A class of quasigroups associated with a cubic Pisot number

Vedran Krčadinac and Vladimir Volenec

October 5, 2005

Abstract

In this paper idempotent medial quasigroups satisfying the identity $(a b \cdot a) a=b$ are studied. An example are the complex numbers with multiplication defined by $a \cdot b=$ $(1-q) a+q b$, where q is a solution of $q^{3}-2 q^{2}+q-1=0$. The positive root of this cubic equation can be viewed as a generalization of the golden ratio. It turns out that the quasigroups under consideration have many similar properties to the so-called golden section quasigroups.

1 Introduction

Let $q \neq 0,1$ be a complex number and define a binary operation on \mathbb{C} by $a \cdot b=(1-q) a+q b$. It is known that (\mathbb{C}, \cdot) is an IM-quasigroup, i.e. satisfies the laws of idempotency and mediality:

$$
\begin{gather*}
a \cdot a=a \tag{1}\\
a b \cdot c d=a c \cdot b d \tag{2}
\end{gather*}
$$

Immediate consequences are the identities known as elasticity, left and right distributivity:

$$
\begin{align*}
& a b \cdot a=a \cdot b a \tag{3}\\
& a \cdot b c=a b \cdot a c \tag{4}\\
& a b \cdot c=a c \cdot b c \tag{5}
\end{align*}
$$

This quasigroup will be denoted by $C(q)$. For some special values of q, the quasigroup satisfies additional identities. If $q=\frac{1+\sqrt{5}}{2}$ is the golden ratio, $C(q)$ is a representative example of the golden section or GS-quasigroups. GS-quasigroups were defined in [8] as idempotent quasigroups satisfying the (equivalent) identities $a(a b \cdot c) \cdot c=b, a \cdot(a \cdot b c) c=b$; see also [2], [3], [4] and [10]. An alternative definition would be as IM-quasigroups with the simpler identity $a(a b \cdot b)=b$. In this paper we study IM-quasigroups satisfying a similar identity:

$$
\begin{equation*}
(a b \cdot a) a=b \tag{6}
\end{equation*}
$$

Representative examples are the quasigroups $C(q)$ with q a root of q^{3} $2 q^{2}+q-1=0$. Denote by $r_{1,2}=\sqrt[3]{\frac{25 \pm \sqrt{69}}{2}}$. The roots of this cubic equation are $q_{1}=\frac{1}{3}\left(2+r_{1}+r_{2}\right) \approx 1.755$ and $q_{2,3}=\frac{1}{6}\left(4-r_{1}-r_{2} \pm i \sqrt{3}\left(r_{1}-r_{2}\right)\right) \approx$ $0.123 \pm 0.745 i$. The number q_{1} is a Pisot number, i.e. an algebraic integer greater than 1 whose algebraic conjugates $q_{2,3}$ have absolute values less than 1 . This number was considered in [5] as a generalization of the golden ratio and was called the second upper golden ratio. Therefore, we will refer to IM-quasigroups satisfying the identity (6) as G_{2}-quasigroups.

In the context of [5], the second lower golden ratio was the positive root of $p^{3}-p-1=0$. This is the smallest Pisot number $p_{1} \approx 1.325$; note that $q_{1}=p_{1}^{2}$. For more details about Pisot numbers see [1].

In this paper it is shown that G_{2}-quasigroups have many properties similar to those of GS-quasigroups. For example, they allow a simple definition of parallelograms using an explicit formula for the fourth vertex. In the last section G_{2}-quasigroups are characterized in terms of Abelian groups with a certain type of automorphism.

2 Basic properties and further identities

The following lemma will be used quite often.
Lemma 2.1. In an IM-quasigroup, identity (6) is equivalent with either of the identities

$$
\begin{align*}
& (a \cdot b a) a=b, \tag{7}\\
& a(b a \cdot a)=b . \tag{8}
\end{align*}
$$

Proof. By using elasticity we get $(a b \cdot a) a \stackrel{(3)}{=}(a \cdot b a) a \stackrel{(3)}{=} a(b a \cdot a)$.

