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ABSTRACT

We propose a generalization of the golden section based on division in mean
and extreme ratio. The associated integer sequences have many interesting
properties.

1 GENERALIZED GOLDEN RATIOS

There have been many generalizations of the number known as golden ratio
or golden section, φ = 1+

√
5

2
. Examples are G.A. Moore’s golden numbers [10]

and S. Bradley’s nearly golden sections [5] (see also [7] and [9]). A generali-
zation that has been considered by several authors are the positive roots of
xk+1− xk − 1 = 0; see [12] and [14]. In this paper, a similar generalization is
proposed. It is based on the original definition of φ, division of a line segment
in mean and extreme ratio.

Let G be a point dividing the segment AB in parts of length a = |AG|
and b = |GB|; suppose a > b. The division is mean and extreme if the ratio
of the larger to the smaller part equals the ratio of the whole segment to the
larger part:

a

b
=

a + b

a
.

Given a positive integer k, we consider divisions satisfying

(a

b

)k

=
a + b

a
.

For k > 1, we have not one but two ratios: ϕk = a
b

and φk = a+b
a

=
1 + 1

ϕk
. These numbers will be called the k-th lower and upper golden ratio,
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k ϕk φk

1 1.6180339887 1.6180339887
2 1.3247179572 1.7548776662
3 1.2207440846 1.8191725134
4 1.1673039783 1.8566748839
5 1.1347241384 1.8812714616

Table 1: Lower and upper golden ratios.

respectively. Obviously, (ϕk)
k = φk. It is also evident that ϕk is a root of

the polynomial pk(x) = xk+1 − x − 1 and φk is a root of the polynomial
Pk(x) = x(x− 1)k − 1.

Proposition 1.1 For every positive integer k, the polynomials pk(x) and
Pk(x) have a unique positive root. If k is even this is the only real root, and
if k is odd the polynomials have another negative root.

Proof. The equation pk(x) = 0 can be rewritten as xk − 1 = 1
x
. Thus, real

roots correspond to intersections of the hyperbola y = 1
x

and the graph of
the power function translated one unit downwards, y = xk − 1. Similarly,
real roots of Pk correspond to intersections of the hyperbola and the graph
of the power function translated one unit to the right, y = (x − 1)k. The
claims follow from elementary properties of the functions involved. ¤

Therefore, ϕk is the unique positive root of pk and φk is the unique positive
root of Pk. The only instance when ϕk and φk coincide is k = 1, when both
are equal to the ordinary golden ratio φ. The second lower golden ratio ϕ2

has been called plastic number by the Benedictine monk and architect Dom
Hans van der Laan [1]. This is the smallest Pisot-Vijayaraghavan number
(see [4]). Its square, φ2, is also a cubic Pisot-Vijayaraghavan number. In
Table 1, we list decimal approximations to the first five lower and upper
golden ratios. As k grows, the lower golden ratios tend to 1 and the upper
golden ratios tend to 2.

Proposition 1.2 lim
k→∞

ϕk = 1, lim
k→∞

φk = 2.

Proof. By direct computation, pk is strictly increasing on
[
1, k+1

√
3
]
, attains

a negative value at x = 1 and a positive value at x = k+1
√

3. Hence, pk has
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a unique zero in this interval, i.e. ϕk ∈
(
1, k+1

√
3
)
. The proposition follows

from lim
k→∞

k+1
√

3 = 1 and φk = 1 + 1
ϕk

. ¤

2 ASSOCIATED INTEGER SEQUENCES

The connection between the golden ratio and Fibonacci numbers is well
known. We can define integer sequences associated with the generalized
golden ratios in a similar manner. The k-th lower Fibonacci sequence f

(k)
n

is defined by f
(k)
1 = f

(k)
2 = . . . = f

(k)
k+1 = 1 and the linear recurrence with

characteristic polynomial pk:

f (k)
n = f

(k)
n−k + f

(k)
n−k−1.

