

Outline

DtoN map

The GSAM

Aitken-Schwarz

Adaptive Aitken-Schwarz

Aitken meshfree

Meshfree Adaptative Aitken-Schwarz Domain Decomposition for Darcy flow

D.Tromeur-Dervout

CDCSP/ICJ-UMR5208 Université Lyon 1, 15 Bd Latarjet, 69622 Villeurbanne, France.

Dedicated to Alain Bourgeat's 60th birthday Scaling Up and Modeling for Transport and Flow in Porous Media Dubrovnik, Croatia, 13-16 October 2008 Partially founded by : GDR MOMAS, ANR-TL-07 LIBRAERO, ANR-CIS-07 MICAS

Outline

- DtoN map
- The GSAM
- Aitken-Schwarz
- Adaptive Aitken-Schwarz
- Aitken meshfree

Objectives : make a Schwarz DDM that has :

- scalable properties
- Artificial condition independant of the parameter (even make convergent a divergent Schwarz method)
- can be used as "black box", no direct impact on the implementation of local solver.

C ^D C & _P S

AS DDM DTD

Outline

- DtoN map
- The GSAM
- Aitken-Schwarz
- Adaptive Aitken-Schwarz
- Aitken meshfree

The Dirichlet-Neumann Map

- The Generalized Schwarz Alternating Method
- The Aitken-Schwarz Method
- 4
- Non separable operator , non regular mesh, adaptive Aitken-Schwarz

Aitken meshfree acceleration

Outline

DtoN map

The GSAM

Aitken-Schwarz

Adaptive Aitken-Schwarz

Aitken meshfree

Let $\Omega \subset \mathbf{R}^n$ a bounded domain with $\Gamma := \partial \Omega$ Lipschitz. The trace operator : γ_0 $\forall u \in H^1(\Omega), \exists \gamma_0 u \in H^{1/2}(\Gamma)$ satisfying $||\gamma_0 u||_{H^{1/2}(\Gamma)} \leq c_T \cdot ||u||_{H^1(\Omega)}.$ (1)

 $\varepsilon v||_{H^1(\Omega)} \leq c_{IT}.||v||_{H^{1/2}(\Gamma)}.$

Outline

DtoN map

The GSAM

Aitken-Schwarz

Adaptive Aitken-Schwarz

Aitken meshfree Let $\Omega \subset \mathbf{R}^{n}$ a bounded domain with $\Gamma := \partial \Omega$ Lipschitz. The trace operator : γ_{0} $\forall u \in H^{1}(\Omega), \exists \gamma_{0} u \in H^{1/2}(\Gamma)$ satisfying $||\gamma_{0} u||_{H^{1/2}(\Gamma)} \leq c_{T} \cdot ||u||_{H^{1}(\Omega)}.$ (1) vice versa the bounded extension operator : ε

 $\forall v \in H^{1/2}(\Gamma), \ \exists \varepsilon v \in H^1(\Omega) \text{ satisfying } \gamma_0 \varepsilon v = v \text{ and }$

$$|\varepsilon v||_{H^1(\Omega)} \leq c_{IT}.||v||_{H^{1/2}(\Gamma)}.$$
 (2)

Outline

DtoN map

The GSAM

Aitken-Schwarz

Adaptive Aitken-Schwarz

Aitken meshfree

L(.) is assumed to be uniformly elliptic, $\sum_{i,j=1}^{n} a_{ji}(x)\xi_{j}\xi_{l} \geq c_{0}.|\xi|^{2}, \forall \xi \in \mathbf{R}^{n}, \forall x \in \Omega$

he conormal derivative γ_1 is given by .

$$\gamma_1 u(x) := \sum_{i,j=1}^n n_j(x) [a_{ji}(x) \frac{\partial}{\partial x_i} u(x)], \ \forall x \in \Gamma$$

where n(x) is the exterior unit normal vector.

$$a(u, v) = \sum_{i,j=1}^{n} \int_{\Omega} \frac{\partial}{\partial x_{j}} v(x) a_{ji}(x) \frac{\partial}{\partial x_{i}} u(x)$$

=
$$\int_{\Omega} Lu(x) v(x) dx + \int_{\Gamma} \gamma_{1} u(x) \gamma_{0} v(x) dS_{x}$$

AS DDM DTD

Outline

DtoN map

The GSAM

Aitken-Schwarz

Adaptive Aitken-Schwarz

Aitken meshfree

Set
$$L(x)u(x) = -\sum_{i,j=1}^{n} \frac{\partial}{\partial x_j} [a_{ji}(x) \frac{\partial}{\partial x_i} u(x)], \quad a_{ji} \in L_{\infty}(\mathfrak{A})$$

L(.) is assumed to be uniformly elliptic,

$$\sum_{i,j=1}^{n} a_{ji}(x) \xi_j \xi_l \geq c_0 . |\xi|^2, \forall \xi \in \mathbf{R}^n, \forall x \in \Omega$$

The conormal derivative γ_1 is given by

$$\gamma_1 u(x) := \sum_{i,j=1}^n n_j(x) [a_{ji}(x) \frac{\partial}{\partial x_i} u(x)], \ \forall x \in \Gamma$$

where n(x) is the exterior unit normal vector.

$$a(u, v) = \sum_{i,j=1}^{n} \int_{\Omega} \frac{\partial}{\partial x_{j}} v(x) a_{ji}(x) \frac{\partial}{\partial x_{i}} u(x)$$
$$= \int_{\Omega} Lu(x) v(x) dx + \int_{\Gamma} \gamma_{1} u(x) \gamma_{0} v(x) dS_{x}$$

AS DDM DTD

ς

Outline

DtoN map

The GSAM

Aitken-Schwarz

Adaptive Aitken-Schwarz

Aitken meshfree

Set
$$L(x)u(x) = -\sum_{i,j=1}^{n} \frac{\partial}{\partial x_{j}} [a_{ji}(x) \frac{\partial}{\partial x_{i}} u(x)], \quad a_{ji} \in L_{\infty}(\mathfrak{A})$$

L(.) is assumed to be uniformly elliptic,

$$\sum_{i,j=1}^{n} a_{ji}(x) \xi_j \xi_l \ge c_0.|\xi|^2, \forall \xi \in \mathbf{R}^n, \forall x \in \Omega$$

The conormal derivative γ_1 is given by

$$\gamma_1 u(x) := \Sigma_{i,j=1}^n n_j(x) [a_{ji}(x) rac{\partial}{\partial x_i} u(x)], \; \forall x \in \Gamma$$

where n(x) is the exterior unit normal vector.

$$a(u, v) = \sum_{i,j=1}^{n} \int_{\Omega} \frac{\partial}{\partial x_{j}} v(x) a_{ji}(x) \frac{\partial}{\partial x_{i}} u(x)$$
$$= \int_{\Omega} Lu(x) v(x) dx + \int_{\Gamma} \gamma_{1} u(x) \gamma_{0} v(x) dS_{x}$$

Outline

DtoN map

The GSAM

Aitken-Schwarz

Adaptive Aitken-Schwarz

Aitken meshfree Necas Lem. $\Rightarrow \exists ! u = u_0 + \varepsilon g \in H^1(\Omega)$ sol. of Dirichlet Pb

L(x)u(x) = f(x), for $x \in \Omega$, $\gamma_0 u(x) = g(x)$, for $x \in \Gamma(4)$

Then defining the linear application $orall w\in H^{1/2}(\Gamma)$

$$l(w) = a(u, \varepsilon w) - \int_{\Omega} f(x)\varepsilon w(c)dx.$$

Riez thm : $\exists \lambda \in H^{-1/2}(\Gamma)$: $\langle \lambda, w \rangle_{L_2(\Gamma)} = I(w) \ \forall w \in H^{1/2}(\Gamma)$.