Note that the equivalence holds even in a groupoid satisfying (1) and (2). Elasticity follows directly from idempotency and mediality, without using solvability or cancellativity. Consequently, the definition of G_{2}-quasigroups can be relaxed to the identities alone.

Proposition 2.2. Any groupoid satisfying (1), (2) and (6) is necessarily a quasigroup.

Proof. Given a and b define $x=a b \cdot a$ and $y=b a \cdot a$. From (6) and (8) we see that $x a=b$ and $a y=b$, i.e. the groupoid is left and right solvable. Now assume $a x_{1}=a x_{2}$ and $y_{1} a=y_{2} a$. Then, $x_{1} \stackrel{(6)}{=}\left(a x_{1} \cdot a\right) a=\left(a x_{2} \cdot a\right) a \stackrel{(6)}{=} x_{2}$ and $y_{1} \stackrel{(8)}{=} a\left(y_{1} a \cdot a\right)=a\left(y_{2} a \cdot a\right) \stackrel{(8)}{=} y_{2}$, so the groupoid is left and right cancellative.

The next proposition is similar to [8, Theorem 5].
Proposition 2.3. In a G_{2}-quasigroup, any two of the equalities $a b=c$, $c a=d$ and $d a=b$ imply the third.

Proof. Denote the equalities by (i), (ii) and (iii), respectively. Then we have:

$$
\begin{array}{ll}
(i),(i i) \Rightarrow(i i i): & d a \stackrel{(i i)}{=} c a \cdot a \stackrel{(i)}{=}(a b \cdot a) a \stackrel{(6)}{=} b, \\
(i),(i i i) \Rightarrow(i i): & c a \stackrel{(i)}{=} a b \cdot a \stackrel{(i i i)}{=}(a \cdot d a) a \stackrel{(7)}{=} d, \\
(i i),(i i i) \Rightarrow(i): & a b \stackrel{(i i i)}{=} a \cdot d a \stackrel{(i i)}{=} a(c a \cdot a) \stackrel{(8)}{=} c .
\end{array}
$$

We list some more identities valid in G_{2}-quasigroups. They are accompanied by pictures illustrating the example of the complex plane with multiplication defined by $a \cdot b=\left(1-q_{1}\right) a+q_{1} b$.

Proposition 2.4. The following identity holds in any G_{2}-quasigroup:

$$
\begin{equation*}
(a \cdot a b) c \cdot a=a c \cdot b . \tag{9}
\end{equation*}
$$

Proof. $(a \cdot a b) c \cdot a \stackrel{(5)}{=}(a \cdot a b) a \cdot c a \stackrel{(5)}{=}(a \cdot a b)(c a) \cdot(a \cdot c a) \stackrel{(3)}{=}(a \cdot a b)(c a)$. $(a c \cdot a) \stackrel{(2)}{=}(a c)(a b \cdot a) \cdot(a c \cdot a) \stackrel{(4)}{=} a c \cdot(a b \cdot a) a \stackrel{(6)}{=} a c \cdot b$.

Figure 1: Identity (9) in the complex plane.

Proposition 2.5. The following identity holds in any G_{2}-quasigroup:

$$
\begin{equation*}
(a b \cdot a) c \cdot b=(a b \cdot c) a \tag{10}
\end{equation*}
$$

Proof. $(a b \cdot a) c \cdot b \stackrel{(5)}{=}(a b \cdot b)(a b) \cdot c b \stackrel{(3)}{=}(a b)(b \cdot a b) \cdot c b \stackrel{(2)}{=}(a b \cdot c) \cdot(b \cdot a b) b \stackrel{(7)}{=}(a b \cdot$ c) a.

Figure 2: Identity (10) in the complex plane.