The k-th upper Fibonacci sequence F
(k)
n satisfies the same initial conditions

and the linear recurrence with characteristic polynomial Pk. By the binomial
theorem, we get

F (k)
n =

k∑
i=1

(
k

i

)
(−1)i+1F

(k)
n−i + F

(k)
n−k−1.

Of course, both f
(1)
n and F

(1)
n are just the Fibonacci numbers. The second

lower Fibonacci sequence has been called the Padovan sequence in [13]:

(f (2)
n ) = (1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28, 37, 49, 65, 86, . . .).

This is sequence number A000931 in N. Sloane’s Encyclopedia of Integer
Sequences [11]. Another interesting sequence satisfying the same recurrence
with different initial conditions is the Perrin sequence (Sloane’s A001608),
giving a necessary condition for primality [2]. The second upper Fibonacci
sequence is Sloane’s A005251:

(F (2)
n ) = (1, 1, 1, 2, 4, 7, 12, 21, 37, 65, 114, 200, 351, 616, 1081, . . .).

Among other combinatorial interpretations, F
(2)
n is the number of composi-

tions of n without 2’s [6] and the number of binary strings of length n − 3

without isolated ones [3]. Notice that F
(2)
n+1 = f

(2)
2n−1.

The third lower Fibonacci sequence is listed in [11] as A079398:

(f (3)
n ) = (1, 1, 1, 1, 2, 2, 2, 3, 4, 4, 5, 7, 8, 9, 12, 15, 17, 21, 27, 32, . . .).
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Upper Fibonacci sequences are currently listed up to k = 5. Here are the
first few values of F

(3)
n , Sloane’s A003522:

(F (3)
n ) = (1, 1, 1, 1, 2, 5, 11, 21, 37, 64, 113, 205, 377, 693, 1266, . . .).

De Villiers [14] considered sequences defined by the recurrence L
(k)
n =

L
(k)
n−1 +L

(k)
n−k−1. When equipped with Fibonacci-like initial conditions, L

(k)
1 =

. . . = L
(k)
k+1 = 1, these are the Lamé sequences of higher order (according

to [11]). De Villiers gave a partial proof that ratios of consecutive members
tend to the positive root of xk+1−xk−1 = 0, generalizing a famous property of
the Fibonacci numbers. The proof was later completed by S. Falcon [8]. Not
surprisingly, ratios of consecutive members of the lower and upper Fibonacci
sequences tend to the corresponding golden ratios.

Theorem 2.1 lim
n→∞

f
(k)
n+1

f
(k)
n

= ϕk, lim
n→∞

F
(k)
n+1

F
(k)
n

= φk.

Proof. The polynomials pk, Pk and their derivatives are relatively prime.
Therefore, pk and Pk have k+1 distinct complex roots each and formulae for
the corresponding integer sequences are of the form an = C0z

n
0 + . . . + Ckz

n
k .

Here, z0, . . . , zk are the roots of pk or Pk and C0, . . . , Ck are constants. The
quotient of two consecutive sequence members can be expressed as

an+1

an

=
C0z

n+1
0 + . . . + Ckz

n+1
k

C0zn
0 + . . . + Ckzn

k

=

C0z0 + C1z1

(
z1

z0

)n

+ . . . + Ckzk

(
zk

z0

)n

C0 + C1

(
z1

z0

)n

+ . . . + Ck

(
zk

z0

)n .

Suppose |z0| > |zi| for i = 1, . . . , k. Then,
(

zi

z0

)n

→ 0 as n →∞ and an+1

an
→

z0, provided C0 6= 0. Thus, it remains to be shown that the coefficients
C0, . . . , Ck are not zero and ϕk, φk are greater than the absolute values of
the remaining roots of pk and Pk.

The coefficients C0, . . . , Ck satisfy the system of linear equations



z0 z1 · · · zk

z2
0 z2

1 · · · z2
k

...
...

. . .
...

zk+1
0 zk+1

1 · · · zk+1
k







C0

C1
...

