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Objectives : make a Schwarz DDM that has :
scalable properties
Artificial condition independant of the parameter
(even make convergent a divergent Schwarz method)
can be used as ”black box”, no direct impact on the
implementation of local solver.
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The Dirichlet to Neumann map

Let Ω ⊂ Rn a bounded domain with Γ := ∂Ω Lipschitz.

The trace operator : γ0

∀u ∈ H1(Ω), ∃γ0u ∈ H1/2(Γ) satisfying

||γ0u||H1/2(Γ) ≤ cT .||u||H1(Ω). (1)

vice versa the bounded extension operator : ε

∀v ∈ H1/2(Γ), ∃εv ∈ H1(Ω) satisfying γ0εv = v and

||εv ||H1(Ω) ≤ cIT .||v ||H1/2(Γ). (2)
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Set L(x)u(x) = −Σn
i,j=1

∂

∂xj
[aji(x)

∂

∂xi
u(x)], aji ∈ L∞(Ω)(3)

L(.) is assumed to be uniformly elliptic,

Σn
i,j=1aji(x)ξjξl ≥ c0.|ξ|2, ∀ξ ∈ Rn,∀x ∈ Ω

The conormal derivative γ1 is given by

γ1u(x) := Σn
i,j=1nj(x)[aji(x)

∂

∂xi
u(x)], ∀x ∈ Γ

where n(x) is the exterior unit normal vector.

a(u, v) =
n∑

i,j=1

∫
Ω

∂

∂xj
v(x)aji(x)

∂

∂xi
u(x)

=

∫
Ω

Lu(x)v(x)dx +

∫
Γ
γ1u(x)γ0v(x)dSx
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Necas Lem.⇒ ∃!u = u0 + εg ∈ H1(Ω) sol. of Dirichlet Pb

L(x)u(x) = f (x), for x ∈ Ω, γ0u(x) = g(x), for x ∈ Γ(4)

Then defining the linear application ∀w ∈ H1/2(Γ)

l(w) = a(u, εw)−
∫

Ω
f (x)εw(c)dx .

Riez thm : ∃λ ∈ H−1/2(Γ) : 〈λ,w〉L2(Γ) = l(w) ∀w ∈ H1/2(Γ).

Hence, the conormal derivative λ ∈ H−1/2(Γ) satisfies∫
Γ
λ w dsx = a(u0 + εg, εw)−

∫
Ω

f εw dx ∀w ∈ H1/2(Γ).

⇒ f fixed, we have a DtoN map : g = γ0u 7→ λ := γ1u

γ1u(x) = Sg(x)− Nf (x), ∀w ∈ Γ (5)

Where S is the Steklov-Poincaré operator associated to the homogeneous pb with Dirichlet B.C. and Nf is

some Newton potential associated to the non-homogeneous pb (4) with homogeneous B.C.
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The Generalized Schwarz Alternating Method (GSAM)
B. Engquist and H.-K. Zhao, Appl. Numer. Math. 27 (1998), no. 4, 341–365.

Consider Ω = Ω1 ∪ Ω2 with the two artificial boundaries Γ1, Γ2

intersecting ∂Ω.

Algorithm

L(x)u2n+1
1 (x) = f (x), ∀x ∈ Ω1, u2n+1

1 (x) = g(x), ∀x ∈ ∂Ω1\Γ1,

Λ1u2n+1
1 + λ1

∂u2n+1
1 (x)

∂n1
= Λ1u2n

2 + λ1
∂u2n

2 (x)

∂n1
, ∀x ∈ Γ1

L(x)u2n+2
2 (x) = f (x), ∀x ∈ Ω2, u2n+2

2 (x) = g(x), ∀x ∈ ∂Ω2\Γ2,

Λ2u2n+2
2 + λ2

∂u2n+2
2 (x)

∂n2
= Λ2u2n+1

1 + λ2
∂u2n+1

1 (x)

∂n2
, ∀x ∈ Γ2.

where Λi ’s are some operators and λi ’s are constants.
(Λ1 = I, λ1 = 0,Λ2 = 0, λ2 = 1) Schwarz Neumann-Dirichlet
Algorithm
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If λ1 = 1 and Λ1 is the DtoN operator at Γ1 associated to the
homogeneous PDE in Ω2 with homogeneous boundary
condition on ∂Ω2 ∩ ∂Ω then GSAM converge in two steps.
proof Let en

i = u − un, i = 1,2, , then

L(x)e1
1(x) = 0, ∀x ∈ Ω1, e1

1(x) = 0, ∀x ∈ ∂Ω1\Γ1,

Λ1e1
1 +

∂e1
1(x)

