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Abstract

A t-(v, k, λ) design is quasi-symmetric if there are only two block intersection
sizes. We adapt the Kramer-Mesner construction method for designs with pre-
scribed automorphism groups to the quasi-symmetric case. Using the adapted
method, we find many new quasi-symmetric 2-(28, 12, 11) and 2-(36, 16, 12) de-
signs, establish the existence of quasi-symmetric 2-(56, 16, 18) designs, and find
three new unitals 2-(217, 7, 1) of non-prime power order.
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1. Introduction

A t-(v, k, λ) design is a set of v points together with a collection of k-element
subsets called blocks such that every t-subset of points is contained in exactly
λ blocks. The design is quasi-symmetric if any two blocks intersect either in x
or in y points, for non-negative integers x < y. We refer to the monograph [27]
and the survey [26] for the main results and definitions about quasi-symmetric
designs, and to [2] for designs in general.

It is known that there are no quasi-symmetric designs for t ≥ 5, and for t = 4
the only examples are the 4-(23, 7, 1) design and its complement. Apart from
this 4-design and its residual with parameters 3-(22, 7, 4), it has been conjectured
that the only quasi-symmetric designs for t = 3 are the Hadamard 3-designs,
designs with parameters 3-((λ + 1)(λ2 + 5λ + 5), (λ + 1)(λ + 2), λ) (which exist
for λ = 1 while existence is unknown for λ ≥ 2), a hypothetical 3-(496, 40, 3)
design, and the complements of these designs.

The classification of feasible parameters for quasi-symmetric 2-designs is a
difficult problem and there are many triples (v, k, λ) for which existence is unde-
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cided (from now on we omit the parameter t if it is equal 2). Therefore it makes
sense to use computational methods for the construction of designs. A cele-
brated technique for the construction of designs with prescribed automorphism
groups is the Kramer-Mesner method [17]; see also [16, Chapter 9.2].

The purpose of this paper is to adapt the Kramer-Mesner method to quasi-
symmetric designs. A number of enhancements can be made under the as-
sumption that there are only two block intersection sizes. Using this enhanced
method, we significantly increase the number of known quasi-symmetric (28, 12,
11) and (36, 16, 12) designs. We find quasi-symmetric (56, 16, 18) designs, which
had previously been unknown. We also find three new (217, 7, 1) designs; one
such design had been known. These four (217, 7, 1) designs are the only known
unitals of non-prime power order.

The layout of our paper is as follows. In section 2 we describe the adaptations
to the Kramer-Mesner method for quasi-symmetric designs. We give a detailed
account of software used for the various steps of the computation. We also
present an idea how the method can be applied when the group is given as a
permutation group on the blocks of the quasi-symmetric design, instead on the
points as usual.

In sections 3 to 5 we describe constructions of new quasi-symmetric designs.
The results rely heavily on computer calculations and it is impossible to present
all details. Instead, we give intermediate results in the proofs of the proposition
and theorems, such as the number of orbits, the number of solutions of the
Kramer-Mesner system, the number of non-isomorphic designs and orders of
their full automorphism groups. This enables independent verification of the
steps of our computations.

In the final section 6 we give an updated table of known quasi-symmetric
designs. An on-line version of the table available at

https://web.math.pmf.unizg.hr/~krcko/results/quasisym.html

contains links to the actual designs, again enabling verification of our results.

2. The Kramer-Mesner method for quasi-symmetric designs

Let G be a group of permutations of a v-element set, say S = {1, . . . , v}. To
find all t-(v, k, λ) designs with G as an automorphism group, we need the orbits
T1, . . . , Tm of t-element subsets of S, and the orbits K1, . . . ,Kn of k-element
subsets of S induced by the action of G. Let aij be the number of subsets
from Kj containing a given subset T ∈ Ti. Clearly aij does not depend on the
choice of T . The m×n matrix A = [aij ] is the Kramer-Mesner matrix. Designs
correspond to 0-1 solutions of the linear system A · x = λ jm, where jm is the
all-1 vector of length m.