Hence, the conormal derivative $\lambda \in H^{-1/2}(\Gamma)$ satisfies

$$\int_{\Gamma} \lambda \ w \ ds_x = a(u_0 + \varepsilon g, \varepsilon w) - \int_{\Omega} f \ \varepsilon w \ dx \ \forall w \in H^{1/2}(\Gamma).$$

 \Rightarrow *f* fixed, we have a DtoN map : $g = \gamma_0 u \mapsto \lambda := \gamma_1 u$

$$\gamma_1 u(x) = Sg(x) - Nf(x), \forall w \in \Gamma$$
(5)

DtoN map

The GSAM

Aitken-Schwarz

Adaptive Aitken-Schwarz

Aitken meshfree Necas Lem. $\Rightarrow \exists ! u = u_0 + \varepsilon g \in H^1(\Omega)$ sol. of Dirichlet Pb

$$L(x)u(x) = f(x), \text{ for } x \in \Omega, \gamma_0 u(x) = g(x), \text{ for } x \in \Gamma(4)$$

Then defining the linear application $\forall w \in H^{1/2}(\Gamma)$

$$l(w) = a(u, \varepsilon w) - \int_{\Omega} f(x) \varepsilon w(c) dx.$$

Riez thm : $\exists \lambda \in H^{-1/2}(\Gamma)$: $\langle \lambda, w \rangle_{L_2(\Gamma)} = I(w) \ \forall w \in H^{1/2}(\Gamma)$.

Hence, the conormal derivative $\lambda \in H^{-1/2}(\Gamma)$ satisfies

$$\int_{\Gamma} \lambda \ w \ ds_x = a(u_0 + \varepsilon g, \varepsilon w) - \int_{\Omega} f \ \varepsilon w \ dx \ \forall w \in H^{1/2}(\Gamma).$$

 \Rightarrow *f* fixed, we have a DtoN map : $g = \gamma_0 u \mapsto \lambda := \gamma_1 u$

$$\gamma_1 u(x) = Sg(x) - Nf(x), \forall w \in \Gamma$$
(5)

DtoN map

The GSAM

Aitken-Schwarz

Adaptive Aitken-Schwarz

Aitken meshfree Necas Lem. $\Rightarrow \exists ! u = u_0 + \varepsilon g \in H^1(\Omega)$ sol. of Dirichlet Pb

$$L(x)u(x) = f(x)$$
, for $x \in \Omega$, $\gamma_0 u(x) = g(x)$, for $x \in \Gamma(4)$

Then defining the linear application $\forall w \in H^{1/2}(\Gamma)$

$$l(w) = a(u, \varepsilon w) - \int_{\Omega} f(x) \varepsilon w(c) dx.$$

Riez thm : $\exists \lambda \in H^{-1/2}(\Gamma)$: $\langle \lambda, w \rangle_{L_2(\Gamma)} = I(w) \ \forall w \in H^{1/2}(\Gamma)$.

Hence, the conormal derivative $\lambda \in H^{-1/2}(\Gamma)$ satisfies

$$\int_{\Gamma} \lambda \ w \ ds_x = a(u_0 + \varepsilon g, \varepsilon w) - \int_{\Omega} f \ \varepsilon w \ dx \ \forall w \in H^{1/2}(\Gamma).$$

 \Rightarrow *f* fixed, we have a DtoN map : $g = \gamma_0 u \mapsto \lambda := \gamma_1 u$

 $\gamma_1 u(x) = Sg(x) - Nf(x), \forall w \in \Gamma$ (5)

DtoN map

The GSAM

Aitken-Schwarz

Adaptive Aitken-Schwarz

Aitken meshfree Necas Lem. $\Rightarrow \exists ! u = u_0 + \varepsilon g \in H^1(\Omega)$ sol. of Dirichlet Pb

$$L(x)u(x) = f(x)$$
, for $x \in \Omega$, $\gamma_0 u(x) = g(x)$, for $x \in \Gamma(4)$

Then defining the linear application $\forall w \in H^{1/2}(\Gamma)$

$$l(w) = a(u, \varepsilon w) - \int_{\Omega} f(x) \varepsilon w(c) dx.$$

Riez thm : $\exists \lambda \in H^{-1/2}(\Gamma)$: $\langle \lambda, w \rangle_{L_2(\Gamma)} = I(w) \ \forall w \in H^{1/2}(\Gamma)$.

Hence, the conormal derivative $\lambda \in H^{-1/2}(\Gamma)$ satisfies

$$\int_{\Gamma} \lambda \ w \ ds_{x} = a(u_{0} + \varepsilon g, \varepsilon w) - \int_{\Omega} f \ \varepsilon w \ dx \ \forall w \in H^{1/2}(\Gamma).$$

 \Rightarrow *f* fixed, we have a DtoN map : $g = \gamma_0 u \mapsto \lambda := \gamma_1 u$

$$\gamma_1 u(x) = Sg(x) - Nf(x), \forall w \in \Gamma$$
 (5)

- Outline
- DtoN map
- The GSAM

Aitken-Schwarz

Adaptive Aitken-Schwarz

Aitken meshfree

The Dirichlet-Neumann Map

2 The Generalized Schwarz Alternating Method

The Aitken-Schwarz Metho

2

Non separable operator , non regular mesh, adaptive Aitken-Schwarz

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

æ.

Aitken meshfree acceleration

Outline

DtoN map

The GSAM

Aitken-Schwarz

Adaptive Aitken-Schwarz

Aitken meshfree

The Generalized Schwarz Alternating Method (GSAM)

B. Engquist and H.-K. Zhao, Appl. Numer. Math. 27 (1998), no. 4, 341-365.

Consider $\Omega = \Omega_1 \cup \Omega_2$ with the two artificial boundaries Γ_1 , Γ_2 intersecting $\partial \Omega$.

Algorithm

$$\begin{split} L(x)u_{1}^{2n+1}(x) &= f(x), \ \forall x \in \Omega_{1}, \ u_{1}^{2n+1}(x) = g(x), \ \forall x \in \partial\Omega_{1} \setminus \Gamma_{1}, \\ \Lambda_{1}u_{1}^{2n+1} &+ \lambda_{1}\frac{\partial u_{1}^{2n+1}(x)}{\partial n_{1}} = \Lambda_{1}u_{2}^{2n} + \lambda_{1}\frac{\partial u_{2}^{2n}(x)}{\partial n_{1}}, \ \forall x \in \Gamma_{1} \\ L(x)u_{2}^{2n+2}(x) &= f(x), \ \forall x \in \Omega_{2}, \ u_{2}^{2n+2}(x) = g(x), \ \forall x \in \partial\Omega_{2} \setminus \Gamma_{2}, \\ \Lambda_{2}u_{2}^{2n+2} &+ \lambda_{2}\frac{\partial u_{2}^{2n+2}(x)}{\partial n_{2}} = \Lambda_{2}u_{1}^{2n+1} + \lambda_{2}\frac{\partial u_{1}^{2n+1}(x)}{\partial n_{2}}, \ \forall x \in \Gamma_{2}. \end{split}$$

where Λ_i 's are some operators and λ_i 's are constants. ($\Lambda_1 = I, \lambda_1 = 0, \Lambda_2 = 0, \lambda_2 = 1$) Schwarz Neumann-Dirichlet Algorithm

Outline

Dion map

The GSAM

Aitken-Schwarz

Adaptive Aitken-Schwarz

Aitken meshfree If $\lambda_1 = 1$ and Λ_1 is the DtoN operator at Γ_1 associated to the homogeneous PDE in Ω_2 with homogeneous boundary condition on $\partial\Omega_2 \cap \partial\Omega$ then GSAM converge in two steps. *proof* Let $e_i^n = u - u^n$, i = 1, 2, then

$$\begin{split} L(x)\boldsymbol{e}_1^1(x) &= 0, \ \forall x \in \Omega_1, \ \boldsymbol{e}_1^1(x) = 0, \ \forall x \in \partial \Omega_1 \setminus \Gamma_1, \\ \Lambda_1 \boldsymbol{e}_1^1 &+ \frac{\partial \boldsymbol{e}_1^1(x)}{\partial n_1} = \Lambda_1 \boldsymbol{e}_2^0 + \frac{\partial \boldsymbol{e}_2^0(x)}{\partial n_1}, \ \forall x \in \Gamma_1 \end{split}$$

since Λ_1 is the DtoN operator at Γ_1 in Ω_2

$$\frac{\partial e_2^0}{\partial n_1} + \Lambda_1 e_2^0 \quad = \quad -\frac{\partial e_2^0}{\partial n_2} + \frac{\partial e_2^0}{\partial n_2} = 0, \Rightarrow e_1^1 = 0 \text{in } \Omega_1$$

Hence we get the exact solution in two steps []

- Outline
- DtoN map
- The GSAM
- Aitken-Schwarz
- Adaptive Aitken-Schwarz
- Aitken meshfree

- Pb : Λ_i DtoN operators are global operators (linking all the subdomains when > 3).
- In practice, the algebraical approximations of this operators are used (see Nataf, Gander).
- On the other hand, the convergence property of the Schwarz Alternating methodology is used to define the Aitken-Schwarz methodology.