∂n1
= Λ1e0

2 +
∂e0

2(x)

∂n1
, ∀x ∈ Γ1

since Λ1 is the DtoN operator at Γ1 in Ω2

∂e0
2

∂n1
+ Λ1e0

2 = −
∂e0

2
∂n2

+
∂e0

2
∂n2

= 0, ⇒ e1
1 = 0in Ω1

Hence we get the exact solution in two steps []
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Pb : Λi DtoN operators are global operators (linking all
the subdomains when > 3).
In practice, the algebraical approximations of this
operators are used (see Nataf, Gander).
On the other hand, the convergence property of the
Schwarz Alternating methodology is used to define the
Aitken-Schwarz methodology.
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Let Ω = Ω1 ∪ Ω2, Ω12 = Ω1 ∩ Ω2, Ωii = Ωi\Ω12
en

i = u − un
i in Ωi satisfies :

(Λ1 + λ1S1)R1e2n+1
1 = (Λ1 − λ1S22)R22P2e2n

2

(Λ2 + λ2S2)R2e2n+2
2 = (Λ2 − λ2S22)R11P1e2n+1

1

with

Pi : H1(Ωi )→ H1(Ωii )

Si (Sii ) the DtoN map operator in Ωi ( Ωii ) on Γi (Γmod(i,2)+1).

Ri : H1(Ωi )→ H1/2(Γi ), Rii : H1(Ωii )→ H1/2(Γmod(i,2)+1),

R∗i : RiR∗i = I,
∀g ∈ H1/2(Γi ), L(x)R∗i g = 0,R∗i g = g onΓi ,R∗i g =
0 on ∂Ωi\Γi

Thus the convergence of GSAM is purely linear ! ! Aitken-Schwarz
DDM uses this property to accelerate the convergence :
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Consequently, no direct approximation of the DtoN map
is used, but an approximation of the operator of error
linked to this DtoN map is performed.
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Acceleration of Schwarz Method for Elliptic Problems

M.Garbey and D.Tromeur-Dervout : On some Aitken like acceleration of the Schwarz method,

Int. J. for Numerical Methods in Fluids, 40(12) :1493-1513,2002

additive Schwarz algorithm :

L[un+1
1 ] = f in Ω1, un+1

1|Γ1
= un

2|Γ1
,

L[un+1
2 ] = f in Ω2, un+1

2|Γ2
= un

1|Γ2
.

the interface error operator T is linear, i.e

un+1
1|Γ2
− U|Γ2 = δ1(un

2|Γ1
− U|Γ1 ),

un+1
2|Γ1
− U|Γ1 = δ2(un

1|Γ2
− U|Γ2 ).

Consequently

u2
1|Γ2
− u1

1|Γ2
= δ1(u1

2|Γ1
− u0

2|Γ1
),

u2
2|Γ1
− u1

2|Γ1
= δ2(u1

1|Γ2
− u0

1|Γ2
),

Computation of δ1/2 :
L[v1/2] = 0 in Ω1/2, vΓ1/2 = 1. thus δ1/2 = vΓ2/1 .

iff δ 6= 1 Aitken-Schwarz gives the solution with exactly 3
iterations and possibly 2 in the analytical case.
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Example on a toy problem : Darcy-Stokes coupling


−∇.T (u1,p1) = f1, in Ω1
∇.u1 = 0, in Ω1
T := −p1I + 2µD(u1),

D(u1) := 1
2∇u1 + 1

2∇uT
1{

µu2 + K 2∇p2 = 0, in Ω2
∇.u2 = f2, in Ω2

Ω1 Ω2
Γ

0 1γ

π

B.C. : u1 = 0, on ∂Ω1\Γ, p2 = 0 on ∂Ω2\Γ

Beavers-Joseph-Saffman boundary condition on Γ

−n1.T (u1,p1).τ1 =
α

K
u1.τ1, on Γ

Transmission conditions to close the system :

u1.n1 = u2.n1, on Γ

−n1.T (u1,p1).n1 = p2, on Γ.
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Example on a toy problem : Darcy-Stokes coupling

ui1(x , y) = Σûi1,k (x)cos(ky),

ui2(x , y) = Σûi2,k (x)cos(ky),

pi (x , y) = Σp̂i,k (x)sin(ky).