Proposition 2.6. The following identity holds in any G_{2}-quasigroup:

$$
\begin{equation*}
a \cdot(b a \cdot c) d=b(a c \cdot d) \tag{11}
\end{equation*}
$$

Proof. $a \cdot(b a \cdot c) d \stackrel{(5)}{=} a \cdot(b a \cdot d)(c d) \stackrel{(4)}{=}(a \cdot b a)(a d) \cdot(a \cdot c d) \stackrel{(2)}{=}(a \cdot b a) a \cdot(a d \cdot$ $c d) \stackrel{(7)}{=} b(a d \cdot c d) \stackrel{(5)}{=} b(a c \cdot d)$.

Figure 3: Identity (11) in the complex plane.

3 Parallelograms and other geometric concepts

The points a, b, c, d of a medial quasigroup are said to form a parallelogram, denoted by $\operatorname{Par}(a, b, c, d)$, if there are points p, q such that $p a=q b$ and $p d=q c$. In [7] it was proved that this relation satisfies the axioms of parallelogram space:

1. For any three points a, b, c there is a unique point d such that $\operatorname{Par}(a, b, c, d)$.
2. $\operatorname{Par}(a, b, c, d)$ implies $\operatorname{Par}(e, f, g, h)$, where (e, f, g, h) is any cyclic permutation of (a, b, c, d) or (d, c, b, a).
3. $\operatorname{Par}(a, b, c, d)$ and $\operatorname{Par}(c, d, e, f)$ imply $\operatorname{Par}(a, b, f, e)$.

In an IM-quasigroup, the unique point d of axiom 1 satisfies the following equation [9, Theorem 12]:

$$
\begin{equation*}
a b \cdot d c=a c \tag{12}
\end{equation*}
$$

This equation can be explicitly solved for d in GS-quasigroups: $d=a \cdot b(c a \cdot a)$ [8, Theorem 6]. Here we prove a similar result for G_{2}-quasigroups.

Proposition 3.1. In a G_{2}-quasigroup, for any a, b, c we have

$$
\operatorname{Par}(a, b, c,(b a \cdot c b) b)
$$

Proof. By substituting $d=(b a \cdot c b) b$ into the equation (12) we get

$$
a b \cdot[(b a \cdot c b) b \cdot c]=a c
$$

It suffices to show that this is a valid identity in any G_{2}-quasigroup:

$$
\begin{gathered}
a b \cdot[(b a \cdot c b) b \cdot c] \stackrel{(5)}{=} a b \cdot[(b a \cdot c)(c b \cdot c) \cdot b c] \stackrel{(2)}{=} a b \cdot[(b a \cdot c) b \cdot(c b \cdot c) c]= \\
\stackrel{(6)}{=} a b \cdot[(b a \cdot c) b \cdot b] \stackrel{(5)}{=} a b \cdot[(b a \cdot b) \cdot c b] b \stackrel{(5)}{=} a b \cdot[(b a \cdot b) b \cdot(c b \cdot b)]= \\
\stackrel{(6)}{=} a b \cdot a(c b \cdot b) \stackrel{(4)}{=} a \cdot b(c b \cdot b) \stackrel{(8)}{=} a c .
\end{gathered}
$$

Now we have a direct definition of parallelograms in G_{2}-quasigroups, without using auxiliary points:

$$
\begin{equation*}
\operatorname{Par}(a, b, c, d) \Longleftrightarrow d=(b a \cdot c b) b \tag{13}
\end{equation*}
$$

Using the parallelogram relation geometric concepts such as midpoints, vectors and translations can be introduced. Of course, in the special case of the quasigroups $C(q)$ the concepts agree with the usual definitions of plane geometry. Thus, geometric theorems can be proved by formal calculations in a quasigroup. We give an example particular to G_{2}-quasigroups (Theorem 3.4).

In any medial quasigroup, b is said to be the midpoint of the pair of points a, c if $\operatorname{Par}(a, b, c, b)$ holds. This is denoted by $M(a, b, c)$. The following proposition provides a characterization in G_{2}-quasigroups.

Proposition 3.2. In a G_{2}-quasigroup, $M(a, b, c)$ is equivalent with

$$
\begin{equation*}
c=(a b \cdot b a) a . \tag{14}
\end{equation*}
$$

Proof. By axiom 2 of parallelogram spaces, $M(a, b, c)$ is equivalent with $\operatorname{Par}(b, a, b, c)$, and the claim follows from (13).