Finding 0-1 solutions of a system of linear equations is a known NP-complete
problem. To make the computation feasible, the number of variables n has to
be kept sufficiently small. Since we are looking for quasi-symmetric designs, we
can limit the search to orbits Kj such that |K1 ∩K2| is either x or y, for any
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two sets K1,K2 ∈ Kj . We shall call such Kj the good orbits and assume that
all other orbits have been left out, thereby reducing n. Furthermore, two orbits
Ki and Kj are called compatible if |K1 ∩K2| is either x or y, for any K1 ∈ Ki,
K2 ∈ Kj . The n× n matrix C = [cij ] with cij = 1 if Ki and Kj are compatible,
and cij = 0 otherwise, will be called the compatibility matrix.

Algorithms based on lattice basis reduction have been used to solve the
Kramer-Mesner system A ·x = λ jm; see [28] and the references therein. In [18],
a simple backtracking solver was used. It can be made quite efficient by utiliz-
ing the compatibility matrix C. Once an orbit Ki has been chosen, the search
is limited to the compatible orbits Kj , such that cij = 1. Depending on the
compatibility matrix, systems with thousands and sometimes even tens of thou-
sands of variables can be solved. Examples will be given in the sequel. We
implemented our compatibility matrix solver in the programming language C.

We use GAP [11] to generate the orbits and build the Kramer-Mesner matrix
A. We also implemented some time-critical routines for generating the orbits
in C. A straightforward approach for finding good orbits is to generate all orbits
of k-subsets, and to eliminate the ones with intersection sizes other than x and
y. The total number of orbits is often too large for this approach. We use
the following trick if the group order |G| exceeds the number of blocks of the
design b. Clearly we need only orbits of size at most b, and every such orbit has
a non-trivial stabilizer H ≤ G. We build these short orbits by this algorithm:
1: for every subgroup H of index [G : H] ≤ b up to conjugation do
2: find the orbits of H on S (the “seeds”)
3: combine the seeds into k-subsets of S
4: take representatives of the k-subsets under the action of G
5: end for

It suffices to loop over the non-conjugate subgroups H ≤ G because we need
only one representative of each k-subset under the action of G. If H1,H2 ≤ G
are conjugate (i.e. H2 = α−1H1α for some α ∈ G), then H1 fixes the k-subset
K if and only if H2 fixes Kα. We use the GAP command ConjugacyClasses-
Subgroups for the loop in line 1 of the algorithm, and the commands Orbits
and OrbitRepresentatives for lines 2 and 4. For line 3 we use our own pro-
cedure written in C. The algorithm will be used in the proofs of Theorems 4.1
and 5.1.

As the final step of the computation, the constructed designs need to be
checked for isomorphism. Different solutions of the Kramer-Mesner system may
give isomorphic designs. We use the program nauty [22] for isomorphism testing
and to compute the full automorphism groups of the designs. To analyze the
groups an for all other group-related computations, such as finding subgroups,
we use GAP [11].

Suppose we are looking for 2-designs with parameters (v, b, r, k, λ) and an
automorphism group G. Here r is the number of blocks through a point. The
group G is usually given as a permutation group on the v points, but a per-
mutation representation on the b blocks is sometimes more readily available.
For example, the block graph of unknown quasi-symmetric designs may be a
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known strongly regular graph, and we can take G to be an automorphism group
of the graph. In this case we apply the following approach, which we shall
call the dual Kramer-Mesner method. We compute orbits of 2-subsets and r-
subsets of the set S = {1, . . . , b}. An orbit of r-subsets is good if its members
pairwise intersect in λ points, and two orbits are compatible if members of one
always intersect members of the other in λ points. The compatibility matrix and
the Kramer-Mesner system are defined as before, except that the 2-orbits now
correspond to block intersections and thus have to be covered by the r-orbits
either x or y times. Solutions of the system represent duals of the sought-after
quasi-symmetric designs. An example will be presented in section 4.

