
NAPOLEON’S QUASIGROUPS

VEDRAN KRČADINAC

Abstract. Napoleon’s quasigroups are idempotent medial quasi-
groups satisfying the identity (ab · b)(b · ba) = b. In works by
V.Volenec geometric terminology has been introduced in medial
quasigroups, enabling proofs of many theorems of plane geometry
to be carried out by formal calculations in a quasigroup. This
class of quasigroups is particularly suited for proving Napoleon’s
theorem and other similar theorems about equilateral triangles and
centroids.

1. Introduction

Consider the Euclidean plane E2 and define multiplication of its
points by a · b = c, where c is the centroid of the positively oriented
equilateral triangle over ab. The groupoid (E2, ·) is an example of the
so-called Napoleon’s quasigroups.

Definition 1.1. An idempotent medial quasigroup (Q, ·) is called a
Napoleon’s quasigroup if the following identity holds:

(ab · b)(b · ba) = b. (1)

This means that (Q, ·) is a uniquely left and right solvable groupoid,
i.e. for every a, b ∈ Q there are unique x, y ∈ Q such that ax = b and
ya = b hold (denoted by x = a \ b and y = b / a). Furthermore, (Q, ·)
satisfies the identities of idempotency and mediality :

a · a = a, (2)

ab · cd = ac · bd. (3)

Immediate consequences are the identities known as elasticity, left and
right distributivity :

ab · a = a · ba, (4)

a · bc = ab · ac, (5)

ab · c = ac · bc. (6)
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Figure 1. Geometric interpretation of identity (1).

The operation · is also left and right distributive over \ and /, e.g.

(a \ b)c = ac \ bc. (7)

Regarding our introductory example, the axioms are most easily
checked by using complex coordinates in the plane. By identifying
E2 ≡ C, the binary operation can be written as a ·b = (1−q)a+qb, for

q = 1
2

+ i
√

3
6

. This is evidently an idempotent medial quasigroup, and
identity (1) follows from 3q2 − 3q + 1 = 0. We could also take a · b to
be the centroid of the negatively oriented equilateral triangle over ab,

which would correspond to choosing the other root q = 1
2
− i

√
3

6
.

A more general example is obtained by taking an Abelian group
(Q, +) with an automorphism ϕ such that 3ϕ2(x)−3ϕ(x)+x = 0, for all
x ∈ Q, and defining a new binary operation by a ·b = a+ϕ(b−a). This
operation is obviously idempotent, medial and uniquely right solvable.
The equation for ϕ can be written as 1Q = 3ϕ◦(1Q−ϕ). Hence, 1Q−ϕ
is a bijection and the operation is uniquely left solvable. Identity (1)
also follows directly from the equation.

As a consequence of Toyoda’s representation theorem [7], this is in
fact the most general example of Napoleon’s quasigroups.

Theorem 1.2. For every Napoleon’s quasigroup (Q, ·) there is an Abelian
group (Q, +) with an automorphism ϕ such that 3ϕ2 − 3ϕ + 1Q = 0
and a · b = a + ϕ(b− a), for all a, b ∈ Q.

Proof. According to a special version of Toyoda’s theorem for idem-
potent medial quasigroups, there is a commutative group (Q, +) with
automorphism ϕ such that a ·b = a+ϕ(b−a). Identity (1) is equivalent
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with the property 3ϕ2− 3ϕ + 1Q = 0, which is easily verified by direct
computation. ¤

This theorem completely describes the structure of Napoleon’s quasi-
groups and reduces them to the study of Abelian groups with a special
type of automorphism. Our main motivation is to use these quasi-
groups as a language for proving Napoleon’s theorem and some related
theorems of plane geometry. It turns out that all necessary ingredi-
ents are encoded in the properties of a single binary operation, most
importantly identity (1).

In the next section, geometric concepts such as equilateral triangles
and midpoints are defined in Napoleon’s quasigroups. We fall back to
Toyoda’s representation theorem to prove some of the more technical
results in this section. These results could also be proved directly, by
somewhat tedious calculations in the quasigroup.

A surprisingly large number of results related to Napoleon’s theo-
rem have been published over the years. A survey up to 1996 can be
found in [5], and Napoleon-like theorems have kept appearing since.
In the third section we prove Napoleons’s theorem and a well-known
fact about centroids in the general context of Napoleon’s quasigroups.
The solution to an old problem by E. Lemoine [4] is provided in this
context. Finally, two more recent theorems by B. Grünbaum [1] and
F. van Lamoen [3] are stated and proved in Napoleon’s quasigroups.