To facilitate notation, we introduce a new binary operation:

$$
\begin{equation*}
a * b=(b a \cdot a) b . \tag{15}
\end{equation*}
$$

Starting from the quasigroup $C\left(q_{1}\right)$, this defines the binary operation in the quasigroup $C\left(p_{1}\right)$, i.e. $a * b=\left(1-p_{1}\right) a+p_{1} b$. If $a b=c($ resp. $a * b=c)$, we say that b divides the pair of points a, c in the second upper (resp. lower) golden ratio. Here are some properties of the new binary operation. It is assumed that the original binary operation has higher priority than ' $*$ ', e.g. $a * b c$ means $a *(b c)$.

Figure 4: A new binary operation defined by (15).

Lemma 3.3. The operation defined by (15) in a G_{2}-quasigroup satisfies the following identities:

$$
\begin{gather*}
a * a=a, \tag{16}\\
a b * c d=(a * c)(b * d), \tag{17}\\
(a *(a * b) c) c=b . \tag{18}
\end{gather*}
$$

Proof. Idempotency of the new operation (16) follows directly from (1). Identity (17) follows by repeated application of mediality:

$$
\begin{aligned}
& a b * c d \stackrel{(15)}{=}(c d \cdot a b)(a b) \cdot c d \stackrel{(2)}{=}(c a \cdot d b)(a b) \cdot c d \stackrel{(2)}{=}(c a \cdot a)(d b \cdot b) \cdot c d= \\
& \stackrel{(2)}{=}(c a \cdot a) c \cdot(d b \cdot b) d \stackrel{(15)}{=}(a * c)(b * d) .
\end{aligned}
$$

Here is the proof of identity (18):

$$
\begin{aligned}
(a *(a * b) c) c & \stackrel{(15)}{=}\{[(b a \cdot a) b \cdot c] a \cdot a\}[(b a \cdot a) b \cdot c] \cdot c= \\
& \stackrel{(2)}{=}\{[(b a \cdot a) b \cdot c] a \cdot(b a \cdot a) b\}(a c) \cdot c= \\
& \stackrel{(2)}{=}\{[(b a \cdot a) b \cdot c](b a \cdot a) \cdot a b\}(a c) \cdot c= \\
& \stackrel{(2)}{=}\{[(b a \cdot a) b \cdot b a](c a) \cdot a b\}(a c) \cdot c= \\
& \stackrel{(5)}{=}\{[(b a \cdot b)(a b) \cdot b a](c a) \cdot a b\}(a c) \cdot c= \\
& \stackrel{(2)}{=}\{[(b a \cdot b) b \cdot(a b \cdot a)](c a) \cdot a b\}(a c) \cdot c= \\
& \stackrel{(6)}{=}\{[a(a b \cdot a) \cdot c a](a b) \cdot a c\} c \stackrel{(2)}{=}\{[a c \cdot(a b \cdot a) a](a b) \cdot a c\} c= \\
& \stackrel{(6)}{=}[(a c \cdot b)(a b) \cdot a c] c \stackrel{(5)}{=}[(a c \cdot a) b \cdot a c] c \stackrel{(2)}{=}[(a c \cdot a) a \cdot b c] c= \\
& \stackrel{(6)}{=}(c \cdot b c) c \stackrel{(7)}{=} b .
\end{aligned}
$$

Identity (17) could be called mutual mediality of the two binary operations. By identifying two factors various kinds of distributivities follow:
$a * b c=(a * b)(a * c), a(b * c)=a b * a c$ and their right counterparts. Identity (18) is an analogue of the defining identity for GS-quasigroups [8]. It is used in the proof of the following theorem.

Theorem 3.4. In a G_{2}-quasigroup, suppose that $a * e=c, a * f=b$ and $c g=f$. Then, $b g=e$. Furthermore, suppose $M(a, h, g)$ and $h * g=d$. Then, $d h=a$ and $M(b, d, c)$.