3. (28, 12, 11) and (36, 16, 12) designs

The classic quasi-symmetric (28, 12, 11) design with x = 4, y = 6, and
(36, 16, 12) design with x = 6, y = 8 are obtained as the derived and the resid-
ual design of the symplectic symmetric (64, 28, 12) design, respectively [15]. The
symplectic group Sp(6, 2) of order 1451520 acts on these designs. The designs
have the symmetric difference property (SDP): the symmetric difference of any
two blocks (of the quasi-symmetric designs) or any three blocks (of the symmet-
ric design) is a block or a block complement. Up to isomorphism, there are four
symmetric (64, 28, 12) SDP designs, and four quasi-symmetric (28, 12, 11) and
(36, 16, 12) SDP designs [13]. Full automorphism groups of the quasi-symmetric
SDP designs are of orders 1451520, 10752, 1920, and 672 [24].

In [10], quasi-symmetric (28, 12, 11) designs with an automorphism of or-
der 7 without fixed points and blocks were classified; there are exactly 246
such designs. By embedding them as derived designs in symmetric designs, the
authors found 8784 non-isomorphic symmetric (64, 28, 12) designs and quasi-
symmetric (36, 16, 12) designs. The enumeration of quasi-symmetric (28, 12, 11)
designs with automorphisms of order 7 was performed with the help of tactical
decomposition matrices [9]. It was shown that nine such matrices correspond
to quasi-symmetric designs and the program BDX was used to convert them to
incidence matrices of the designs [19].

To repeat the classification by the Kramer-Mesner method, one would gen-
erate the

(
28
12

)
/7 = 3067740 orbits of 12-element subsets of S = {1, . . . , 28}.

Among them are 187572 good orbits, with intersection numbers x = 4, y = 6.
The corresponding Kramer-Mesner system is too large for our solver. It was
shown in [18] how tactical decomposition matrices can be used to reduce the
size of the system. The nine tactical decomposition matrices from [9] give sys-
tems with number of columns ranging from 24696 to 116620. We could handle
the smallest system by our compatibility matrix solver. In the other cases it
was more efficient to write a backtracking program for “indexing” the tactical
decomposition matrices, i.e. transforming them directly to incidence matrices of
quasi-symmetric designs, proceeding column-by-column. The number of non-
isomorphic designs obtained in each case agrees with the results of [9] and [10].

To make the Kramer-Mesner approach feasible, we take a larger group. The
full automorphism group Sp(6, 2) of the classic (28, 12, 11) design possesses a
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subgroup G isomorphic to the dihedral group of order 12, generated by the
permutations

α = (1, 2, 3, 4, 5, 6)(7, 8, 9, 10, 11, 12)(13, 14, 15, 16, 17, 18)(19, 20, 21, 22, 23, 24)(25, 26, 27),

β = (1, 6)(2, 5)(3, 4)(7, 11)(8, 10)(13, 17)(14, 16)(19, 23)(20, 22)(25, 27).

Proposition 3.1. Up to isomorphism there are 13656 quasi-symmetric (28, 12, 11)
designs with x = 4, y = 6 and G = 〈α, β〉 as an automorphism group.

Proof. There are 47 orbits of 2-subsets and 2543568 orbits of 12-subsets of
S = {1, . . . , 28} under the action of G. Among them are 1097 good orbits, with
intersection numbers x = 4, y = 6. We set up the 47 × 1097 Kramer-Mesner
system and solved it using our compatibility matrix solver. The total number
of solutions is 654336. By applying nauty [22] we found that they give rise to
13656 non-isomorphic quasi-symmetric (28, 12, 11) designs, including the classic
design, the SDP design with full automorphism group of order 10752, and two
more designs with automorphisms of order 7.

For (36, 16, 12) designs, we take a group of order 24 isomorphic to the sym-
metric group S4. The full automorphism group Sp(6, 2) of the classic (36, 16, 12)
design possesses such a subgroup G generated by

α = (1, 2, 3)(4, 5, 6)(7, 8, 9)(10, 11, 12)(13, 14, 15)(16, 17, 18)(19, 20, 21)(22, 23, 24)(25, 26, 27)
(28, 29, 30)(31, 32, 33),

β = (1, 4)(2, 7)(5, 9)(6, 11)(8, 10)(13, 16)(14, 19)(15, 21)(17, 22)(18, 24)(20, 23)(26, 27)(29, 30)
(32, 34).