- Outline
- The GSAM

Aitken-Schwarz

Adaptive Aitken-Schwarz

Aitken meshfree

- Pb : Λ_i DtoN operators are global operators (linking all the subdomains when > 3).
- In practice, the algebraical approximations of this operators are used (see Nataf, Gander).
- On the other hand, the convergence property of the Schwarz Alternating methodology is used to define the Aitken-Schwarz methodology.

- DtoN map
- The GSAM

Aitken-Schwarz

Adaptive Aitken-Schwarz

Aitken meshfree

- Pb : Λ_i DtoN operators are global operators (linking all the subdomains when > 3).
- In practice, the algebraical approximations of this operators are used (see Nataf, Gander).
- On the other hand, the convergence property of the Schwarz Alternating methodology is used to define the Aitken-Schwarz methodology.

AS DDM DTD

Outline

DtoN map

The GSAM

Aitken-Schwarz

Adaptive Aitken-Schwarz

Aitken meshfree

Let
$$\Omega = \Omega_1 \cup \Omega_2$$
, $\Omega_{12} = \Omega_1 \cap \Omega_2$, $\Omega_{ii} = \Omega_i \backslash \Omega_{12}$
 $e_i^n = u - u_i^n$ in Ω_i satisfies :

$$(\Lambda_1 + \lambda_1 S_1) R_1 e_1^{2n+1} = (\Lambda_1 - \lambda_1 S_{22}) R_{22} P_2 e_2^{2n} (\Lambda_2 + \lambda_2 S_2) R_2 e_2^{2n+2} = (\Lambda_2 - \lambda_2 S_{22}) R_{11} P_1 e_1^{2n+1}$$

with

•
$$P_i: H^1(\Omega_i) \to H^1(\Omega_{ii})$$

• S_i (S_{ii}) the DtoN map operator in Ω_i (Ω_{ii}) on Γ_i ($\Gamma_{mod(i,2)+1}$).

•
$$R_i: H^1(\Omega_i) \to H^{1/2}(\Gamma_i), R_{ii}: H^1(\Omega_{ii}) \to H^{1/2}(\Gamma_{mod(i,2)+1}),$$

•
$$R_i^*$$
: $R_i R_i^* = I$,
 $\forall g \in H^{1/2}(\Gamma_i)$, $L(x)R_i^*g = 0$, $R_i^*g = g$ on Γ_i , $R_i^*g = 0$ on $\partial \Omega_i \setminus \Gamma_i$

Thus the convergence of GSAM is purely linear !! Aitken-Schwarz DDM uses this property to accelerate the convergence :

- Outline
- DtoN map

The GSAM

- Aitken-Schwarz
- Adaptive Aitken-Schwarz
- Aitken meshfree

 Consequently, no direct approximation of the DtoN map is used, but an approximation of the operator of error linked to this DtoN map is performed.

- Outline DtoN map
- The GSAM

Aitken-Schwarz

- Adaptive Aitken-Schwarz
- Aitken meshfree

- The Dirichlet-Neumann Map
- The Generalized Schwarz Alternating Method
- 3 The Aitken-Schwarz Method
- 4
 - Non separable operator , non regular mesh, adaptive Aitken-Schwarz

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

э.

Aitken meshfree acceleration

Outline

The GSAN

Aitken-Schwarz

Adaptive Aitken-Schwarz

Aitken meshfree

M.Garbey and D.Tromeur-Dervout : On some Aitken like acceleration of the Schwarz method,

Int. J. for Numerical Methods in Fluids, 40(12) :1493-1513,2002

• additive Schwarz algorithm :

•
$$L[u_1^{n+1}] = f \text{ in } \Omega_1, \ u_{1|\Gamma_1}^{n+1} = u_{2|\Gamma_1}^n,$$

• $L[u_2^{n+1}] = f \text{ in } \Omega_2, \ u_{2|\Gamma_2}^{n+1} = u_{1|\Gamma_2}^n.$

• the interface error operator T is linear, i.e

•
$$u_{1|\Gamma_2}^{n+1} - U_{|\Gamma_2} = \delta_1(u_{2|\Gamma_1}^n - U_{|\Gamma_1}),$$

• $u_{2|\Gamma_1}^{n+1} - U_{|\Gamma_1} = \delta_2(u_{1|\Gamma_2}^n - U_{|\Gamma_2}).$

Consequently

•
$$u_{1|\Gamma_2}^2 - u_{1|\Gamma_2}^1 = \delta_1 (u_{2|\Gamma_1}^1 - u_{2|\Gamma_1}^0),$$

• $u_{2|\Gamma_1}^2 - u_{2|\Gamma_1}^1 = \delta_2 (u_{1|\Gamma_2}^1 - u_{1|\Gamma_2}^0),$

• Computation of $\delta_{1/2}$: $L[v_{1/2}] = 0$ in $\Omega_{1/2}$, $v_{\Gamma_{1/2}} = 1$. thus $\delta_{1/2} = v_{\Gamma_{2/1}}$.

• iff $\delta \neq 1$ Aitken-Schwarz gives the solution with exactly 3 iterations and possibly 2 in the analytical case.

Outline DtoN m

The GSAN

Aitken-Schwarz

Adaptive Aitken-Schwarz

Aitken meshfree

M.Garbey and D.Tromeur-Dervout : On some Aitken like acceleration of the Schwarz method,

Int. J. for Numerical Methods in Fluids, 40(12) :1493-1513,2002

• additive Schwarz algorithm :

•
$$L[u_1^{n+1}] = f \text{ in } \Omega_1, \ u_{1|\Gamma_1}^{n+1} = u_{2|\Gamma_1}^n,$$

• $L[u_2^{n+1}] = f \text{ in } \Omega_2, \ u_{2|\Gamma_2}^{n+1} = u_{1|\Gamma_2}^n.$

the interface error operator T is linear, i.e

•
$$u_{1|\Gamma_2}^{n+1} - U_{|\Gamma_2} = \delta_1(u_{2|\Gamma_1}^n - U_{|\Gamma_1}),$$

• $u_{2|\Gamma_1}^{n+1} - U_{|\Gamma_1} = \delta_2(u_{1|\Gamma_2}^n - U_{|\Gamma_2}).$

Consequently

•
$$u_{1|\Gamma_2}^2 - u_{1|\Gamma_2}^1 = \delta_1 (u_{2|\Gamma_1}^1 - u_{2|\Gamma_1}^0),$$

• $u_{2|\Gamma_1}^2 - u_{2|\Gamma_1}^1 = \delta_2 (u_{1|\Gamma_2}^1 - u_{1|\Gamma_2}^0),$

• Computation of $\delta_{1/2}$: $L[v_{1/2}] = 0$ in $\Omega_{1/2}$, $v_{\Gamma_{1/2}} = 1$. thus $\delta_{1/2} = v_{\Gamma_{2/1}}$.

• iff $\delta \neq 1$ Aitken-Schwarz gives the solution with exactly 3 iterations and possibly 2 in the analytical case.

Outline

The GSAN

Aitken-Schwarz

Adaptive Aitken-Schwarz

Aitken meshfree

M.Garbey and D.Tromeur-Dervout : On some Aitken like acceleration of the Schwarz method,

Int. J. for Numerical Methods in Fluids, 40(12) :1493-1513,2002

• additive Schwarz algorithm :

•
$$L[u_1^{n+1}] = f \text{ in } \Omega_1, \ u_{1|\Gamma_1}^{n+1} = u_{2|\Gamma_1}^n,$$

• $L[u_2^{n+1}] = f \text{ in } \Omega_2, \ u_{2|\Gamma_2}^{n+1} = u_{1|\Gamma_2}^n.$

• the interface error operator T is linear, i.e

•
$$u_{1|\Gamma_2}^{n+1} - U_{|\Gamma_2} = \delta_1(u_{2|\Gamma_1}^n - U_{|\Gamma_1}),$$

• $u_{2|\Gamma_1}^{n+1} - U_{|\Gamma_1} = \delta_2(u_{1|\Gamma_2}^n - U_{|\Gamma_2}).$

Consequently

•
$$u_{1|\Gamma_2}^2 - u_{1|\Gamma_2}^1 = \delta_1(u_{2|\Gamma_1}^1 - u_{2|\Gamma_1}^0),$$

• $u_{2|\Gamma_1}^2 - u_{2|\Gamma_1}^1 = \delta_2(u_{1|\Gamma_2}^1 - u_{1|\Gamma_2}^0),$

- Computation of $\delta_{1/2}$: $L[v_{1/2}] = 0$ in $\Omega_{1/2}$, $v_{\Gamma_{1/2}} = 1$. thus $\delta_{1/2} = v_{\Gamma_{2/1}}$.
- iff $\delta \neq 1$ Aitken-Schwarz gives the solution with exactly 3 iterations and possibly 2 in the analytical case.