Proof. The first claim follows by substitution:

$$
b g=(a * f) g=(a * c g) g=(a *(a * e) g) g \stackrel{(18)}{=} e .
$$

If, in addition, $M(a, h, g)$ and $h * g=d$ hold, we get $g=(a h \cdot h a) a$ by (14), and the remaining claims follow by tedious, but straightforward computations:

$$
\begin{aligned}
& d h=(h * g) h=[h *(a h \cdot h a) a] h \stackrel{(15)}{=}\{[(a h \cdot h a) a \cdot h] h \cdot(a h \cdot h a) a\} h= \\
& \stackrel{(2)}{=}\{[(a h \cdot h a) a \cdot h](a h \cdot h a) \cdot h a\} h \stackrel{\text { (2) }}{=}\{[(a h \cdot h a) a \cdot a h](h \cdot h a) \cdot h a\} h= \\
& \stackrel{(5)}{=}\{[(a h \cdot a)(h a \cdot a) \cdot a h](h \cdot h a) \cdot h a\} h= \\
& \stackrel{(2)}{=}\{[(a h \cdot a) a \cdot(h a \cdot a) h](h \cdot h a) \cdot h a\} h= \\
& \stackrel{(6)}{=}\{[h \cdot(h a \cdot a) h](h \cdot h a) \cdot h a\} h \stackrel{(4)}{=}\{h[(h a \cdot a) h \cdot h a] \cdot h a\} h= \\
& \stackrel{(5)}{=}\{h[(h a \cdot h)(a h) \cdot h a] \cdot h a\} h \stackrel{(2)}{=}\{h[(h a \cdot h) h \cdot(a h \cdot a)] \cdot h a\} h= \\
& \stackrel{(6)}{=}[h \cdot a(a h \cdot a)](h a) \cdot h \stackrel{(4)}{=} h[a(a h \cdot a) \cdot a] \cdot h \stackrel{(3)}{=} h[a \cdot(a h \cdot a) a] \cdot h= \\
& \stackrel{(6)}{=}(h \cdot a h) h \stackrel{(7)}{=} a .
\end{aligned}
$$

To prove $M(b, d, c)$, we utilize (14) once more:

$$
\begin{aligned}
(b d \cdot d b) b & \stackrel{(4)}{=}(b d \cdot d)(b d \cdot b) \cdot b \stackrel{(5)}{=}(b d \cdot d) b \cdot(b d \cdot b) b \stackrel{(6)}{=}(b d \cdot d) b \cdot d= \\
& =(b d \cdot d) b \cdot(h * g) \stackrel{(15)}{=}(b d \cdot d) b \cdot(g h \cdot h) g= \\
& \stackrel{(2)}{=}(b d \cdot d)(g h \cdot h) \cdot b g \stackrel{(2)}{=}(b d \cdot g h)(d h) \cdot b g= \\
& \stackrel{(2)}{=}(b g \cdot d h)(d h) \cdot b g=(e a \cdot a) e \stackrel{(15)}{=} a * e=c .
\end{aligned}
$$

In the special case of the quasigroup $C\left(q_{1}\right)$, Theorem 3.4 proves:

Corollary 3.5. Let $A B C$ be a triangle and suppose the points E and F divide $\overline{A C}$ and $\overline{A B}$ in the second lower golden ratio, respectively. Then the cevians $\overline{B E}$ and $\overline{C F}$ intersect in a point G that divides them in the second upper golden ratio. Furthermore, the midpoint H of $\overline{A G}$ divides the third cevian $\overline{A D}$ in the second upper golden ratio.

Figure 5: Geometric interpretation of Theorem 3.4.

The statement of Corollary 3.5 remains true if every instance of the second lower/upper golden ratio is replaced by the corresponding n-th golden ratio (for a definition see [5]). For $n=1$, both the lower and the upper golden ratio are equal to $\frac{1+\sqrt{5}}{2}$ and we get the geometric interpretation of [8, Theorem 15].