The challenge here lies not so much in the proofs, but in how these
results should be formulated in the more general context. As illustrated
by Theorem 3.6, a literal translation is not always correct. Once the
result is formulated correctly, the proof in the quasigroup context is
usually fairly straightforward.

This approach could make geometric theorems accessible to auto-
mated theorem provers. We do not pursue it in this work, but the use
of automated theorem provers has become quite widespread in quasi-
group and loop theory (see section 3 of [6] for a catalogue of results
obtained in this way). The method of translating problems in plane ge-
ometry to the language of medial quasigroups is due to V. Volenec [8, 9].
Another class of idempotent medial quasigroup related to Napoleon’s
are the hexagonal quasigroups [10]. As we shall see in the third sec-
tion, a special hexagonal quasigroup can be obtained from an arbitrary
Napoleon’s quasigroup by the formula (11).

2. Equilateral triangles and midpoints

We first state an auxiliary lemma.
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Lemma 2.1. In an idempotent medial quasigroup (Q, ·), identity (1)
is equivalent with either of the identities

ab · ba = ba · b, (8)

ab · ca = ba · cb. (9)

Proof. Using Toyoda’s theorem, the quasigroup can be represented as
a · b = a + ϕ(b − a) in an Abelian group (Q, +) with automorphism
ϕ. The identities (1), (8) and (9) are seen to be equivalent with 3ϕ2 −
3ϕ + 1Q = 0. ¤

The following observation will turn out as an algebraic statement of
Napoleon’s theorem.

Corollary 2.2. If (Q, ·) is a Napoleon’s quasigroup and a, b, c ∈ Q,
then

ab · ca = ac · ba = ba · cb = bc · ab = ca · bc = cb · ac. (10)

Proof. Follows from (9) by using mediality (3). ¤
Let (Q, ·) be a Napoleon’s quasigroup. By a triangle we mean an

ordered triple of points (a, b, c) ∈ Q3. Using the binary operation we
can define equilateral triangles.

Definition 2.3. The triangle (a, b, c) is called left equilateral if ab =
bc = ca holds. This is denoted by ∆(a, b, c) or ∆o(a, b, c), where o =
ab = bc = ca is the centroid. Similarly, (a, b, c) is called right equi-
lateral if ba = cb = ac = o holds. This is denoted by ∇(a, b, c) or
∇o(a, b, c).

Positive and negative orientation cannot be distinguished in this ab-
stract setting. In the quasigroup (C, ·) defined by a · b = (1− q)a + qb

for q = 1
2

+ i
√

3
6

, left equilateral triangles are positively oriented and
right equilateral triangles are negatively oriented, and vice versa for

q = 1
2
− i

√
3

6
. Here are some properties of the ternary relations ∆

and ∇.

Proposition 2.4. The statements ∆o(a, b, c), ∆o(b, c, a), ∆o(c, a, b),
∇o(a, c, b), ∇o(c, b, a) and ∇o(b, a, c) are equivalent.

Proof. Obvious from the definition. ¤
Because of this equivalence, the next two propositions and some

other results in the sequel are stated only for left equilateral triangles.
Analogous results hold for right equilateral triangles.

Proposition 2.5. If ab = bc = o, then ca = o and ∆o(a, b, c) holds.



NAPOLEON’S QUASIGROUPS 5

Proof. If bc = o, then c = b \ o. We have ca · o = (b \ o)a · o (7)
= (ba ·

o) \(oa ·o) = (ba ·ab) \(oa ·o) (8)
= (ab ·a) \(oa ·o) = oa \(oa ·o) = o

(2)
= oo.

By canceling o from the right we get ca = o. ¤
Proposition 2.6. For all a, b ∈ Q there is a unique c ∈ Q such that
∆(a, b, c) holds.

Proof. Denote o = ab and c = b \ o. Then, ab = bc = o and, according
to Proposition 2.5, ∆o(a, b, c) holds. From ∆(a, b, c) we see that c =
b \ ab, so c is uniquely determined by a and b. ¤

Equilateral triangles can also be defined in hexagonal quasigroups [11].
However, in that context centroids of equilateral triangles cannot be ex-
pressed explicitly, making them less suitable for proving Napoleon-like
theorems. In [8], midpoints were defined in arbitrary medial quasi-
groups by using parallelograms. Because of [9, Theorem 12], this is
equivalent with the following more direct definition in idempotent me-
dial quasigroups.