Outline

The GSAM

Aitken-Schwarz

Adaptive Aitken-Schwarz

Aitken meshfree

M.Garbey and D.Tromeur-Dervout : On some Aitken like acceleration of the Schwarz method,

Int. J. for Numerical Methods in Fluids, 40(12) :1493-1513,2002

• additive Schwarz algorithm :

•
$$L[u_1^{n+1}] = f \text{ in } \Omega_1, \ u_{1|\Gamma_1}^{n+1} = u_{2|\Gamma_1}^n,$$

• $L[u_2^{n+1}] = f \text{ in } \Omega_2, \ u_{2|\Gamma_2}^{n+1} = u_{1|\Gamma_2}^n.$

• the interface error operator T is linear, i.e

•
$$u_{1|\Gamma_2}^{n+1} - U_{|\Gamma_2} = \delta_1(u_{2|\Gamma_1}^n - U_{|\Gamma_1}),$$

• $u_{2|\Gamma_1}^{n+1} - U_{|\Gamma_1} = \delta_2(u_{1|\Gamma_2}^n - U_{|\Gamma_2}).$

Consequently

•
$$u_{1|\Gamma_2}^2 - u_{1|\Gamma_2}^1 = \delta_1(u_{2|\Gamma_1}^1 - u_{2|\Gamma_1}^0),$$

• $u_{2|\Gamma_1}^2 - u_{2|\Gamma_1}^1 = \delta_2(u_{1|\Gamma_2}^1 - u_{1|\Gamma_2}^0),$

• Computation of $\delta_{1/2}$: $L[v_{1/2}] = 0$ in $\Omega_{1/2}$, $v_{\Gamma_{1/2}} = 1$. thus $\delta_{1/2} = v_{\Gamma_{2/1}}$

• iff $\delta \neq 1$ Aitken-Schwarz gives the solution with exactly 3 iterations and possibly 2 in the analytical case.

Outline

The GSAM

Aitken-Schwarz

Adaptive Aitken-Schwarz

Aitken meshfree

Acceleration of Schwarz Method for Elliptic Problems

M.Garbey and D.Tromeur-Dervout : On some Aitken like acceleration of the Schwarz method,

Int. J. for Numerical Methods in Fluids, 40(12) :1493-1513,2002

• additive Schwarz algorithm :

•
$$L[u_1^{n+1}] = f \text{ in } \Omega_1, \ u_{1|\Gamma_1}^{n+1} = u_{2|\Gamma_1}^n,$$

• $L[u_2^{n+1}] = f \text{ in } \Omega_2, \ u_{2|\Gamma_2}^{n+1} = u_{1|\Gamma_2}^n.$

• the interface error operator T is linear, i.e

•
$$u_{1|\Gamma_2}^{n+1} - U_{|\Gamma_2} = \delta_1(u_{2|\Gamma_1}^n - U_{|\Gamma_1}),$$

• $u_{2|\Gamma_1}^{n+1} - U_{|\Gamma_1} = \delta_2(u_{1|\Gamma_2}^n - U_{|\Gamma_2}).$

Consequently

•
$$u_{1|\Gamma_2}^2 - u_{1|\Gamma_2}^1 = \delta_1(u_{2|\Gamma_1}^1 - u_{2|\Gamma_1}^0),$$

• $u_{2|\Gamma_1}^2 - u_{2|\Gamma_1}^1 = \delta_2(u_{1|\Gamma_2}^1 - u_{1|\Gamma_2}^0),$

- Computation of $\delta_{1/2}$: $L[v_{1/2}] = 0 \text{ in } \Omega_{1/2}, v_{\Gamma_{1/2}} = 1. \text{ thus } \delta_{1/2} = v_{\Gamma_{2/1}}.$
- iff δ ≠ 1 Aitken-Schwarz gives the solution with exactly 3 iterations and possibly 2 in the analytical case.

Outline DtoN map The GSAI

Aitken-Schwarz

Adaptive Aitken-Schwarz

Aitken meshfree Example on a toy problem : Darcy-Stokes coupling

$$\begin{cases} -\nabla . T(u_{1}, p_{1}) = f_{1}, \text{ in } \Omega_{1} \\ \nabla . u_{1} = 0, \text{ in } \Omega_{1} \\ T := -p_{1}I + 2\mu D(u_{1}), \\ D(u_{1}) := \frac{1}{2}\nabla u_{1} + \frac{1}{2}\nabla u_{1}^{T} \\ \begin{cases} \mu u_{2} + K^{2}\nabla p_{2} = 0, \text{ in } \Omega_{2} \\ \nabla . u_{2} = f_{2}, \text{ in } \Omega_{2} \end{cases}$$

B.C.: $u_1 = 0$, on $\partial \Omega_1 \setminus \Gamma$, $p_2 = 0$ on $\partial \Omega_2 \setminus \Gamma$

Beavers-Joseph-Saffman boundary condition on F

$$-n_1.T(u_1, p_1).\tau_1 = \frac{\alpha}{K}u_1.\tau_1, \text{ on } \Gamma$$

Transmission conditions to close the system :

$$u_1.n_1 = u_2.n_1$$
, on Γ
 $-n_1.T(u_1, p_1).n_1 = p_2$, on Γ .

Outline DtoN map

Aitken-Schwarz

Adaptive Aitken-Schwarz

Aitken meshfree

Example on a toy problem : Darcy-Stokes coupling

$$u_{i1}(x, y) = \Sigma \hat{u}_{i1,k}(x) \cos(ky),$$

$$u_{i2}(x, y) = \Sigma \hat{u}_{i2,k}(x) \cos(ky),$$

$$p_i(x, y) = \Sigma \hat{p}_{i,k}(x) \sin(ky).$$

Schwarz errors e_{i1}, e_{i2}, e_{ip} for each mode k in Ω_i satisfy,

$$\begin{aligned} & \mu \frac{\partial^2}{\partial x^2} e_{11}^n(x) - \mu k^2 e_{11}^n(x) - \frac{\partial}{\partial x} e_{1p}^n(x) = 0, \forall x \in]0, \gamma[, \\ & \mu \frac{\partial^2}{\partial x^2} e_{12}^n(x) - \mu k^2 e_{12}^n(x) - k e_{1p}^n(x) = 0, \forall x \in]0, \gamma[, \\ & \frac{\partial}{\partial x} e_{11}^n(x) - k e_{12}^n(x) = 0, \forall x \in]0, \gamma[\\ & \mu k e_{11}^n(\gamma) - m u \frac{\partial}{\partial x} e_{12}^n(\gamma) - \frac{\alpha}{K} e_{12}^n(\gamma) = 0 \\ & e_{11}^n(0) = e_{12}^n(0) = 0 \\ & e_{1p}^n(\gamma) - 2\mu \frac{\partial}{\partial x} e_{11}^n(\gamma) = \eta^n = e_{2p}^{n-1/2}(\gamma) \\ & \frac{\partial}{\partial x} e_{21}^{n+1/2}(x) - k e_{22}^{n+1/2}(x) = 0, \forall x \in]\gamma, 1[\\ & e_{2p}^{n+1/2}(\gamma) = x i^{n+1/2} = e_{11}^n(\gamma) \end{aligned}$$

 ρ_1

 ρ_2

Outline DtoN ma

The GSAM

Aitken-Schwarz

Adaptive Aitken-Schwarz

Aitken meshfree

- convergence (eventually divergence) depends on parameters value but not of the iteration and not of the solution.
- each mode can be accelerated by the Aitken process
- even with ρ₁ρ₂ very closed to 1.