Proposition 3.2. Up to isomorphism there are 35572 quasi-symmetric (36, 16, 12)
designs with x = 6, y = 8 and G = 〈α, β〉 as an automorphism group.

Proof. The group G induces 50 orbits on the 2-subsets and 304774697 orbits
on the 16-subsets of S = {1, . . . , 36}. Among them are 1300 good orbits, with
intersection numbers x = 6, y = 8. The 50 × 1300 Kramer-Mesner system has
886528 solutions respecting the compatibility matrix. They give rise to 35572
non-isomorphic quasi-symmetric (36, 16, 12) designs, including the classic design
and the SDP design with full automorphism group of order 1920.

The preceding propositions are examples how to increase the number of know
designs by the Kramer-Mesner method. Take a known design, compute its full
automorphism group, take a subgroup and find all designs with the subgroup
as an automorphism group. Besides the known design, one may get other, non-
isomorphic designs. We did this for many groups operating on quasi-symmetric
(28, 12, 11) and (36, 16, 12) designs.

A direct construction of quasi-symmetric designs based on Hadamard matri-
ces and mutually orthogonal Latin squares (MOLS) was described in [4] and [21].
From a Hadamard matrix of order 8 and either two or three MOLS of order 8,

5



many non-isomorphic quasi-symmetric (28, 12, 11) and (36, 16, 12) designs can
be constructed. Most of these designs have trivial automorphism groups.

By summarizing all designs found by the Kramer-Mesner method and by
the construction from [4, 21], and eliminating isomorphic copies by nauty [22],
we can give lower bounds on the number of quasi-symmetric (28, 12, 11) and
(36, 16, 12) designs.

Theorem 3.3. There are at least 58891 quasi-symmetric (28, 12, 11) designs
and at least 522079 quasi-symmetric (36, 16, 12) designs up to isomorphism.

The distribution of the designs by order of full automorphism group is given
in Table 1.

|Aut | #28 #36 |Aut | #28 #36 |Aut | #28 #36
1451520 1 1 224 8 16 36 33 0
10752 1 3 192 652 7000 32 1299 0
4608 3 3 168 2 23 28 12 0
2304 0 4 160 564 5628 24 360 216596
1920 4 4 144 12 32 21 95 0
1536 13 61 128 4745 5084 20 26 70
1344 4 8 120 17 17 18 7 0
768 18 248 96 26039 5858 14 50 0
672 8 16 84 15 72 12 12908 5
640 1 3 80 372 3744 10 28 0
576 12 12 72 11 31 7 47 0
512 14 60 64 110 0 4 0 14
384 102 300 60 8 0 3 172 466
360 1 1 54 0 1 2 62 1080
320 4 12 48 1224 36114 1 9554 237018
288 10 14 42 3 0
256 258 2456 40 2 4

Table 1: The distribution of designs from Theorem 3.3 by order of full automorphism group.

4. (56, 16, 18) designs

Let W be the Witt 5-(24, 8, 1) design and D = der(der(res(W))). Here res
denotes the residual, and der the derived design with respect to a point. The
design D is quasi-symmetric with parameters (21, 6, 4), x = 0, y = 2. The
full automorphism group AutD of order 40320 is a split extension M21.Z2 by
the Mathieu group M21. It acts as a permutation group on the 56 blocks of
the design D. We will denote this permutation group of degree 56 by G. It
has a subgroup H ∼= (Z2 × Z2 × Z2 × Z2).A5 of order 960, generated by the
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permutations

α = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)(11, 12, 13, 14, 15)(16, 17, 18, 19, 20)(21, 22, 23, 24, 25)(26, 27, 28, 29, 30)
(31, 32, 33, 34, 35)(36, 37, 38, 39, 40)(41, 42, 43, 44, 45)(46, 47, 48, 49, 50)(51, 52, 53, 54, 55),

β = (1, 6, 8)(2, 21, 26)(3, 32, 34)(4, 11, 5)(7, 15, 22)(9, 16, 13)(10, 29, 17)(12, 33, 30)(14, 19, 31)
(18, 23, 35)(24, 28, 36)(25, 37, 39)(27, 38, 40)(42, 51, 49)(43, 52, 45)(44, 46, 47)(48, 54, 53)
(50, 56, 55).

