

Solving simultaneous equations using matrix functions in Excel

PAMELA PETERSON DRAKE, JAMES MADISON UNIVERSITY

There are occasions in solving Finance problems when we face a situation that requires solving several equations at one time, whether that is a portfolio optimization, an analysis of economic systems, or making decisions under bond indenture constraints.

Microsoft Excel Matrix functions

Microsoft Excel provides matrix functions for calculation purposes:

MINVERSE	Invert a matrix
MMULT	Multiply two matrices together
MDTERM	Calculate the determinant of a specified array

When solving simultaneous equations, we can use these functions to solve for the unknown values. For example, if you are faced with the following system of equations:

$$a + 2b + 3c = 1$$

 $a - c = 0$
 $2a + b = 1.25$

Using matrix Algebra,

[1	2	3		ra ₁		[1]	
1	0	-1	×	b	=	0	
2	1	0		L_{C}		L1.25	

To solve for the vector $\begin{bmatrix} a \\ b \\ c \end{bmatrix}$, we bring the first matrix over to the right-hand side by dividing both sides by the matrix, and then multiply the two matrices:

$$\begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1.25 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 1 & 0 & -1 \\ 2 & 1 & 0 \end{bmatrix}^{-1}$$
$$\begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1.25 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 1 & 0 & -1 \\ 2 & 1 & 0 \end{bmatrix}^{-1} = \begin{bmatrix} 1.0 \\ -0.75 \\ 0.5 \end{bmatrix}$$

Matrix Algebra using Excel

So how do we accomplish this in Excel?

Step 1: Create matrices

	Α	В	С	D	E	F
1						
2						
3	1	2	3		1	
4	1	0	-2		0	
5	2	1	0		1.25	
6						
7						

Step 2: Invert first matrix

Select cells for the inverted matrix result for a matrix the same size as the original matrix. The use the function MMINVERSE to invert it. Once you specify the array to invert, use CTRL-CHIFT-ENTER instead of closing out the function:

	А	В	С	D
1				
2				
3	1	2	3	
4	1	0	-2	
5	2	1	0	
6				
7	=minverse(A3:C5		
8	MINVERS	E(array)		
9				
10				
11				
12				

This produces:

	А	В	С	D
1				
2				
3	1	2	3	
4	1	0	-2	
5	2	1	0	
6				
7	-0.66667	-1	1.333333	
8	1.333333	2	-1.66667	
9	-0.33333	-1	0.666667	
10				
11				

Step 3: Multiply matrices

You multiply matrices using the MMULTI function, selecting the cells that you want the results (in this example, cells B12, B13 and B14:

	А	В	С	D	E
1					
2					
3	1	2	3		1
4	1	0	-2		0
5	2	1	0		1.25
6					Ī
7	-0.66667	-1	1.333333		
8	1.333333	2	-1.66667		
9	-0.33333	-1	0.666667		
10					
11					
12		=mmult(A7	:C9,E3:E5		
13		MMULT(array1, array	2)	
14					
15					
16					

As with the MINVERSE function, use CTRL-SHIFT-ENTER to produce the results:

	A	В	С	D	E	F
1						
2						
3	1	2	3		1	
4	1	0	-2		0	
5	2	1	0		1.25	
6						
7	-0.66667	-1	1.333333			
8	1.333333	2	-1.66667			
9	-0.33333	-1	0.666667			
10						
11						
12		1				
13		-0.75				
14		0.5				
15						
16						
17						
40						