4 Representation theorems

Let $(G,+)$ be an Abelian group with an automorphism φ such that the following equality holds for every $x \in G$:

$$
\begin{equation*}
\varphi^{3}(x)-2 \varphi^{2}(x)+\varphi(x)-x=0 \tag{19}
\end{equation*}
$$

Define another binary operation on G by the formula

$$
\begin{equation*}
a \cdot b=a+\varphi(b-a) \tag{20}
\end{equation*}
$$

It is easy to verify that G is an IM-quasigroup with this new operation. Furthermore, the identity (6) follows from (19):

$$
\begin{aligned}
(a b \cdot a) a & =a b \cdot a+\varphi(a)-\varphi(a b \cdot a) \\
& =a b+\varphi(a)-\varphi(a b)+\varphi(a)-\varphi(a b)-\varphi^{2}(a)+\varphi^{2}(a b) \\
& =2 \varphi(a)-\varphi^{2}(a)+a b-2 \varphi(a b)+\varphi^{2}(a b) \\
& =2 \varphi(a)-\varphi^{2}(a)+\left(i d-2 \varphi+\varphi^{2}\right)(a+\varphi(b)-\varphi(a)) \\
& =\left[a-\varphi(a)+2 \varphi^{2}(a)-\varphi^{3}(a)\right]+\left[\varphi^{3}(b)-2 \varphi^{2}(b)+\varphi(b)-b\right]+b \\
& \stackrel{(19)}{=} b .
\end{aligned}
$$

Therefore, (G, \cdot) is a G_{2}-quasigroup. The purpose of this section is to show that any G_{2}-quasigroup can be obtained in this way.

Theorem 4.1. Let (G, \cdot) be a G_{2}-quasigroup. Choose an arbitrary $o \in G$ and define a new binary operation on G by the formula

$$
\begin{equation*}
a+b=(o a \cdot b o) o \tag{21}
\end{equation*}
$$

Then, $(G,+)$ is an Abelian group with neutral element o.
Proof. We first prove associativity, commutativity and that o is the neutral element:

$$
\begin{aligned}
(a+b)+c & \stackrel{(21)}{=}[o \cdot(o a \cdot b o) o](c o) \cdot o \stackrel{(5)}{=}[o \cdot(o a \cdot b o) o] o \cdot(c o \cdot o)= \\
& \stackrel{(7)}{=}(o a \cdot b o)(c o \cdot o) \stackrel{(2)}{=}(o b \cdot a o)(c o \cdot o) \stackrel{(2)}{=}(o b \cdot c o)(a o \cdot o)= \\
& \stackrel{(7)}{=}[o \cdot(o b \cdot c o) o] o \cdot(a o \cdot o) \stackrel{(5)}{=}[o \cdot(o b \cdot c o) o](a o) \cdot o= \\
& \stackrel{(2)}{=}(o a)[(o b \cdot c o) o \cdot o] \cdot o \stackrel{(21)}{=} a+(b+c), \\
& a+b \stackrel{(21)}{=}(o a \cdot b o) o \stackrel{(2)}{=}(o b \cdot a o) o \stackrel{(21)}{=} b+a, \\
& a+o \stackrel{(21)}{=}(o a \cdot o o) o \stackrel{(1)}{=}(o a \cdot o) o \stackrel{(6)}{=} a .
\end{aligned}
$$

For any $a \in G$ define $-a=o \cdot(o \cdot o a) a$. This is the inverse of a :

$$
\begin{aligned}
a+(-a) & \stackrel{(21)}{=}\{o a \cdot[o \cdot(o \cdot o a) a] o\} o \stackrel{(5)}{=}(o a \cdot o)\{[o \cdot(o \cdot o a) a] o \cdot o\}= \\
& \stackrel{(6)}{=}(o a \cdot o) \cdot(o \cdot o a) a \stackrel{(2)}{=}(o a)(o \cdot o a) \cdot o a \stackrel{(7)}{=} o .
\end{aligned}
$$