Theorem 4.1. There are three quasi-symmetric (56, 16, 18) designs with x = 4,
y = 8 and H = 〈α, β〉 as an automorphism group. The first one has H as its
full automorphism group, the second one has a split extension H.Z2 of order
1920, and the third one has G as its full automorphism group.

Proof. The action of H induces 7 orbits on the 2-subsets of S = {1, . . . , 56}.
Using the algorithm described in section 2, we found 40 orbits of 16-subsets of
size at most b = 231 with intersection numbers x = 4, y = 8. The 7×40 Kramer-
Mesner system has 5 solutions respecting the compatibility matrix, giving rise
to 3 non-isomorphic quasi-symmetric designs. The full automorphism groups
were computed with nauty [22] and analyzed with GAP [11].

Quasi-symmetric designs with parameters (56, 16, 18) had previously been
unknown. The binary codes spanned by the incidence vectors of their blocks are
self-orthogonal. The first two designs of Theorem 4.1 span codes of dimension
23 and minimum distance 8, while the third design spans a code of dimension
19 and minimum distance 16. The codes were analyzed with the GAP package
GUAVA [8]. The first two codes are far from optimal, but the third code has
minimum distance equal to the best known binary linear code of length 56 and
dimension 19 [12].

The block graph of the three designs of Theorem 4.1 is the Cameron graph,
a strongly regular graph with parameters SRG(231, 30, 9, 3) [5]. The full au-
tomorphism group of the Cameron graph is a permutation group G on 231
vertices, isomorphic to the split extension M22.Z2 of order 887040. We can
use it to construct the three (56, 16, 18) designs by the dual Kramer-Mesner
method, as explained in section 2. The group G has three subgroups of order
960 up to conjugation. We compute orbits of 66-subsets (r = 66) of the set
S = {1, . . . , 231} of size at most v = 56, within which the subsets intersect in
λ = 18 elements. Two orbits are compatible if subsets from one intersect subsets
from the other in λ = 18 elements. The Kramer-Mesner system has rows labeled
by the orbits of 2-subset, columns labeled by the good orbits of the 66-subsets,
and every 2-orbit has to be covered x = 4 or y = 8 times. One subgroup of order
960 leads to a 63× 168 Kramer-Mesner system with 96 solutions respecting the
compatibility matrix, giving the second and the third quasi-symmetric designs
of Theorem 4.1. The second subgroup gives a 63 × 60 Kramer-Mesner system
with 18 solutions and the first and third design of Theorem 4.1. Finally, the
third subgroup gives a 60× 24 Kramer-Mesner system without solutions.
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5. (217, 7, 1) designs

Designs with parameters t = 2 and λ = 1 (Steiner 2-designs) are automat-
ically quasi-symmetric with intersection numbers x = 0, y = 1. An important
family are the unitals with parameters (q3 + 1, q + 1, 1). For any prime power
q there exists a projective plane of order q2 with a unitary polarity, and the set
of absolute points and non-absolute lines forms a unital of order q. The only
known unital with q not a prime power is a cyclic (217, 7, 1) design discovered
independently by Mathon [20] and Bagchi and Bagchi [1].

In [18], unitals of order q = 4 with a non-abelian automorphism group of
order 39 were classified. Tactical decomposition matrices were used to reduce
the size of the Kramer-Mesner system. For Steiner 2-designs the good k-orbits
are easily recognized as the ones covering every 2-orbit at most once. The cor-
responding column of the Kramer-Mesner matrix A has only 0 and 1 entries.
Similarly, two compatible k-orbits do not cover the same 2-orbit, i.e. the corre-
sponding columns of A are “disjoint”. The backtracking solver from [18] detects
when partial solutions violate this condition and stops trying to extend them.
Therefore the compatibility matrix approach does not give any advantage in the
case of Steiner 2-designs.

