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Abstract. We enumerate frequency squares of orders 7 and 8 and
the corresponding isotopism classes. An error in a previous paper by
L.J. Brant and G.L. Mullen is discovered and partially corrected.

1. Introduction

Frequency squares are a generalization of Latin squares. Let λ1, . . . , λs

be positive integers and n = λ1 + . . . + λs. A frequency square of order n
with frequency vector λ = (λ1, . . . , λs) is an n×n matrix over {1, 2, . . . , s}
such that the number i appears exactly λi times in each row and column, for
i = 1, . . . , s. Latin squares are frequency squares with λ = (1, . . . , 1). If the
entries in the first row and column appear in natural order, the frequency
square is said to be reduced. The set of all frequency squares will be denoted
F (n;λ) and the set of reduced frequency squares f(n; λ). Two frequency
squares are isotopic provided they are equivalent under rearrangements of
rows, columns and entries.

Enumeration of frequency squares and isotopism classes is, in general,
hard. There are several published formulae for the number of Latin squares
(e.g. [8], [9] and [11]) but they are computationally infeasible. Reduced
Latin squares have recently been enumerated by computer for n = 11 [8]
and isotopism classes of Latin squares for n = 9, 10 [7]. The last pub-
lished enumeration of frequency squares seems to be Brant and Mullen [1].
They determined numbers of frequency squares for n ≤ 6 and with some
exceptions also the corresponding isotopism classes. In this work an or-
derly classification algorithm is used to constructively enumerate isotopism
classes of frequency squares up to n = 8. An independent enumeration of
reduced frequency squares is also performed and the results are shown to
be consistent with each other. The numbers imply that [1, Theorem 3] is
wrong. Errors in the proof are pointed out and partially corrected, thereby
proving [1, Corollary 4].
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2. Isotopism classes

Orderly classification algorithms were pioneered by R.C. Read [10] and
I.A. Faradžev [4]. We first give a general description of the method in the
spirit of [6]. Let X be a set of combinatorial objects with a distinguished
object O ∈ X. Let p : X → X be a nilpotent function, such that pn(X) =
{O} for some n ∈ N. Thus, X is a tree rooted at O and p is the parent
function. The order of an object A ∈ X is the level at which A appears
in the tree: ord A = min{i ∈ N0 | pi(A) = O}. Furthermore, suppose a
group G acts on X in an order-preserving manner, i.e. ord(gA) = ord A for
all g ∈ G and A ∈ X. The equivalence relation induced by the action of G
will be denoted ∼=. The goal is to construct one representative from each
equivalence class, usually on a specified level of the tree.

We need one more ingredient to formulate the classification algorithm:
a canonical labeling map. This is a function c : X → X with the properties
c(A) ∼= A and c(gA) = c(A), for all A ∈ X and g ∈ G. The fixed points of c
are called canonical objects. The canonical objects constitute a set of class
representatives and thus a solution of the classification problem. However,
the total number of objects is usually very large and it is not possible to
examine them all in order to find the canonical ones. The key idea is to
construct canonical objects recursively, by extending canonical objects on
previous levels of the tree. This will be possible if parents of canonical
objects are also canonical, i.e. if c(A) = A implies c(p(A)) = p(A). Now we
have everything in place for a precise description of the algorithm.

scan(A, n)


if ord A = n then print A

else for all B ∈ p−1(A) do[
if c(B) = B then scan(B, n)

The call scan(O, n) will print all canonical objects of order n.
We want to construct a list of isotopism class representatives of frequency

squares in F (n; λ). As partial objects we take frequency rectangles, i.e. r×n
matrices over {1, . . . , s} such that the number i appears at most λi times
in every row and column. The set of all such matrices will be denoted
F (r, n; λ); obviously F (n, n;λ) = F (n;λ). Take X = ∪n

r=0F (r, n; λ) and
deletion of the last matrix row as the parent function p. Then the order of a
frequency rectangle A ∈ X is its number of rows. The group Gr = Sr×Sn×
(Ss)λ acts on F (r, n;λ) by permuting rows, columns and entries. Here Sr

and Sn are symmetric groups and (Ss)λ is the group of s-permutations
leaving the frequency vector λ invariant. The direct product G = G0 ×
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. . . × Gn acts on X in an order-preserving way and induces the isotopism
relation.

Next, we introduce a total ordering relation on the set of objects. Fre-
quency rectangles are compared lexicographically, as vectors obtained by
concatenating the rows. A canonical labeling map can be defined by
c(A) = min{gA | g ∈ G} (c(A) is the minimal frequency rectangle isotopic
to A). Obviously, if A is the minimal rectangle in its isotopism class, the
rectangle obtained by deleting the last row shares this property. Hence,
parents of canonical frequency rectangles are also canonical and the classi-
fication algorithm can be applied in this setting.

