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ABSTRACT

We propose a generalization of the golden section based on division in mean
and extreme ratio. The associated integer sequences have many interesting
properties.

1 GENERALIZED GOLDEN RATIOS

There have been many generalizations of the number known as golden ratio
or golden section, ¢ = %5 Examples are G.A. Moore’s golden numbers [10]
and S. Bradley’s nearly golden sections [5] (see also [7] and [9]). A generali-
zation that has been considered by several authors are the positive roots of
oFt — 2% —1 = 0; see [12] and [14]. In this paper, a similar generalization is
proposed. It is based on the original definition of ¢, division of a line segment
in mean and extreme ratio.

Let G be a point dividing the segment AB in parts of length a = |AG|
and b = |GBJ; suppose a > b. The division is mean and extreme if the ratio
of the larger to the smaller part equals the ratio of the whole segment to the

larger part:
a a-+b

b a

Given a positive integer k, we consider divisions satisfying

()=
and ¢, = L =

For k > 1, we have not one but two ratios: ¢, = ¥ -
1+ é. These numbers will be called the k-th lower and upper golden ratio,




Pk O,
1.6180339887 | 1.6180339887
1.3247179572 | 1.7548776662
1.2207440846 | 1.8191725134
1.1673039783 | 1.8566748839
1.1347241384 | 1.8812714616

T W N =&

Table 1: Lower and upper golden ratios.

respectively. Obviously, ()% = ¢p. It is also evident that ¢y is a root of
the polynomial py(z) = 2! — 2 — 1 and ¢ is a root of the polynomial
Py(z) = z(z — 1)* — 1.

Proposition 1.1 For every positive integer k, the polynomials py(x) and
Pi(x) have a unique positive root. If k is even this is the only real root, and
if k is odd the polynomials have another negative root.

Proof. The equation py(z) = 0 can be rewritten as 2% — 1 = % Thus, real
roots correspond to intersections of the hyperbola y = % and the graph of
the power function translated one unit downwards, y = z*¥ — 1. Similarly,
real roots of P, correspond to intersections of the hyperbola and the graph
of the power function translated one unit to the right, y = (z — 1)*. The

claims follow from elementary properties of the functions involved. O

Therefore, ¢y, is the unique positive root of p; and ¢y, is the unique positive
root of P. The only instance when ¢, and ¢, coincide is k£ = 1, when both
are equal to the ordinary golden ratio ¢. The second lower golden ratio ¢s
has been called plastic number by the Benedictine monk and architect Dom
Hans van der Laan [1]. This is the smallest Pisot-Vijayaraghavan number
(see [4]). Its square, ¢, is also a cubic Pisot-Vijayaraghavan number. In
Table 1, we list decimal approximations to the first five lower and upper
golden ratios. As k grows, the lower golden ratios tend to 1 and the upper
golden ratios tend to 2.

Proposition 1.2 klim o =1, klim oL = 2.

Proof. By direct computation, pj is strictly increasing on [1, /3 }, attains
a negative value at x = 1 and a positive value at + = "“/3. Hence, p; has
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a unique zero in this interval, i.e. ¢ € (1, '”\1/5) The proposition follows
ﬁmngmkW@zlmm¢k:1+ﬁu O

2 ASSOCIATED INTEGER SEQUENCES

The connection between the golden ratio and Fibonacci numbers is well
known. We can define integer sequences associated with the generalized
golden ratios in a similar manner. The k-th lower Fibonacci sequence f,(Lk)
is defined by fl(k) = fZ(k) =...= f,glfr)l = 1 and the linear recurrence with
characteristic polynomial py:

k k
fr(zk) = fé—)k + f7(z—)k—1'

The k-th upper Fibonacci sequence F,(Lk) satisfies the same initial conditions

and the linear recurrence with characteristic polynomial P,. By the binomial
theorem, we get

k
k )
=3 (V) o El

- 7
=1

Of course, both fr(bl) and F\" are just the Fibonacci numbers. The second
lower Fibonacci sequence has been called the Padovan sequence in [13]:

(f?)=(1,1,1,2,2,3,4,5,7,9,12,16, 21,28, 37,49, 65,86, .. .).

This is sequence number A000931 in N. Sloane’s Encyclopedia of Integer
Sequences [11]. Another interesting sequence satisfying the same recurrence
with different initial conditions is the Perrin sequence (Sloane’s A001608),
giving a necessary condition for primality [2]. The second upper Fibonacci
sequence is Sloane’s A005251:

(F®) = (1,1,1,2,4,7,12,21,37,65, 114, 200, 351, 616, 1081, . . .).

Among other combinatorial interpretations, FT(LQ) is the number of composi-
tions of n without 2’s [6] and the number of binary strings of length n — 3
without isolated ones [3]. Notice that Fﬁr)l =2

The third lower Fibonacci sequence is listed in [11] as A079398:

(f®Y) = (1,1,1,1,2,2,2,3,4,4,5,7,8,9,12,15,17,21,27,32, .. ).
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Upper Fibonacci se%uences are currently listed up to £ = 5. Here are the
first few values of Fn3), Sloane’s A003522:

(F®) =(1,1,1,1,2,5,11,21, 37,64, 113, 205, 377, 693, 1266, . . .).