Definition 2.7. Let (Q, ·) be an idempotent medial quasigroup. The
point m ∈ Q is the midpoint of the pair of points (a, b) ∈ Q2, denoted
by M(a,m, b), if am ·mb = ab holds.

am.mb=ab

mbam

a m b

Figure 2. The midpoint relation M(a,m, b).

Here is a characterization, making symmetry of the midpoint relation
in a and b apparent.

Proposition 2.8. In an idempotent medial quasigroup (Q, ·), M(a,m, b)
is equivalent with ma · bm = m.

Proof. Using Toyoda’s representation theorem, both of the equations
am ·mb = ab and ma · bm = m are easily seen to be equivalent with
a + b = 2m in the underlying Abelian group (Q, +). ¤
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Corollary 2.9. In an idempotent medial quasigroup, M(a,m, b) holds
if and only if M(b,m, a) holds.

Proof. Follows from Proposition 2.8 and mediality (3). ¤
Generally, it is not true that each pair of points has a unique mid-

point. To prove this, we need division by 2 in the underlying Abelian
group. Our first example of Napoleon’s quasigroup constructed from
the complex numbers has this property. However, if an example is de-
fined in the same way from a field of characteristic 2, then every m ∈ Q
is the midpoint of the pairs (a, a), while pairs (a, b) with a 6= b do not
possess midpoints. However, if two sides (a, b) and (a, c) of a triangle
(a, b, c) in a medial quasigroup possess midpoints, then the third side
(b, c) also has a midpoint [8, Theorem 40].

3. Napoleon’s theorem and its relatives

The last few claims of the previous section hold in general idempotent
medial quasigroups. Now we turn back to Napoleon’s quasigroups.

Theorem 3.1 (Napoleon’s theorem). Let (a, b, c) be an arbitrary trian-
gle in a Napoleon’s quasigroup (Q, ·). Then, ∇o(ab, bc, ca) and ∆o(ba, cb, ac)
hold for some o ∈ Q.

Proof. This is a direct consequence of Definition 2.3 and Corollary 2.2.
¤

It is known that the centroid of a triangle in the Euclidean plane
coincides with the centroid of its Napoleon triangles. This motivates
the following definition.

Definition 3.2. The centroid of an arbitrary triangle (a, b, c) ∈ Q3 in
a Napoleon’s quasigroup (Q, ·) is the point C(a, b, c) = ab · ca.

The point o in Napoleons’s theorem is precisely C(a, b, c). Corol-
lary 2.2 implies that C(a, b, c) = C(d, e, f) for any permutation (d, e, f)
of (a, b, c). Of course, if ∆o(a, b, c) or ∇o(a, b, c), then C(a, b, c) = o.
Furthermore, Proposition 2.8 can now be reinterpreted as

M(a,m, b) ⇐⇒ C(m, a, b) = m.

Proposition 3.3. Let (a, b, c) ∈ Q3 be a triangle in a Napoleon’s quasi-
group and suppose m ∈ Q is the midpoint of (a, b), i.e. M(a,m, b) holds.
Then, C(a, b, c) = C(m,m, c).

Proof. According to Proposition 2.8 and Definition 3.2, ma · bm = m,

C(a, b, c) = ab · ca and C(m,m, c) = mm · cm (2)
= m · cm. Therefore,
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(m ·cm)(m ·cm)
(2)
= m ·cm (4)

= mc ·m = mc · (ma ·bm)
(5)
= (mc ·ma)(mc ·

bm)
(5),(10)

= (m · ca)(cm · bc) (3)
= (m · cm)(ca · bc) (10)

= (m · cm)(ab · ca). By
cancelling m ·cm from the left we get m ·cm = ab ·ca, i.e. C(m,m, c) =
C(a, b, c). ¤

In the Napoleon’s quasigroup defined from the Euclidean plane,
C(m,m, c) is the point dividing the segment mc in the ratio 1 : 2.
Therefore, the previous proposition can be interpreted as the well-
known fact that the centroid trisects each median.

In 1868, E. Lemoine [4] posed the problem to construct vertices a, b,
c of a triangle, given the vertices a1, b1, c1 of the equilateral triangles
erected over its sides. A solution was published by L. Kiepert [2] in
the following year. Kiepert’s solution is to erect equilateral triangles
with vertices a2, b2, c2 over the sides of the given triangle and to con-
struct midpoints of (a1, a2), (b1, b2) and (c1, c2). Here is a more precise
statement in the setting of Napoleon’s quasigroups.