Ck


 =




1
1
...
1


 .
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Let A be the square matrix on the left. By Cramer’s rule we have

Ci =
1

det A

∣∣∣∣∣∣∣∣∣

z0 · · · 1 · · · zk

z2
0 · · · 1 · · · z2

k
...

...
...

zk+1
0 · · · 1 · · · zk+1

k

∣∣∣∣∣∣∣∣∣
.

The Vandermonde determinant in the numerator is not zero because the
roots are all distinct and 1 is neither a root of pk nor of Pk.

Finally, let z = x + i y 6= ϕk be a root of pk and denote its absolute value
by r = |z| =

√
x2 + y2. By Proposition 1.1, z is either the unique negative

root (for odd k) or else y 6= 0; in both cases x < r. Taking the absolute value
of pk(z) = 0 we have:

|z|k+1 = |z + 1| =
√

(x + 1)2 + y2 <
√

x2 + y2 + 2r + 1.

Equivalently, rk+1 <
√

r2 + 2r + 1 = r + 1, i.e. pk(r) < 0. The polynomial
pk is strictly increasing on [1, +∞) and pk(ϕk) = 0. Therefore, pk(x) > 0 for
all x > ϕk and we conclude r < ϕk. Similarly, if z = x + i y 6= φk is a root
of Pk, we get

1 = |z| · |z − 1|k = r
√

r2 − 2x + 1
k

> r(r − 1)k =⇒ Pk(r) < 0.

Again, Pk(x) > 0 for all x > φk and r < φk follows. This completes the
proof. ¤

Corollary 2.2 lim
n→∞

f
(k)
n+k

f
(k)
n

= φk.

Proof. By the preceding theorem, consecutive ratios of the k-th lower Fi-
bonacci sequences tend to ϕk so we have

f
(k)
n+k

f
(k)
n

=
f

(k)
n+k

f
(k)
n+k−1

· f
(k)
n+k−1

f
(k)
n+k−2

· · · f
(k)
n+1

f
(k)
n

→ ϕk · ϕk · · ·ϕk = (ϕk)
k = φk.

¤
Just like ordinary Fibonacci numbers, their upper “cousins” can be ex-

pressed as sums of binomial coefficients. We will need the following lemma.
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Lemma 2.3 For any k ≤ l ≤ m,
k∑

j=0

(−1)j

(
k

j

)(
m− j

l

)
=

(
m− k

l − k

)
.

Proof. Let M be a set of m elements and suppose a subset of k elements is
given. The right side enumerates all l-element subsets of M containing the
given k elements. On the other hand,

(
k
j

)(
m−j

l

)
is the number of l-subsets

avoiding at least j of the k given elements. The sum on the left equals the
binomial coefficient on the right by inclusion-exclusion. ¤

Proposition 2.4 F
(k)
n+1 =

∑
i≥0

(
n− i

k i

)

Proof. Obviously,
∑

i≥0

(
n−i
k i

)
= 1 for all n ≤ k. The recurrence for the upper

Fibonacci numbers can be rewritten as

k∑
j=0

(−1)j

(
k

j

)
F

(k)
n+k+1−j = F (k)

n .

By substituting appropriate sums of binomial coefficients we get

k∑
j=0

(−1)j

(
k

j

) ∑
i≥0

(
n + k − j − i

k i

)
=

∑
i≥0

(
n− 1− i

k i

)
=

∑
i≥1

(
n− i

k(i− 1)

)
.

Equivalently,

∑
i≥1

[
k∑

j=0

(−1)j

(
k

j

)(
n + k − i− j

k i

)
−

(
n− i

k(i− 1)

)]
= 0.

The terms in the square brackets are all zero by Lemma 2.3 for m = n+k− i
and l = k i. Therefore, the considered sums satisfy the the initial conditions
and the recurrence for the upper Fibonacci sequence. ¤

Members of the Lamé sequences can also be expressed as sums of binomial
coefficients [11]:

L
(k)
n+1 =

bn/kc∑
i=0

(
n− k i

i

)
.

It would be of interest to find a similar formula for the lower Fibonacci
sequences and to generalize other known properties of Fibonacci numbers.
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