Outline DtoN map

The GSAM

Aitken-Schwarz

Adaptive Aitken-Schwarz

Aitken meshfree Example of linear convergence for the Schwarz Neumann-Dirichlet algo.

$$[\alpha, \Gamma_1] \cup [\Gamma_1, \Gamma_2] \cup [\Gamma_2, \beta], \Gamma_1 < \Gamma_2.$$
 Schwarz writes :

$$\begin{cases} \Delta u_{1}^{(j)} = f \text{ on } [\alpha, \Gamma_{1}] \\ u_{1}^{(j)}(\alpha) = 0 \\ u_{1}^{(j)}(\Gamma_{1}) = u_{1}^{(j-\frac{1}{2})}(\Gamma_{2}) \end{cases}, \begin{cases} \Delta u_{2}^{(j+\frac{1}{2})} = f \text{ on } [\Gamma_{1}, \Gamma_{2}] \\ \frac{\partial u_{2}^{(j+\frac{1}{2})}(\Gamma_{1})}{\partial n} = \frac{\partial u_{1}^{(j)}(\Gamma_{1})}{\partial n} \\ u_{2}^{(j+\frac{1}{2})}(\Gamma_{2}) = u_{3}^{(j)}(\Gamma_{2}) \end{cases}, (6) \\ \begin{cases} \Delta u_{3}^{(j)} = f \text{ on } [\Gamma_{2}, \beta] \\ \frac{\partial u_{3}^{(j)}(\Gamma_{2})}{\partial n} = \frac{\partial u_{2}^{(j-\frac{1}{2})}(\Gamma_{2})}{\partial n} \\ u_{3}^{(j)}(\beta) = 0 \end{cases}. \end{cases}$$

The error on subdomain *i* writes $e_i(x) = c_i x + d_i$.

$$e_{1}^{(j)}(x) = e_{2}^{(j-\frac{1}{2})}(\Gamma_{1})\frac{(\alpha-x)}{\alpha-\Gamma_{1}}, \ e_{3}^{(j)}(x) = \frac{\partial}{\partial n}e_{2}^{(j-\frac{1}{2})}(\Gamma_{2})(x-\beta)$$
(7)

AS DDM DTD

Outline DtoN map

Aitken-Schwarz

Adaptive Aitken-Schwarz

Aitken meshfree Num. analysis for the Neumann-Dirichlet algo. (3 subdomains)

Error on the second subdomain satisfies

$$e_{2}^{(j+\frac{1}{2})}(x) = \frac{\partial}{\partial n} e_{1}^{(j)}(\Gamma_{1})(x-\Gamma_{2}) + e_{3}^{(j)}(\Gamma_{2})$$
(8)

Replacing $e_3^{(j)}(\Gamma_2)$ and $\frac{\partial}{\partial n}e_1^{(j)}(\Gamma_1)$, $e_2^{(j+\frac{1}{2})}(x)$ writes :

$$e_{2}^{(j+\frac{1}{2})}(x) = -\frac{x-\Gamma_{2}}{\alpha-\Gamma_{1}}e_{2}^{(j-\frac{1}{2})}(\Gamma_{1}) + (\Gamma_{2}-\beta)\frac{\partial}{\partial n}e_{2}^{(j-\frac{1}{2})}(\Gamma_{2})$$
(9)

Consequently, the following identity holds :

$$\begin{pmatrix} \mathbf{e}_{2}^{(j)}(\Gamma_{1}) \\ \frac{\partial}{\partial n} \mathbf{e}_{2}^{(j)}(\Gamma_{2}) \end{pmatrix} = \begin{pmatrix} \frac{\Gamma_{2} - \Gamma_{1}}{\alpha - \Gamma_{1}} & \Gamma_{2} - \beta \\ \frac{-1}{\alpha - \Gamma_{1}} & 0 \end{pmatrix} \begin{pmatrix} \mathbf{e}_{2}^{(j-1)}(\Gamma_{1}) \\ \frac{\partial}{\partial n} \mathbf{e}_{2}^{(j-1)}(\Gamma_{2}) \end{pmatrix} \quad (10)$$

Consequently the matrix do not depends of the solution, neither of the iteration, but only of the operator and the shape of the domain.

Aitken meshfree

Num. analysis for the Neumann-Dirichlet algo. (3 subdomains)

.

- Outline DtoN map
- Aitken-Schwarz
- Adaptive Aitken-Schwarz

Aitken meshfree

• $\vec{x}_{i+1} - \vec{\xi} = P(\vec{x}_i - \vec{\xi}), \ i = 0, 1, \dots$

•
$$(\vec{x}_{N+1} - \vec{x}_N \dots \vec{x}_2 - \vec{x}_1) = P(\vec{x}_N - \vec{x}_{N-1} \dots \vec{x}_1 - \vec{x}_0)$$

- Thus if $(\vec{x}_N \vec{x}_{N-1} \dots \vec{x}_1 \vec{x}_0)$ is non singular then $P = (\vec{x}_{N+1} \vec{x}_N \dots \vec{x}_2 \vec{x}_1)(\vec{x}_N \vec{x}_{N-1} \dots \vec{x}_1 \vec{x}_0)^{-1}$ If ||P|| < 1 then $\vec{\xi} = (Id - P)^{-1}(\vec{x}_{N+1} - P\vec{x}_N)$
- The construction of *P* claims at least *N* + 1 iterates if the error components are linked together. ⇒
 - write the solution in a functional basis were the components error are decoupled
 - Construct an approximation of F

Aitken acceleration of convergence in n-D

(日) (日) (日) (日) (日) (日) (日)

- Outline DtoN map
- The GSAM

Aitken-Schwarz

Adaptive Aitken-Schwarz

Aitken meshfree

• $\vec{x}_{i+1} - \vec{\xi} = P(\vec{x}_i - \vec{\xi}), \ i = 0, 1, \dots$

- $(\vec{x}_{N+1} \vec{x}_N \dots \vec{x}_2 \vec{x}_1) = P(\vec{x}_N \vec{x}_{N-1} \dots \vec{x}_1 \vec{x}_0)$
 - Thus if $(\vec{x}_N \vec{x}_{N-1} \dots \vec{x}_1 \vec{x}_0)$ is non singular then $P = (\vec{x}_{N+1} \vec{x}_N \dots \vec{x}_2 \vec{x}_1)(\vec{x}_N \vec{x}_{N-1} \dots \vec{x}_1 \vec{x}_0)^{-1}$ If ||P|| < 1 then $\vec{\xi} = (Id - P)^{-1}(\vec{x}_{N+1} - P\vec{x}_N)$
- The construction of *P* claims at least *N* + 1 iterates if the error components are linked together. ⇒
 - write the solution in a functional basis were the components error are decoupled
 - Construct an approximation of P

Aitken acceleration of convergence in n-D

- Outline DtoN map
- The GSAM

Aitken-Schwarz

Adaptive Aitken-Schwarz

Aitken meshfree

Aitken acceleration of convergence in n-D

- $\vec{x}_{i+1} \vec{\xi} = P(\vec{x}_i \vec{\xi}), \ i = 0, 1, \dots$
- $(\vec{x}_{N+1} \vec{x}_N \dots \vec{x}_2 \vec{x}_1) = P(\vec{x}_N \vec{x}_{N-1} \dots \vec{x}_1 \vec{x}_0)$
- Thus if $(\vec{x}_N \vec{x}_{N-1} \dots \vec{x}_1 \vec{x}_0)$ is non singular then $P = (\vec{x}_{N+1} \vec{x}_N \dots \vec{x}_2 \vec{x}_1)(\vec{x}_N \vec{x}_{N-1} \dots \vec{x}_1 \vec{x}_0)^{-1}$ If ||P|| < 1 then $\vec{\xi} = (Id - P)^{-1}(\vec{x}_{N+1} - P\vec{x}_N)$
- The construction of *P* claims at least *N* + 1 iterates if the error components are linked together. ⇒
 - write the solution in a functional basis were the components error are decoupled
 - Construct an approximation of P