The algorithm was implemented in the programming language C and run
on a cluster of Linux workstations. For n ≤ 6 our results agree with those
of [1]. The missing numbers for n = 6 and numbers of isotopism classes of
order n = 7, 8 are reported in Table 1. Complete lists of representatives can
be accessed through the author’s web page http://www.math.hr/~krcko,
as well as the computer programs used for the calculations.

n λ No. cl. n λ No. classes

6 (2, 2, 2) 46 8 (5, 3) 51
(2, 2, 1, 1) 106 (5, 2, 1) 624
(2, 1, 1, 1, 1) 56 (5, 1, 1, 1) 370

7 (5, 2) 4 (4, 4) 156
(5, 1, 1) 4 (4, 3, 1) 19 041
(4, 3) 16 (4, 2, 2) 112 043
(4, 2, 1) 92 (4, 2, 1, 1) 347 263
(4, 1, 1, 1) 56 (4, 1, 1, 1, 1) 93 561
(3, 3, 1) 226 (3, 3, 2) 766 361
(3, 2, 2) 1 939 (3, 3, 1, 1) 1 211 710
(3, 2, 1, 1) 5 300 (3, 2, 2, 1) 27 865 024
(3, 1, 1, 1, 1) 1 398 (3, 2, 1, 1, 1) 29 632 348
(2, 2, 2, 1) 15 269 (3, 1, 1, 1, 1, 1) 4 735 238
(2, 2, 1, 1, 1) 22 813 (2, 2, 2, 2) 26 983 466
(2, 1, 1, 1, 1, 1) 6 941 (2, 2, 2, 1, 1) 171 710 120
(1, 1, 1, 1, 1, 1, 1) 564 (2, 2, 1, 1, 1, 1) 137 000 435

8 (6, 2) 7 (2, 1, 1, 1, 1, 1, 1) 29 163 047
(6, 1, 1) 7 (1, 1, 1, 1, 1, 1, 1, 1) 1 676 267

Table 1. Number of isotopism classes of frequency squares.
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3. Reduced frequency squares

Enumeration and classification of Latin squares is a subject that pro-
duced many errors in published sources. One example is the value 563 as
the number of isotopism classes of 7× 7 Latin squares (e.g. in [2] and [3]).
Table 1 comprises the correct value, 564. For a history of this and other
errors see [7].

The total number of distinct frequency squares will be denoted by |F (n; λ)|
and |f(n; λ)| will denote the total number of distinct reduced frequency
squares. Any classification of as many objects as there are frequency
squares of order 8 necessarily includes many reductions. There is a real
danger of missing some classes due to conceptual and programming errors.
We felt an independent verification of the numbers in Table 1 was desirable.
Fortunately, on today’s fast CPUs reduced frequency squares of order n ≤ 8
can be enumerated directly. A simple backtracking program was used to
compute the numbers in Table 2. The program was thoroughly checked for
errors and most of the computations were performed at least twice. There-
fore, we are confident all of the numbers in Table 2 are correct. For n ≤ 6
our results agree with those of Brant and Mullen [1].

The results of our computations can be checked against each other by
computing the total number of frequency squares in two ways. By [1,
Theorem 2] we have:

n λ |f(n; λ)| n λ |f(n; λ)|
7 (5, 2) 9 876 8 (5, 1, 1, 1) 40 171 008

(5, 1, 1) 7 416 (4, 4) 47 740 325
(4, 3) 98 484 (4, 3, 1) 771 067 692
(4, 2, 1) 285 948 (4, 2, 2) 3 971 210 355
(4, 1, 1, 1) 214 752 (4, 2, 1, 1) 3 166 707 276
(3, 3, 1) 1 185 336 (4, 1, 1, 1, 1) 2 525 457 024
(3, 2, 2) 4 582 740 (3, 3, 2) 20 826 177 696
(3, 2, 1, 1) 3 442 464 (3, 3, 1, 1) 16 608 228 480
(3, 1, 1, 1, 1) 2 586 432 (3, 2, 2, 1) 85 538 838 240
(2, 2, 2, 1) 19 969 380 (3, 2, 1, 1, 1) 68 220 465 792
(2, 2, 1, 1, 1) 14 998 608 (3, 1, 1, 1, 1, 1) 54 413 316 096
(2, 1, 1, 1, 1, 1) 11 270 400 (2, 2, 2, 2) 660 892 740 516
(1, 1, 1, 1, 1, 1, 1) 16 942 080 (2, 2, 2, 1, 1) 527 062 142 160

8 (6, 2) 318 930 (2, 2, 1, 1, 1, 1) 420 413 623 488
(6, 1, 1) 254 280 (2, 1, 1, 1, 1, 1, 1) 335 390 189 568
(5, 3) 12 268 464 (1, 1, 1, 1, 1, 1, 1, 1) 535 281 401 856
(5, 2, 1) 50 377 968

Table 2. Number of reduced frequency squares.
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|F (n; λ1, . . . , λs)| =
�

n
λ1, . . . , λs

��
n− 1

λ1 − 1, λ2, . . . , λs

�
|f(n; λ1, . . . , λs)|.

