    
3201
3301
11
3411
5201
5302
5401
5501
11
5614
5711
26
5822
5922
32
41
51036
415
511414
57
51255
61
7202
7307
74010
7509
7604
15
7702
126
781104
21
791158
211
710124
2152
31
71121258
311
7122659
3542
41
71325
33875
456
71431943
42021
517

Table 2. Numbers of inequivalent C33(v,k,λ)-cubes coming from cyclic difference sets.

 v  k  λ      C4     C2×C2   Total   
420112
430112
440011
45λ000
462567
472111
3000
484011

 v  k  λ      C6        S3       Total   
620324
630749
640549
650213
66λ000
67λ000
68210313
69215842200
6102711283
6112202
4303
612428342322
6134911399
6144919
6581066
615614729160
61661097116
810614
617818017193
618826430292
10424

Table 3. Numbers of inequivalent C33(v,k,λ)-cubes coming from difference sets.

The fourth table contains (7,k,λ) difference sets of propriety 3 with multipliers of order 2 and 3. For 15 ≤ k ≤ 24, a complete enumeration of difference sets was out of reach. The computation is much faster if nontrivial multipliers are assumed.

 v  k  λ   C7C2   C7C3     Total   
7153055
406363
6022
716405858
5044
6112
7176101
718502424
6355
713636
719638282
7033
8022
9111
720λ000
721701010
801717
905757
11022
722801111
909090
11099
723λ000
7241004545
11233
1225555
13011

Table 4. Numbers of inequivalent C33(7,k,λ)-cubes coming from difference sets with multipliers.

References

  1. A. Bahmanian, V. Krcadinac, L. Relic, S. Suda, Three-dimensional symmetric designs of propriety 3, preprint, 2025. http://arxiv.org/abs/2510.17337
  2. V. Krcadinac, M. O. Pavcevic, K. Tabak, Cubes of symmetric designs, Ars Math. Contemp. 25 (2025), no. 1, Paper No. 10, 16 pp. https://doi.org/10.26493/1855-3974.3222.e53
  3. V. Krcadinac, L. Relic, Projection cubes of symmetric designs, to appear in Math. Comput. Sci. (2025). https://arxiv.org/abs/2411.06936
  4. V. Krcadinac, M. O. Pavcevic, On higher-dimensional symmetric designs, to appear in Exp. Math. (2025). https://doi.org/10.1080/10586458.2025.2521450

Vedran Krcadinac,