- Outline DtoN map
- The GSAM

Aitken-Schwarz

Adaptive Aitken-Schwarz

Aitken meshfree

Aitken acceleration of convergence in n-D

•
$$\vec{x}_{i+1} - \vec{\xi} = P(\vec{x}_i - \vec{\xi}), \ i = 0, 1, \dots$$

•
$$(\vec{x}_{N+1} - \vec{x}_N \dots \vec{x}_2 - \vec{x}_1) = P(\vec{x}_N - \vec{x}_{N-1} \dots \vec{x}_1 - \vec{x}_0)$$

- Thus if $(\vec{x}_N \vec{x}_{N-1} \dots \vec{x}_1 \vec{x}_0)$ is non singular then $P = (\vec{x}_{N+1} \vec{x}_N \dots \vec{x}_2 \vec{x}_1)(\vec{x}_N \vec{x}_{N-1} \dots \vec{x}_1 \vec{x}_0)^{-1}$ If ||P|| < 1 then $\vec{\xi} = (Id - P)^{-1}(\vec{x}_{N+1} - P\vec{x}_N)$
- The construction of *P* claims at least *N* + 1 iterates if the error components are linked together. ⇒
 - write the solution in a functional basis were the components error are decoupled
 - Construct an approximation of P

Outline DtoN ma

The GSAM

Aitken-Schwarz

Adaptive Aitken-Schwarz

Aitken meshfree For GSAM with two subdomains, errors $e_{\Gamma_{h}^{i}}^{i} = U_{\Gamma_{h}^{i}}^{i+1} - U_{\Gamma_{h}^{i}}^{i}$ satisfy

$$\begin{bmatrix} \mathbf{e}_{\Gamma_{h}^{i}}^{i+1} \\ \mathbf{e}_{\Gamma_{h}^{i}}^{i+1} \end{bmatrix} = \mathbf{P} \begin{pmatrix} \mathbf{e}_{\Gamma_{h}^{i}}^{i} \\ \mathbf{e}_{\Gamma_{h}^{i}}^{i} \end{bmatrix}$$
(11)

Γ^j_h a discretisation of the interfaces
 Γ_h to be the coarsest discretisation in the sense that it produces V the smallest set of orthonormal vectors Φ_k that belong to Γ_h with respect to a discrete hermitian form [[.,.]].

Let U_{Γ_h} be the decomposition of U_Γ with respect to the orthogonal basis V.

 $U_{\Gamma_h} = \sum_{k=0}^{N} \alpha_k \Phi_k$

- The α_k represents the "Fourier" coefficients of the solution with respect to the basis V.
 The orthogonality ⇒ α_k = [[U_Γ, Φ_k]]
- Then

$$\begin{pmatrix} \beta_{\Gamma_{h}^{i}}^{i+1} \\ \beta_{\Gamma_{h}^{2}}^{i+1} \end{pmatrix} = P_{[[.,.]]} \begin{pmatrix} \beta_{\Gamma_{h}^{i}}^{i} \\ \beta_{\Gamma_{h}^{2}}^{i} \end{pmatrix} \xrightarrow{(12)}$$

Outline

DtoN map

The GSAM

Aitken-Schwarz

Adaptive Aitken-Schwarz

Aitken meshfree For a separable operator in 2D or 3D and regular step size mesh

No coupling between the modes thus the operator P for the speed up is a block diagonal matrix and n-D is analogous to the 1-D

- for Schwarz each wave has is own linear rate of convergence and high frequencies are damped first.
- If or high modes the matrix P can be approximate with neglecting far Macro-Domains interactions.
 - step1 : build P analytically or numerically from data given by two Schwarz iterates
 - step2 : apply one Jacobi Schwarz iterate to the differential problem with block solver of choice i.e multigrids, FFT etc...

	-
SOLVE	SOLVE

• step3 : exchange boundary information :

Outline

Dion map

The GSAM

Aitken-Schwarz

Adaptive Aitken-Schwarz

Aitken meshfree step4 : compute the Fourier expansion ûⁿ_{j|Γi}, n = 0, 1 of the traces on the artificial interface Γ_i, i = 1..nd for the initial boundary condition u⁰_{|Γi} and the Schwarz iterate solution u¹_{|Γi}.

• step5 : apply generalized Aitken acceleration based on

$$\hat{u}^{\infty} = (Id - P)^{-1}(\hat{u}^1 - P\hat{u}^0)$$

in order to get $\hat{u}_{|\Gamma|}^{\infty}$.

(日) (日) (日) (日) (日) (日) (日)

- Outline
- DtoN map
- The GSAM
- Aitken-Schwarz
- Adaptive Aitken-Schwarz
- Aitken meshfree

- 3 Crays with 1280 procs (2 Germany, 1 USA),
- 732 10⁶ unknowns Pb solved in less than 60s with $||e||_{\infty} < 10^{-8}$
- network 3-5 Mb/s (communication between 17s and 23s)
- Barberou, Garbey, Hess, Resch, Rossi, Toivanen and Tromeur-Dervout, J. of Parallel and Distributed Computing, special issue on Grid computing, 63(5) :564-577, 2003

Outline

DtoN map

The GSAM

Aitken-Schwarz

Adaptive Aitken-Schwarz

Aitken meshfree

Explicit building of $P_{[[...]]}$

Steps to build the $P_{[[.,.]]}$ matrix

- a starts from the the basis function Φ_k and get its value on interface in the physical space
- b performs two schwarz iterates with zeros local right hand sides and homogeneous boundary condition on $\partial \Omega = \partial(\Omega_1 \cap \Omega_2)$

c decomposes the trace solution on the interface in the basis *V*. We then obtains the column *k* of the matrix $P_{[[...]]}$

Outline

DtoN map

The GSAM

Aitken-Schwarz

Adaptive Aitken-Schwarz

Aitken meshfree

Explicit building of $P_{[[...]]}$

Steps to build the $P_{[[.,.]]}$ matrix

- a starts from the the basis function Φ_k and get its value on interface in the physical space
- b performs two schwarz iterates with zeros local right hand sides and homogeneous boundary condition on $\partial \Omega = \partial(\Omega_1 \cap \Omega_2)$

c decomposes the trace solution on the interface in the basis V. We then obtains the column k of the matrix $P_{[\dots]}$

Outline

DtoN map

The GSAM

Aitken-Schwarz

Adaptive Aitken-Schwarz

Aitken meshfree

Explicit building of $P_{[[...]]}$

Steps to build the $P_{[[.,.]]}$ matrix

- a starts from the the basis function Φ_k and get its value on interface in the physical space
- b performs two schwarz iterates with zeros local right hand sides and homogeneous boundary condition on $\partial \Omega = \partial(\Omega_1 \cap \Omega_2)$
- c decomposes the trace solution on the interface in the basis V. We then obtains the column k of the matrix $P_{[[...]]}$

- DtoN map
- The GSAM

Aitken-Schwarz

- Adaptive Aitken-Schwarz
- Aitken meshfree

- P_{[[.,.]]} can be compute in parallel, (# local subdomain solve = # interface points, and the number of columns computed during the Schwarz iterates can be set according to the computer architecture
- Its adaptive computation is required to save computing.
- The Fourier mode convergence gives a tool to select the Fourier modes that slow the convergence.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- DtoN map
- The GSAM
- Aitken-Schwarz
- Adaptive Aitken-Schwarz
- Aitken meshfree

- *P*_{[[.,.]]} can be compute in parallel, (# local subdomain solve = # interface points, and the number of columns computed during the Schwarz iterates can be set according to the computer architecture
- Its adaptive computation is required to save computing.
- The Fourier mode convergence gives a tool to select the Fourier modes that slow the convergence.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- DtoN map
- The GSAM
- Aitken-Schwarz
- Adaptive Aitken-Schwarz
- Aitken meshfree

- P_{[[.,.]]} can be compute in parallel, (# local subdomain solve = # interface points, and the number of columns computed during the Schwarz iterates can be set according to the computer architecture
- Its adaptive computation is required to save computing.
- The Fourier mode convergence gives a tool to select the Fourier modes that slow the convergence.