Schwarz errors ei1,ei2,eip for each mode k in Ωi satisfy ,

µ ∂2

∂x2 en
11(x)− µk2en

11(x)− ∂
∂x en

1p(x) = 0,∀x ∈]0, γ[,

µ ∂2

∂x2 en
12(x)− µk2en

12(x)− ken
1p(x) = 0,∀x ∈]0, γ[,

∂
∂x en

11(x)− ken
12(x) = 0, ∀x ∈]0, γ[

µken
11(γ)−mu ∂

∂x en
12(γ)− α

K en
12(γ) = 0

en
11(0) = en

12(0) = 0
en

1p(γ)− 2µ ∂
∂x en

11(γ) = ηn = en−1/2
2p (γ)

∂
∂x en+1/2

21 (x)− ken+1/2
22 (x) = 0, ∀x ∈]γ,1[

en+1/2
2p (1) = 0

en+1/2
21 (γ) = xin+1/2 = en

11(γ)
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(
ηn+1

ξn+1/2

)
=

(
0 ρ1
ρ2 0

)(
ηn

ξn−1/2

)
ρ1 =

µ tanh(k(1− γ)

kK 2

ρ2 =
−4α sinh(kγ) + 2µ kK (e−2 kγ − e2 kγ + 4 kγ) + 4 k2γ2α

−2 kα
(
e−2 kγ − 2 + e2 kγ

)
µ

convergence (eventually
divergence) depends on
parameters value but not
of the iteration and not of
the solution.
each mode can be
accelerated by the Aitken
process
even with ρ1ρ2 very
closed to 1. ρ1ρ2

with α = 100, K 2 = 0.01, µ = 1, γ = 0.5
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Example of linear convergence for the Schwarz Neumann-Dirichlet

algo.

[α, Γ1] ∪ [Γ1, Γ2] ∪ [Γ2, β], Γ1 < Γ2. Schwarz writes :


∆u(j)

1 = f on [α, Γ1]

u(j)
1 (α) = 0

u(j)
1 (Γ1) = u(j− 1

2 )

1 (Γ2)

,


∆u(j+ 1

2 )

2 = f on [Γ1, Γ2]

∂u(j+ 1
2 )

2 (Γ1)

∂n
=
∂u(j)

1 (Γ1)

∂n
u(j+ 1

2 )

2 (Γ2) = u(j)
3 (Γ2)

,(6)


∆u(j)

3 = f on [Γ2, β]

∂u(j)
3 (Γ2)

∂n
=
∂u(j− 1

2 )

2 (Γ2)

∂n
u(j)

3 (β) = 0

.

The error on subdomain i writes ei(x) = cix + di .

e(j)
1 (x) = e

(j− 1
2 )

2 (Γ1)
(α− x)

α− Γ1
, e(j)

3 (x) =
∂

∂n
e

(j− 1
2 )

2 (Γ2)(x − β) (7)
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Num. analysis for the Neumann-Dirichlet algo. (3 subdomains)

Error on the second subdomain satisfies

e
(j+ 1

2 )

2 (x) =
∂

∂n
e(j)

1 (Γ1)(x − Γ2) + e(j)
3 (Γ2) (8)

Replacing e(j)
3 (Γ2) and ∂

∂n e(j)
1 (Γ1), e

(j+ 1
2 )

2 (x) writes :

e
(j+ 1

2 )

2 (x) = −x − Γ2

α− Γ1
e

(j− 1
2 )

2 (Γ1) + (Γ2 − β)
∂

∂n
e

(j− 1
2 )

2 (Γ2) (9)

Consequently, the following identity holds :(
e(j)

2 (Γ1)
∂
∂n e(j)

2 (Γ2)

)
=


Γ2 − Γ1

α− Γ1
Γ2 − β

−1
α− Γ1

0

( e(j−1)
2 (Γ1)

∂
∂n e(j−1)

2 (Γ2)

)
(10)

Consequently the matrix do not depends of the solution,
neither of the iteration, but only of the operator and the
shape of the domain.
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Num. analysis for the Neumann-Dirichlet algo. (3 subdomains)
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Acceleration Aitken−Schwarz
Schwarz normal

Cvg for 1D Poisson pb with 3 non-overlapping subdomains α = 0, β = 1, Γ1 = 0.44 ,Γ2 = 0.7
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Aitken acceleration of convergence in n-D

~xi+1 − ~ξ = P(~xi − ~ξ), i = 0,1, . . .