De Villiers [14] considered sequences defined by the recurrence L =
Lff_)l + Lnkf)kfl' When equipped with Fibonacci-like initial conditions, Lgk) =
= L,(jgl = 1, these are the Lamé sequences of higher order (according
to [11]). De Villiers gave a partial proof that ratios of consecutive members
tend to the positive root of z¥t1—2*—1 = 0, generalizing a famous property of
the Fibonacci numbers. The proof was later completed by S. Falcon [8]. Not
surprisingly, ratios of consecutive members of the lower and upper Fibonacci

sequences tend to the corresponding golden ratios.

f(k)l F(k)1
Theorem 2.1 711220 ;(J,g) = Pk, 7}13)10 ;(J]g) = ¢y

Proof. The polynomials p,, P, and their derivatives are relatively prime.
Therefore, pr and P, have k+ 1 distinct complex roots each and formulae for
the corresponding integer sequences are of the form a,, = Cozi + ... + Ci2}.
Here, zg, ..., 2, are the roots of p, or P, and Cy,...,C} are constants. The
quotient of two consecutive sequence members can be expressed as

C()Z() + 0121 (ﬁ) + ...+ C’kzk (ﬁ>

Ant1 C'OzgJrl + ...+ C’kz,?“ B 20 20
an  Cozl+ ...+ Cpzt 21\" 2\
n 0%0 k% CO+01<—1> +...+Ck<—k)
<0 <0
n
Suppose |zo| > |z| fori =1,... k. Then, (j—;) — 0 asn — oo and “ —
20, provided Cy # 0. Thus, it remains to be shown that the coefficients
Co, ..., C are not zero and ¢y, ¢, are greater than the absolute values of
the remaining roots of p, and P.
The coefficients Cy, . . ., C}, satisfy the system of linear equations
20 Z1 cee 2k CO 1
2 2 e 2 Gl |1
2ttt et Ck 1



Let A be the square matrix on the left. By Cramer’s rule we have

ZO .. 1 PR Zk

(7‘__ 1 Zg e 1 e Zz
" det A : :

Z§+1 1 z£+1

The Vandermonde determinant in the numerator is not zero because the
roots are all distinct and 1 is neither a root of py nor of P.

Finally, let z = x 4+ 1y # ¢ be a root of p, and denote its absolute value
by r = |z| = /22 + y2. By Proposition 1.1, z is either the unique negative
root (for odd k) or else y # 0; in both cases z < r. Taking the absolute value
of pr(z) = 0 we have:

|z|k+1:|z+1|:\/(at—|—1)2+y2< \/x2+y2+2r+1.

Equivalently, 771 < /72 +2r + 1 = r + 1, i.e. pi(r) < 0. The polynomial
Py is strictly increasing on [1, +00) and pg(@r) = 0. Therefore, py(x) > 0 for
all x > ¢ and we conclude r < . Similarly, if z = x + iy # ¢, is a root
of Py, we get

L=|z|- |z =1 =7r r2—2x+1k>r(r—1)k — P.(r) <0.

Again, Py(xz) > 0 for all + > ¢y and r < ¢ follows. This completes the
proof. O

f(k)
Corollary 2.2 lim =%

n—o0 ék)

= Q-

Proof. By the preceding theorem, consecutive ratios of the k-th lower Fi-
bonacci sequences tend to ¢ so we have

k k k k
FRSUR RO AN A

k
(®) Do S ek ek ok = (0)" =
fh fﬁ+k—1 f%+k—2 f£

O

Just like ordinary Fibonacci numbers, their upper “cousins” can be ex-
pressed as sums of binomial coefficients. We will need the following lemma.
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L 2.3 I << —1) - '
emma 2.3 For any k <1 <m, Z( )()< l ) (l—k)

i=0 J

Proof. Let M be a set of m elements and suppose a subset of k£ elements is
given. The right side enumerates all [-element subsets of M containing the
given k elements. On the other hand, (];) (ml_j) is the number of [-subsets
avoiding at least j of the k given elements. The sum on the left equals the

binomial coefficient on the right by inclusion-exclusion. ([l
Proposition 2.4 FT(LIi)l = Z <nk_z Z)
i>0

Proof. Obviously, 22‘20 (”k_f) = 1 for all n < k. The recurrence for the upper

Fibonacci numbers can be rewritten as

: k
; k
(—1) (]) F15+)k+17j = Fék)-
=0

J

By substituting appropriate sums of binomial coefficients we get
[k n+k—j—1 n—1—1 n—i
E —1) E = § = E .
4 = <]) : ( ki ) : ( ki ) : (kz(z’—l))
j=0 >0 120 121

Equivalently,

) > Qe R B

The terms in the square brackets are all zero by Lemma 2.3 for m =n+k—1
and [ = k4. Therefore, the considered sums satisfy the the initial conditions
and the recurrence for the upper Fibonacci sequence. O

Members of the Lamé sequences can also be expressed as sums of binomial

coefficients [11]:
o g
W= ("),

i=0
It would be of interest to find a similar formula for the lower Fibonacci
sequences and to generalize other known properties of Fibonacci numbers.
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