Theorem 4.2. The mappings $\varphi: x \mapsto$ ox and $\psi: x \mapsto x o$ are automorphisms of the group $(G,+)$ of Theorem 4.1 and satisfy the identity

$$
\begin{equation*}
\psi(a)+\varphi(b)=a b \tag{22}
\end{equation*}
$$

Proof. The following shows that φ is an automorphism:

$$
\begin{aligned}
\varphi(a)+\varphi(b) & =o a+o b \stackrel{(21)}{=}(o \cdot o a)(o b \cdot o) \cdot o \stackrel{(3)}{=}(o \cdot o a)(o \cdot b o) \cdot o= \\
& \stackrel{(4)}{=} o(o a \cdot b o) \cdot o \stackrel{(3)}{=} o \cdot(o a \cdot b o) o \stackrel{(21)}{=} o(a+b)=\varphi(a+b) .
\end{aligned}
$$

The proof that ψ is an automorphism is similar. Finally,

$$
\begin{aligned}
\psi(a)+\varphi(b) & =a o+o b \stackrel{(21)}{=}(o \cdot a o)(o b \cdot o) \cdot o \stackrel{(3)}{=}(o \cdot a o)(o \cdot b o) \cdot o= \\
& \stackrel{(4)}{=} o(a o \cdot b o) \cdot o \stackrel{(5)}{=} o(a b \cdot o) \cdot o \stackrel{(7)}{=} a b .
\end{aligned}
$$

Theorem 4.3. Equations (19) and (20) are satisfied in the setting of the previous two theorems.

Proof. As a special case of (22), we see that $\psi(x)+\varphi(x)=x x \stackrel{(1)}{=} x$, i.e. $\psi(x)=x-\varphi(x)$. Now equation (20) follows directly from (22):

$$
a b=\psi(a)+\varphi(b)=a-\varphi(a)+\varphi(b)=a+\varphi(b-a)
$$

To prove equation (19), note that

$$
\psi^{2}(x)=\psi(x-\varphi(x))=x-\varphi(x)-\varphi(x-\varphi(x))=\varphi^{2}(x)-2 \varphi(x)+x .
$$

Therefore, $\varphi^{3}(x)-2 \varphi^{2}(x)+\varphi(x)=\varphi\left(\psi^{2}(x)\right)=o(x o \cdot o) \stackrel{(8)}{=} x$.
This is a direct proof of a G_{2}-version of Toyoda's representation theorem for medial quasigroups [6].

References

[1] M.-J. Bertin, A. Decomps-Guilloux, M. Grandet-Hugot, M. Pathiaux-Delefosse and J.-P. Schreiber: Pisot and Salem numbers, Birkhäuser Verlag, Basel, 1992.
[2] V. Havel and M. Sedlářová: Golden section quasigroups as special idempotent medial quasigroups, Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math. 33 (1994), 43-50.
[3] Z. Kolar-Begović and V. Volenec: GS-trapezoids in GS-quasigroups, Math. Commun. 7 (2002), no. 2, 143-158.
[4] Z. Kolar-Begović and V. Volenec: DGS-trapezoids in GS-quasigroups, Math. Commun. 8 (2003), no. 2, 215-218.
[5] V. Krčadinac: A new generalization of the golden ratio, The Fibonacci Quarterly (to appear).
[6] K. Toyoda, On axioms of linear functions, Proc. Imp. Acad. Tokyo 17 (1941), 221-227.
[7] V. Volenec: Geometry of medial quasigroups, Rad Jugoslav. Akad. Znan. Umjet. 421 (1986), 79-91.
[8] V. Volenec: GS-quasigroups, Časopis Pěst. Mat. 115 (1990), no. 3, 307-318.
[9] V. Volenec: Geometry of IM-quasigroups, Rad Jugoslav. Akad. Znan. Umjet. 456 (1991), 139-146.
[10] V. Volenec and Z. Kolar-Begović : Affine regular pentagons in GS-quasigroups, Quasigroups Related Systems 12 (2004), 103-112.

Department of Mathematics
University of Zagreb
Bijenička 30
HR-10000 Zagreb
Croatia
e-mail: krcko@math.hr, volenec@math.hr