- Outline DtoN map
- The GSAM
- Aitken-Schwarz
- Adaptive Aitken-Schwarz
- Aitken meshfree

- The Dirichlet-Neumann Map
- The Generalized Schwarz Alternating Method
- The Aitken-Schwarz Met

Non separable operator , non regular mesh, adaptive Aitken-Schwarz

Aitken meshfree acceleration

Outline DtoN map

The GSAM

Aitken-Schwarz

Adaptive Aitken-Schwarz

Aitken meshfree Adaptive building of the non diagonal matrix $P_{[[.,.]]}$ (non separable pb/non uniform mesh)

- A. Frullone & DTD :Adaptive acceleration of the Aitken-Schwarz Domain Decomposition on nonuniform nonmatching grids submitted (Non Uniform Fourier basis ortogonal with respect to a numerical hermitian form)
 - Select Fourier modes higher than a fixed tolerance. Index = array containing the list of selected modes.
 - Take the subset ν̃ of Fourier modes from 1 to max(Index).
 - Approximate $P_{[\dots]}$ with $P_{[\dots]}^*$ using only \tilde{v} .
 - Accelerate \tilde{v} through the equation :

 $ilde{v}^{\infty} = (Id - P^*_{[[.,.]]})^{-1} (ilde{v}^{n+1} - P^*_{[[.,.]]} ilde{v}^n)$

(日) (日) (日) (日) (日) (日) (日)

Outline DtoN map

The GSAM

Aitken-Schwarz

Adaptive Aitken-Schwarz

Aitken meshfree Adaptive building of the non diagonal matrix $P_{[[.,.]]}$ (non separable pb/non uniform mesh)

- A. Frullone & DTD :Adaptive acceleration of the Aitken-Schwarz Domain Decomposition on nonuniform nonmatching grids submitted (Non Uniform Fourier basis ortogonal with respect to a numerical hermitian form)
 - Select Fourier modes higher than a fixed tolerance. Index = array containing the list of selected modes.
 - Take the subset v of Fourier modes from 1 to max(Index).
 - Approximate $P_{[\dots]}$ with $P^*_{[\dots]}$ using only \tilde{v} .
 - Accelerate \tilde{v} through the equation :

$$ilde{v}^{\infty} = (Id - P^*_{[[.,.]]})^{-1} (ilde{v}^{n+1} - P^*_{[[.,.]]} ilde{v}^n)$$

(日) (日) (日) (日) (日) (日) (日)

- Outline DtoN map
- The GSAM

Aitken-Schwarz

Adaptive Aitken-Schwarz

Aitken meshfree Adaptive building of the non diagonal matrix $P_{[[.,.]]}$ (non separable pb/non uniform mesh)

- A. Frullone & DTD :Adaptive acceleration of the Aitken-Schwarz Domain Decomposition on nonuniform nonmatching grids submitted (Non Uniform Fourier basis ortogonal with respect to a numerical hermitian form)
 - Select Fourier modes higher than a fixed tolerance. Index = array containing the list of selected modes.
 - Take the subset v of Fourier modes from 1 to max(Index).
 - Approximate $P_{[[.,.]]}$ with $P^*_{[[...]]}$ using only \tilde{v} .

• Accelerate \tilde{v} through the equation :

 $\tilde{v}^{\infty} = (Id - P^*_{[[.,.]]})^{-1} (\tilde{v}^{n+1} - P^*_{[[.,.]]} \tilde{v}^n)$

Outline DtoN map

The GSAM

Aitken-Schwarz

Adaptive Aitken-Schwarz

Aitken meshfree Adaptive building of the non diagonal matrix $P_{[[.,.]]}$ (non separable pb/non uniform mesh)

- A. Frullone & DTD :Adaptive acceleration of the Aitken-Schwarz Domain Decomposition on nonuniform nonmatching grids submitted (Non Uniform Fourier basis ortogonal with respect to a numerical hermitian form)
 - Select Fourier modes higher than a fixed tolerance. Index = array containing the list of selected modes.
 - Take the subset v of Fourier modes from 1 to max(Index).
 - Approximate $P_{[[.,.]]}$ with $P^*_{[[...]]}$ using only \tilde{v} .
 - Accelerate \tilde{v} through the equation :

$$\widetilde{v}^{\infty} = (\mathit{Id} - \mathit{P}^*_{[[.,.]]})^{-1}(\widetilde{v}^{n+1} - \mathit{P}^*_{[[.,.]]}\widetilde{v}^n)$$

DtoN ma The GSA

a a

Aitken-Schwarz

Adaptive Aitken-Schwarz

Aitken meshfree

AS-DDM on a strongly non separable operator and irregular matching grids

$$\begin{cases} \nabla .(a(x,y)\nabla)u(x,y) = f(x,y), & \text{on } \Omega =]0, 1[^{2} \\ u(x,y) = 0, & (x,y) \in \partial \Omega \\ a(x,y) = a_{0} + (1-a_{0})(1 + tanh((x - (3h * y + 1/2 - h))/\mu))/2, \\ \text{nd } a_{0} = 10^{1}, \mu = 10^{-2}. \end{cases}$$

Outline DtoN map

Aitken-Schwarz

Adaptive Aitken-Schwarz

Aitken meshfree

FIG.: adaptive acceleration using sub-blocks of $P_{[[.,.]]}$, with 100 points on the interface, overlap= 1, $\epsilon = h_u/8$ and Fourier modes tolerance = $||\hat{u}^k||_{\infty}/10^i$ for i = 1.5 and 3 for 1st iteration and i = 4 for successive iterations.

Numerical results

NR

- Outline DtoN map
- The GSAM
- Aitken-Schwarz
- Adaptive Aitken-Schwarz
- Aitken meshfree

- The Dirichlet-Neumann Map
- The Generalized Schwarz Alternating Method
- The Aitken-Schwarz Method
- Non separable operator , non regular mesh, adaptive Aitken-Schwarz

Aitken meshfree acceleration

- Outline DtoN ma
- The GSAM
- Aitken-Schwarz
- Adaptive Aitken-Schwarz
- Aitken meshfree

The two salient features of the Aitken-Schwarz methodology

- Have a representation in a basis of the Boundary condition. This basis having some orthogonality property in order to separate the coefficient associated to a vector of this basis.
- Have a decreasing of the coefficients of this representation of the BC in this basis, in order to select only the mode of interest in the Aitken acceleration process.
- ⇒ Singular value Decomposition (or Proper orthogonal Decomposition) have these properties.

We can use the SVD of the BC values in order to build *P* and to accelerate the convergence to the right BC.

DtoN ma

The GSAM

Aitken-Schwarz

Adaptive Aitken-Schwarz

Aitken meshfree • Let $X_1^q = [x_1, ..., x_q]$, be the traces of the *q* Schwarz iterates.

• Let $X_1^q = USV$ the singular value decomposition of X. (U' * U = I, V'V = I)

• Schwarz :
$$X_3^{q+2} - X_2^{q+1} = P(X_2^{q+1} - X_1^q)$$

• Then $U'(X_3^{q+2} - X_2^{q+1})(U'(X_2^{q+1} - X_1^q))^{-1} = U'PU = \tilde{P}$

• $x_{\infty} = U((I - \tilde{P})^{-1}(U'x_{q+2} - \tilde{P}U'x_{q+1}))$

C D C

Outline DtoN mai

The GSAM

Aitken-Schwarz

Adaptive Aitken-Schwarz

Aitken meshfree • Let $X_1^q = [x_1, ..., x_q]$, be the traces of the *q* Schwarz iterates.

Let X^q₁ = USV the singular value decomposition of X.
 (U' * U = I, V' V = I)

• Schwarz : $X_3^{q+2} - X_2^{q+1} = P(X_2^{q+1} - X_1^q)$

• Then $U'(X_3^{q+2} - X_2^{q+1})(U'(X_2^{q+1} - X_1^q))^{-1} = U'PU = \tilde{P}$

• $x_{\infty} = U((I - \tilde{P})^{-1}(U'x_{q+2} - \tilde{P}U'x_{q+1}))$

C D C

DtoN ma

The GSAM

Aitken-Schwarz

Adaptive Aitken-Schwarz

Aitken meshfree

• Let $X_1^q = [x_1, ..., x_q]$, be the traces of the *q* Schwarz iterates.