Theorem 3.4. Let (a, b, c) ∈ Q3 be a triangle in a Napoleon’s quasi-
group and denote by a1, b1, c1 ∈ Q the unique points such that ∆(a1, b, c),
∆(a, b1, c) and ∆(a, b, c1) hold. Furthermore, let a2, b2, c2 ∈ Q be the
unique points such that ∆(a2, b1, c1), ∆(a1, b2, c1) and ∆(a1, b1, c2) hold.
Then, M(a1, a, a2), M(b1, b, b2) and M(c1, c, c2).

To make the proof of this and the next theorem shorter, we introduce
a new binary operation ∗ in a Napoleon’s quasigroup (Q, ·). Given
a, b ∈ Q, denote by a ∗ b the unique point c such that ∆(a, b, c) holds
(see Proposition 2.6). Thus,

a ∗ b = b \ ab = (b \ a)b. (11)

This new operation is obviously idempotent. Because it is defined by a
formula involving multiplication and left division, it is mutually medial
with the old operation [12]:

(a ∗ b) · (c ∗ d) = ac ∗ bd. (12)

As a consequence, the new operation is medial itself and is left and
right distributive over the old operation:

a ∗ bc = (a ∗ b)(a ∗ c), (13)

ab ∗ c = (a ∗ c)(b ∗ c), (14)

a(b ∗ c) = ab ∗ ac, (15)

(a ∗ b)c = ac ∗ bc. (16)

The following properties of the new operation will also be useful.
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Lemma 3.5. Let (Q, ·) be a Napoleon’s quasigroup and define a ∗ b =
b \ ab. Then, for any a, b, c ∈ Q,

(a ∗ b)a = b(a ∗ b) = ab (17)

and
ab ∗ ca = bc. (18)

Proof. From the definition of ∗ we have ∆(a, b, a∗b). By Definition 2.3,
this means ab = b(a ∗ b) = (a ∗ b)a. By Napoleon’s theorem and
Proposition 2.4, we have ∆(ab, ca, bc) and hence bc = ab ∗ ca. ¤

As a consequence of identity (17), (Q, ∗) is in fact a hexagonal
quasigroup. Dividing ab = (a ∗ b)a by a from the left we get b =

a \(a ∗ b)a
(11)
= (a ∗ b) ∗ a. This is the defining identity for hexagonal

quasigroups (see [10]). Now we can also prove Theorem 3.4.

Proof of Theorem 3.4. By the definition of a1, b1, c1 and a2, b2, c2, we
have

a1 = b ∗ c, b1 = c ∗ a, c1 = a ∗ b (19)

and
a2 = b1 ∗ c1, b2 = c1 ∗ a1, c2 = a1 ∗ b1. (20)

Multiplying equations (19) by b, c, a respectively and using (17), we get

a1b = bc, b1c = ca, c1a = ab. (21)

Now we prove M(a1, a, a2) by using Proposition 2.8: aa1 · a2a
(20)
= aa1 ·

(b1 ∗ c1)a
(16)
= aa1 · (b1a ∗ c1a)

(21)
= aa1 · (b1a ∗ ab)

(15)
= (aa1 · b1a) ∗ (aa1 ·

ab)
(3),(5)
= (ab1 ·a1a)∗(a ·a1b)

(19),(21)
= (a(c∗a) ·a1a)∗(a ·bc) (17)

= (ca ·a1a)∗
(a · bc) (6)

= (ca1 · a) ∗ (a · bc) (19)
= (c(b ∗ c) · a) ∗ (a · bc) (17)

= (bc · a) ∗ (a ·
bc)

(18)
= aa

(2)
= a. The relations M(b1, b, b2) and M(c1, c, c2) are proved

similarly. ¤
Branko Grünbaum [1] discovered another Napoleon-like theorem in-

volving midpoints. We state and prove it here in the context of Napoleon’s
quasigroups:

Theorem 3.6. Let (a, b, c) ∈ Q3 be a triangle in a Napoleon’s quasi-
group and denote by a′, b′, c′ ∈ Q the unique points such that ∇(a′, b, c),
∇(a, b′, c) and ∇(a, b, c′) hold. Suppose there are points a1, b1, c1 ∈ Q
such that ∆(a, b1, c1), ∆(a1, b, c1) and ∆(a1, b1, c) hold; denote the cen-
troids of these three left equilateral triangles by a2, b2 and c2. Then,
M(b′, a1, c

′), M(a′, b1, c
′), M(a′, c1, b

′) and ∇(a2, b2, c2) hold.
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Proof. By the assumptions of the theorem and Proposition 2.4, we have

a′ = c ∗ b, b′ = a ∗ c, c′ = b ∗ a (22)

and

a = b1 ∗ c1, b = c1 ∗ a1, c = a1 ∗ b1. (23)