However, we can now handle the much larger q = 6 case thanks to the
algorithm for short orbits from section 2, albeit only with rather large groups.
The full automorphism group of the (217, 7, 1) design of Mathon, Bagchi and
Bagchi is a semidirect product Z217.Z30 of order 6510. It has a subgroup G ∼=
Z217.Z6 of order 1302 generated by the permutations

α = (1, 2, 3, . . . , 217),

β = (2, 38, 68, 93, 150, 89)(3, 75, 135, 185, 82, 177)(4, 112, 202, 60, 14, 48)(5, 149, 52, 152, 163, 136)
(6, 186, 119, 27, 95, 7)(8, 43, 36, 211, 176, 183)(9, 80, 103, 86, 108, 54)(10, 117, 170, 178, 40, 142)
(11, 154, 20, 53, 189, 13)(12, 191, 87, 145, 121, 101)(15, 85, 71, 204, 134, 148)(16, 122, 138, 79, 66, 19)
(17, 159, 205, 171, 215, 107)(18, 196, 55, 46, 147, 195)(21, 90, 39, 105, 160, 25)(22, 127, 106, 197, 92, 113)
(23, 164, 173, 72, 24, 201)(26, 58, 157, 131, 37, 31)(28, 132, 74, 98, 118, 207)(29, 169, 141, 190, 50, 78)
(30, 206, 208, 65, 199, 166)(32, 63, 125)(33, 100, 192, 124, 212, 213)(34, 137, 42, 216, 144, 84)
(35, 174, 109, 91, 76, 172)(41, 179, 77, 209, 102, 49)(44, 73, 61, 51, 115, 96)(45, 110, 128, 143, 47, 184)
(56, 83, 214, 70, 167, 67)(57, 120, 64, 162, 99, 155)(59, 194, 198, 129, 180, 114)(62, 88, 182, 188, 193, 161)
(69, 130, 217, 181, 151, 126)(81, 140, 153, 200, 203, 97)(94, 187, 156)(104, 123, 175, 146, 158, 168)
(111, 165, 210, 139, 116, 133).

Theorem 5.1. There are four (217, 7, 1) designs with G = 〈α, β〉 as an auto-
morphism group. One of them is the unital of Mathon, Bagchi and Bagchi, and
the remaining ones have G as their full automorphism group.

Proof. The action of G induces 21 orbits on the 2-subsets and 1141 orbits of
size at most b = 1116 with intersection numbers x = 0, y = 1 on the 7-subsets
of S = {1, . . . , 217}. The Kramer-Mesner system has 96 solutions, giving rise
to 4 non-isomorphic designs.

5.1. The new unitals as relative difference families
Although the designs of Theorem 5.1 were found by the Kramer-Mesner

method, they are more easily described by difference families. Also, in this way
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it becomes apparent how closely related to each other they are. Let G be an
additively written group of order v with a subgroup H. A (v, H, k, λ) relative
difference family (RDF) is a collection {B1, . . . , Bt} of k-subsets of G such that
the equation x − y = g has exactly λ solution pairs (x, y) ∈ ∪t

i=1Bi × Bi for
g ∈ G \ H, and no solution pairs for g ∈ H. If |H| = k and λ = 1, the
development {Bi + g | g ∈ G, i = 1, . . . , t} of the RDF together with the right
cosets of H as blocks forms a Steiner 2-(v, k, 1) design with G as a point-regular
automorphism group. See [7] for more details and algebraic constructions of
RDFs leading, amongst others, to the known (217, 7, 1) design.

By identifying i ∈ {0, . . . , 216} with αi, we can write the designs of The-
orem 5.1 as RDFs in Z217 relative to the subgroup H = 〈31〉 of order 7. Let
B1 = {0, 1, 37, 67, 88, 92, 149}, B2 = 8B1, B3 = 11B1, B4 = 15B1, and B5 =
29B1 (multiplication is modulo 217). Then {B1, B2, B3, B4, B5} is a RDF giving
rise to the design of Mathon, Bagchi and Bagchi, while {B1, B2, B3, B4,−B5},
{B1, B2, B3,−B4,−B5}, and {B1, B2,−B3, B4,−B5} are RDFs giving rise to
the other three designs. Thus, the three new unitals could more easily be ob-
tained by changing signs of base blocks, as explained in [6]. In the terminology
of [6], the RDFs generating the designs of Theorem 5.1 are similar. Notice that
the automorphism β corresponds to the multiplier 37 of order 6. The first RDF
also has 11 as a multiplier of order 30, while the other three RDFs only have 37
and its powers as multipliers.