Let X^q₁ = USV the singular value decomposition of X.
 (U' * U = I, V' V = I)

• Schwarz :
$$X_3^{q+2} - X_2^{q+1} = P(X_2^{q+1} - X_1^q)$$

• Then $U'(X_3^{q+2} - X_2^{q+1})(U'(X_2^{q+1} - X_1^q))^{-1} = U'PU = \tilde{P}$

• $x_{\infty} = U((I - \tilde{P})^{-1}(U'x_{q+2} - \tilde{P}U'x_{q+1}))$

C D C

DtoN ma

The GSAM

Aitken-Schwarz

Adaptive Aitken-Schwarz

Aitken meshfree

- Let $X_1^q = [x_1, ..., x_q]$, be the traces of the *q* Schwarz iterates.
- Let X^q₁ = USV the singular value decomposition of X.
 (U' * U = I, V' V = I)

• Schwarz:
$$X_3^{q+2} - X_2^{q+1} = P(X_2^{q+1} - X_1^q)$$

• Then $U'(X_3^{q+2}-X_2^{q+1})(U'(X_2^{q+1}-X_1^q))^{-1}=U'PU= ilde{P}$

• $x_{\infty} = U((I - \tilde{P})^{-1}(U'x_{q+2} - \tilde{P}U'x_{q+1}))$

(日)

C D C

DtoN ma

The GSAM

Aitken-Schwarz

Adaptive Aitken-Schwarz

Aitken meshfree

- Let $X_1^q = [x_1, ..., x_q]$, be the traces of the *q* Schwarz iterates.
- Let X^q₁ = USV the singular value decomposition of X.
 (U' * U = I, V' V = I)

• Schwarz:
$$X_3^{q+2} - X_2^{q+1} = P(X_2^{q+1} - X_1^q)$$

• Then $U'(X_3^{q+2}-X_2^{q+1})(U'(X_2^{q+1}-X_1^q))^{-1}=U'PU= ilde{P}$

•
$$x_{\infty} = U((I - \tilde{P})^{-1}(U'x_{q+2} - \tilde{P}U'x_{q+1}))$$

C D C

- Outline
- DION map
- The GSAM
- Aitken-Schwarz
- Adaptive Aitken-Schwarz
- Aitken meshfree

- Let $X_1^q = [x_1, ..., x_q]$, be the traces of the *q* Schwarz iterates.
- Let X^q₁ = USV the singular value decomposition of X.
 (U' * U = I, V' V = I)
- Select the modes that be involved in the acceleration based on the singular value
- Applied one Schwarz on the basis functions U* to determine columns of P
 ^{*}
- then x^{*}_∞ = U^{*}((I − P̃^{*})⁻¹((U'x_{q+2})^{*} − P̃^{*}(U'x_{q+1})^{*})
 Complete with the last iterate components.

C D C

- Outline
- DtoN map
- The GSAM
- Aitken-Schwarz
- Adaptive Aitken-Schwarz
- Aitken meshfree

- Let $X_1^q = [x_1, ..., x_q]$, be the traces of the *q* Schwarz iterates.
- Let X^q₁ = USV the singular value decomposition of X.
 (U' * U = I, V' V = I)
- Select the modes that be involved in the acceleration based on the singular value
 - Applied one Schwarz on the basis functions U* to determine columns of P
 ^{*}
 - then $x_{\infty}^* = U^*((I \tilde{P}^*)^{-1}((U'x_{q+2})^* \tilde{P}^*(U'x_{q+1})^*)$ • Complete with the last iterate components

C D C

- Outline
- ____
- Aitken-Schwarz
- Adaptive Aitken-Schwarz
- Aitken meshfree

- Let $X_1^q = [x_1, ..., x_q]$, be the traces of the *q* Schwarz iterates.
- Let X^q₁ = USV the singular value decomposition of X.
 (U' * U = I, V' V = I)
- Select the modes that be involved in the acceleration based on the singular value
- Applied one Schwarz on the basis functions U* to determine columns of P
 ^{*}
- then x^{*}_∞ = U^{*}((I − P̃^{*})⁻¹((U'x_{q+2})^{*} − P̃^{*}(U'x_{q+1})^{*})
 Complete with the last iterate components.

C D C

- Outline
- -----
- Aitken-Schwarz
- Adaptive Aitken-Schwarz
- Aitken meshfree

- Let $X_1^q = [x_1, ..., x_q]$, be the traces of the *q* Schwarz iterates.
- Let X^q₁ = USV the singular value decomposition of X.
 (U' * U = I, V' V = I)
- Select the modes that be involved in the acceleration based on the singular value
- Applied one Schwarz on the basis functions U* to determine columns of P
 ^{*}
- then $x^*_{\infty} = U^*((I \tilde{P}^*)^{-1}((U'x_{q+2})^* \tilde{P}^*(U'x_{q+1})^*)$

Complete with the last iterate components.

AS DDM DTD

C D C

- Outline
- -
- Aitken-Schwarz
- Adaptive Aitken-Schwarz
- Aitken meshfree

- Let $X_1^q = [x_1, ..., x_q]$, be the traces of the *q* Schwarz iterates.
- Let X^q₁ = USV the singular value decomposition of X.
 (U' * U = I, V' V = I)
- Select the modes that be involved in the acceleration based on the singular value
- Applied one Schwarz on the basis functions U* to determine columns of P
 ^{*}
- then $x_{\infty}^* = U^*((I \tilde{P}^*)^{-1}((U'x_{q+2})^* \tilde{P}^*(U'x_{q+1})^*)$
- Complete with the last iterate components.

Outline DtoN ma

The GSAM

Aitken-Schwarz

Adaptive Aitken-Schwarz

Aitken meshfree

- Outline
- DtoN map
- The GSAN
- Aitken-Schwarz
- Adaptive Aitken-Schwarz
- Aitken meshfree

Schwarz DDM : random distribution of K along the interfaces

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Outline DtoN map

Aitken-Schwarz

Adaptive Aitken-Schwarz

Aitken meshfree

- Outline
- The GSAM
- Aitken-Schwarz
- Adaptive Aitken-Schwarz
- Aitken meshfree

Basis U of the SVD of the Schwarz iterates on Γ_1

- Outline DtoN map
- Aitken-Schwarz
- Adaptive Aitken-Schwarz
- Aitken meshfree

Convergence of the Aitken-Schwarz SVD

- Outline DtoN map
- The GSAM
- Aitken-Schwarz
- Adaptive Aitken-Schwarz
- Aitken meshfree

Convergence of AS with acceleration based on SVD

AS DDM DTD

- Outline DtoN map
- The GSAM

Aitken-Schwarz

Adaptive Aitken-Schwarz

Aitken meshfree

- The two main features for Aitken acceleration are orthogonal basis with decreasing coefficients for the representation of the traces in this basis.
- It works very well when this basis link to the mesh on interfacial interface is available
- SVD decomposition as the right properties without the drawback to be link to the underlying mesh.
- Parallel implementation of Aitken-Schwarz with SVD is under progress in the framework of MICAS project for large computational domain.

(日) (日) (日) (日) (日) (日) (日)

AS DDM DTD

- Outline DtoN map
- The GSAM

Aitken-Schwarz

Adaptive Aitken-Schwarz

Aitken meshfree

- The two main features for Aitken acceleration are orthogonal basis with decreasing coefficients for the representation of the traces in this basis.
- It works very well when this basis link to the mesh on interfacial interface is available
- SVD decomposition as the right properties without the drawback to be link to the underlying mesh.
- Parallel implementation of Aitken-Schwarz with SVD is under progress in the framework of MICAS project for large computational domain.

AS DDM DTD

- Outline DtoN map
- The GSAM

Aitken-Schwarz

Adaptive Aitken-Schwarz

Aitken meshfree

- The two main features for Aitken acceleration are orthogonal basis with decreasing coefficients for the representation of the traces in this basis.
- It works very well when this basis link to the mesh on interfacial interface is available
- SVD decomposition as the right properties without the drawback to be link to the underlying mesh.
- Parallel implementation of Aitken-Schwarz with SVD is under progress in the framework of MICAS project for large computational domain.

AS DDM DTD

- Outline DtoN map
- The GSAM

Aitken-Schwarz

Adaptive Aitken-Schwarz

Aitken meshfree

- The two main features for Aitken acceleration are orthogonal basis with decreasing coefficients for the representation of the traces in this basis.
- It works very well when this basis link to the mesh on interfacial interface is available
- SVD decomposition as the right properties without the drawback to be link to the underlying mesh.
- Parallel implementation of Aitken-Schwarz with SVD is under progress in the framework of MICAS project for large computational domain.