The relation M(b′, a1, c
′) follows from Proposition 2.8: a1c

′·b′a1
(22)
= a1(b∗

a)·(a∗c)a1
(15),(16)

= (a1b∗a1a)·(aa1∗ca1)
(12)
= (a1b·aa1)∗(a1a·ca1)

(23)
= (a1(c1∗

a1) · aa1) ∗ (a1a · (a1 ∗ b1)a1)
(17)
= (c1a1 · aa1) ∗ (a1a · a1b1)

(5),(6)
= (c1a ·

a1) ∗ (a1 · ab1)
(23)
= (c1(b1 ∗ c1) · a1) ∗ (a1 · (b1 ∗ c1)b1)

(17)
= (b1c1 · a1) ∗ (a1 ·

b1c1)
(18)
= a1a1

(2)
= a1. Proofs of the relations M(a′, b1, c

′) and M(a′, c1, b
′)

are similar.
By Definition 2.3, the centroids of ∆(a, b1, c1), ∆(a1, b, c1) and ∆(a1, b1, c)

are a2 = b1c1, b2 = c1a1 and c2 = a1b1. According to Propositions 2.4
and 2.5, to prove ∇(a2, b2, c2) it suffices to show b2a2 = c2b2, i.e.
c1a1 · b1c1 = a1b1 · c1a1. This follows directly from Corollary 2.2. ¤

The preceding theorem is actually a kind of converse of Grünbaum’s
original theorem [1]. Grünbaum assumed a1, b1, c1 to be the mid-
points of (b′, c′), (a′, c′), (a′, b′) and proved that (a, b1, c1), (a1, b, c1)
and (a1, b1, c) are equilateral triangles. This is not true in general
Napoleon’s quasigroups. It may happen that a′, b′, c′ coincide and then
any a1, b1, c1 ∈ Q would be midpoints in a Napoleon’s quasigroup con-
structed from a field of characteristic 2. However, given a and b1, there
is only one c1 such that ∆(a, b1, c1) holds.

Floor van Lamoen [3] proved a generalization of Napoleon’s theorem.
Here is a slightly modified version in our setting. Napoleon’s theorem
is the special case (a1, b1, c1) = (c2, a2, b2).

Theorem 3.7. Let ∆(a1, a2, a3), ∆(b1, b2, b3) and ∆(c1, c2, c3) be equi-
lateral triangles in a Napoleon’s quasigroup (Q, ·). Denote by zi =
C(ai, bi, ci), i = 1, 2, 3, and d1 = C(a1, b2, c3), e1 = C(a2, b3, c1), f1 =
C(a3, b1, c2), d2 = C(a1, b3, c2), e2 = C(a2, b1, c3), f2 = C(a3, b2, c1).
Then, ∆o(z1, z2, z3), ∆o(d1, e1, f1) and ∆o(d2, e2, f2) hold for some o ∈
Q.

Proof. Since the three triangles are left equilateral, a1a2 = a2a3 = a3a1,
b1b2 = b2b3 = b3b1 and c1c2 = c2c3 = c3c1. Denote o = (a1a2 ·b1b2)(c1c2 ·
a1a2). Because of Proposition 2.5, it suffices to show that o = z1z2 =
z2z3 = d1e1 = e1f1 = d2e2 = e2f2. This follows by repeated application
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of mediality, e.g.

z1z2 = (a1b1 · c1a1)(a2b2 · c2a2)
(3)
= (a1b1 · a2b2)(c1a1 · c2a2)

(3)
=

= (a1a2 · b1b2)(c1c2 · a1a2) = o,

d1e1 = (a1b2 · c3a1)(a2b3 · c1a2)
(3)
= (a1b2 · a2b3)(c3a1 · c1a2)

(3)
=

= (a1a2 · b2b3)(c3c1 · a1a2) = (a1a2 · b1b2)(c1c2 · a1a2) = o,

d2e2 = (a1b3 · c2a1)(a2b1 · c3a2)
(3)
= (a1b3 · a2b1)(c2a1 · c3a2)

(3)
=

= (a1a2 · b3b1)(c2c3 · a1a2) = (a1a2 · b1b2)(c1c2 · a1a2) = o.

The proofs of z2z3 = e1f1 = e2f2 = o are analogous. ¤
The duals of Theorems 3.4, 3.6 and 3.7, obtained by exchanging ∆

with ∇, are also true.
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