On the other hand, this number can be computed from the complete list
of isotopism class representatives:

|F (n; λ1, . . . , λs)| = |Gn| ·
∑

A

1
|Aut(A)| .

The sum is taken over all isotopism class representatives and |Aut(A)|
denotes the autotopism group size, i.e. the number of isotopisms mapping
the square A onto itself. If there are k distinct numbers among λ1, . . . , λs,
occurring with frequencies s1, . . . , sk, then |Gn| = |Sn × Sn × (Ss)λ| =
(n!)2s1! · · · sk!. Autotopism group sizes were computed by B.D. McKay’s
nauty [5]. In each case the same total number of frequency squares was
obtained, indicating that the results of our computations are consistent
with each other.

4. The number of frequency squares of a given order

Brant and Mullen [1] noted that the number of frequency squares of
order n ≤ 6 is a non-increasing function of the frequency vector. More
precisely, frequency vectors are assumed to have non-increasing compo-
nents and are compared lexicographically. In Theorem 3 of [1] it is stated
that |F (n; λ)| ≥ |F (n; λ′)| whenever λ ≤ λ′. While this still holds for
n = 7, it is no longer true for n = 8. From the data in Table 2 we can
compute |F (8; 4, 4)| = 116963796250; this number is smaller than both
|F (8; 5, 2, 1)| = 888667355520 and |F (8; 5, 1, 1, 1)| = 2834466324480. An-
other counterexample is |F (8; 3, 3, 2)| = 2449158497049600 < 3563924952-
268800 = |F (8; 4, 1, 1, 1, 1)|.

The main idea in the proof of Theorem 3 is to define a surjective mapping
φ : F (n; λ) → F (n;λ′). The following concept is used, although it is not
explicitly defined.

Definition 4.1. Let A ∈ F (n; λ1, . . . , λs) be a frequency square and k ∈
{1, . . . , s}. A k-transversal of A is a set of n cells, one in every row and
column, each containing the integer k.

Obviously, Latin squares have a unique k-transversal for every k. Fre-
quency squares also possess a k-transversal for every k, but it is not neces-
sarily unique.

Lemma 4.2. Let A ∈ F (n; λ1, . . . , λs) be a frequency square. For every
k ∈ {1, . . . , s} there is at least one k-transversal in A.
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Proof. Suppose A = [aij ]; we define a bipartite graph with vertices R1, . . . , Rn

and C1, . . . , Cn. The pair (Ri, Cj) is joined by an edge if aij = k. Since k
appears λk times in every row and column, all vertices have degree λk. By
the marriage theorem the graph possesses a maximal matching, giving a
k-transversal in A. ¤

In [1], the image φ(A) is obtained by repeatedly choosing a k-trans-
versal and replacing k by some other integer in the corresponding cells.
However, the definition of φ is flawed; the k-transversals are chosen by
a greedy algorithm and this is not always possible without backtracking.
Of course, one can use some other method to find k-transversals (e.g. the
Ford-Fulkerson algorithm), but in general it is not possible to prove that φ
is onto. Indeed, our counterexamples show that λ ≤ λ′ is not sufficient for
a surjection φ : F (n; λ) → F (n;λ′) to exist.

The method of Brant and Mullen does give some information on the
number of frequency squares. As a corollary of Theorem 3, it is stated that
there are more Latin squares than any other kind of frequency squares of
the same order. This can be proved by the ideas of [1].

Proposition 4.3. |F (n; 1, . . . , 1)| ≥ |F (n;λ)| for every frequency vector λ.

Proof. We will define a surjective mapping φ : F (n; 1, . . . , 1) → F (n; λ).
Let λ = (λ1, . . . , λs) and define ϕ : {1, . . . , n} → {1, . . . , s} by

ϕ(i) =
{

i, for i ≤ s
min{j |λ1 + . . . + λj − j ≥ i− s}, for i > s.

The function φ acts on a Latin square A = [aij ] by substitution of the
entries: φ(A) = [ϕ(aij)]. It remains to be shown that φ is onto.

Any frequency square B ∈ F (n;λ) can be turned into a Latin square in
the following way. Let k = min{i |λi > 1}; choose a k-transversal in B and
substitute s + 1 instead of k in the corresponding cells. Thus, we get a fre-
quency square in F (n; 1, . . . , 1, λk − 1, λk+1, . . . , λs, 1). By repeated appli-
cation of this transformation a Latin square A with the property φ(A) = B
is obtained. ¤
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