6. An updated existence table

Neumaier [23] distinguished four types of quasi-symmetric 2-designs: mul-
tiples of symmetric designs, strongly resolvable designs, Steiner 2-designs with
v > k2, and residuals of biplanes. All other quasi-symmetric 2-designs are called
exceptional and a table of feasible parameters with 2k ≤ v ≤ 40 is given in [23].

An updated and extended table of exceptional quasi-symmetric 2-designs
with 2k ≤ v ≤ 70 appears in Shrikhande’s survey [26]. It contains information
on existence and in most cases on the number of non-isomorphic designs. Tables
of feasible parameters with information about existence also appear in [25],
grouped according to the associated strongly regular graph. These tables include
Steiner 2-designs along with exceptional quasi-symmetric designs.

In Table 2 we include the parameters from [26] for which quasi-symmetric
designs are known to exist and two more rows: exceptional (78, 36, 30) designs
with x = 15, y = 18 and unitals (217, 7, 1). We give new estimates on the num-
ber of non-isomorphic quasi-symmetric designs in the column “Nqsd”. Where
no reference is given, see [26].

Quasi-symmetric (64, 24, 46) designs with x = 8, y = 12 were first con-
structed in [3] as part of an infinite series. Recently Jungnickel and Tonchev [14]
proved that the number of quasi-symmetric designs in this series grows exponen-
tially and established the lower bound for (64, 24, 46) designs given in Table 2.

Designs with parameters (66, 30, 29), x = 12, y = 15 and (78, 36, 30), x = 15,
y = 18 are also part of an infinite series [4, 21]. From a Hadamard matrix of
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v k λ r b x y Nqsd Reference
21 6 4 16 56 0 2 1
21 7 12 40 120 1 3 1
22 6 5 21 77 0 2 1
22 7 16 56 176 1 3 1
23 7 21 77 253 1 3 1
28 12 11 27 63 4 6 ≥ 58891 Thm 3.3
31 7 7 35 155 1 3 5
36 16 12 28 63 6 8 ≥ 522079 Thm 3.3
45 9 8 44 220 1 3 1
49 9 6 36 196 1 3 ≥ 44
56 16 6 22 77 4 6 ≥ 2
56 16 18 66 231 4 8 ≥ 3 Thm 4.1
63 15 35 155 651 3 7 ≥ 1
64 24 46 126 336 8 12 ≥ 28826 [14]
66 30 29 65 143 12 15 ≥ 10000 Prop 6.1
78 36 30 66 143 15 18 ≥ 10000 Prop 6.1
217 7 1 36 1116 0 1 ≥ 4 Thm 5.1

Table 2: Existence of quasi-symmetric designs.

order 2u (where u is an even integer) and either u − 2 or u − 1 MOLS of
order 2u, quasi-symmetric designs with parameters (2u2 − u2 − u, u2 − u − 1),
x = u(u−2)/2, y = u(u−1)/2 and (2u2+u, u2, u2−u), x = u(u−1)/2, y = u2/2
can be constructed. Ingredients for the construction always exist when u is a
power of two; the u = 4 case was discussed in section 3. The only other instance
when enough MOLS are known is u = 6, giving quasi-symmetric (66, 30, 29) and
(78, 36, 30) designs. The construction allows arbitrary choices and many non-
isomorphic designs can be obtained even from a single Hadamard matrix and
set of MOLS. This was already shown in section 3 for u = 4, and here we give
rough estimates for u = 6.

Proposition 6.1. There are at least 10000 non-isomorphic quasi-symmetric
(66, 30, 29) designs with x = 12, y = 15 and at least as many (78, 36, 30) designs
with x = 15, y = 18.

Nauty [22] was used to establish that the constructed designs are not iso-
morphic. All of them have trivial automorphism groups. It seems that the
number of designs obtained by the construction from [4] and [21] also grows
exponentially with u.

An on-line version of Table 2 is available on the web page mentioned in the
introduction. It contains links to incidence matrices of the newly constructed
designs, and most other known quasi-symmetric designs from Table 2.
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