( ~xN+1 − ~xN . . . ~x2 − ~x1 ) =
P( ~xN − ~xN−1 . . . ~x1 − ~x0 )

Thus if ( ~xN − ~xN−1 . . . ~x1 − ~x0 ) is non singular then P =

( ~xN+1 − ~xN . . . ~x2 − ~x1 )( ~xN − ~xN−1 . . . ~x1 − ~x0 )−1

If ||P|| < 1 then ~ξ = (Id − P)−1(~xN+1 − P~xN)

The construction of P claims at least N + 1 iterates if the
error components are linked together.⇒

write the solution in a functional basis were the
components error are decoupled
Construct an approximation of P
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For GSAM with two subdomains, errors ei
Γj

h
= U i+1

Γj
h

− U i
Γj

h
satisfy

(
ei+1

Γ1
h

ei+1
Γ2

h

)
= P

(
ei

Γ1
h

ei
Γ2

h

)
(11)

Γj
h a discretisation of the interfaces

Γh to be the coarsest discretisation in the sense that it
produces V the smallest set of orthonormal vectors Φk that
belong to Γh with respect to a discrete hermitian form [[., .]].

Let UΓh be the decomposition of UΓ with respect to the
orthogonal basis V .
UΓh =

∑N
k=0 αk Φk

The αk represents the ”Fourier” coefficients of the solution
with respect to the basis V .
The orthogonality⇒ αk = [[UΓ,Φk ]]

Then (
β i+1

Γ1
h

β i+1
Γ2

h

)
= P[[.,.]]

(
β i

Γ1
h

β i
Γ2

h

)
(12)

size(P[[.,.]])= size(P) nevertheless, we have more flexibility to
define some consistent approximation of this matrix, as we
have access to some a posteriori estimates based on the
module value of the Fourier coefficients.
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For a separable operator in 2D or 3D and regular step size mesh

No coupling between the modes thus the operator P for the speed
up is a block diagonal matrix and n-D is analogous to the 1-D

1 for Schwarz each wave has is own linear rate of
convergence and high frequencies are damped first.

2 for high modes the matrix P can be approximate with
neglecting far Macro-Domains interactions.

step1 : build P analytically or numerically from data given by
two Schwarz iterates

step2 : apply one Jacobi Schwarz iterate to the differential
problem with block solver of choice i.e multigrids, FFT etc...

step3 : exchange boundary information :
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step4 : compute the Fourier expansion ûn
j|Γi
,n = 0,1 of the

traces on the artificial interface Γi , i = 1..nd for the initial
boundary condition u0

|Γi
and the Schwarz iterate solution u1

|Γi
.

step5 : apply generalized Aitken acceleration based on

û∞ = (Id − P)−1(û1 − Pû0)

in order to get û∞|Γi
.
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3D DDM : Scalability of 1D AS (with PDC3D as inner solver)

3 Crays with 1280 procs (2 Germany, 1 USA) ,
732 106 unknowns Pb solved in less than 60s with
||e||∞ < 10−8

network 3-5 Mb/s (communication between 17s and 23s )
Barberou, Garbey, Hess, Resch, Rossi, Toivanen and Tromeur-Dervout, J. of Parallel and Distributed
Computing, special issue on Grid computing, 63(5) :564-577, 2003
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Explicit building of P[[.,.]]

uses how basis Φk are modified by the Schwarz iterate.

Steps to build the P[[.,.]] matrix

a starts from the the basis function Φk and get its value on
interface in the physical space

b performs two schwarz iterates with zeros local right hand
sides and homogeneous boundary condition on
∂Ω = ∂(Ω1 ∩ Ω2)

c decomposes the trace solution on the interface in the basis
V . We then obtains the column k of the matrix P[[.,.]]
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Explicit building of P[[.,.]]
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a starts from the the basis function Φk and get its value on
interface in the physical space

b performs two schwarz iterates with zeros local right hand
sides and homogeneous boundary condition on
∂Ω = ∂(Ω1 ∩ Ω2)
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V . We then obtains the column k of the matrix P[[.,.]]
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Explicit building of P[[.,.]]

uses how basis Φk are modified by the Schwarz iterate.

Steps to build the P[[.,.]] matrix

a starts from the the basis function Φk and get its value on
interface in the physical space

b performs two schwarz iterates with zeros local right hand
sides and homogeneous boundary condition on
∂Ω = ∂(Ω1 ∩ Ω2)

c decomposes the trace solution on the interface in the basis
V . We then obtains the column k of the matrix P[[.,.]]
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P[[.,.]] can be compute in parallel, (# local subdomain solve =
# interface points, and the number of columns computed
during the Schwarz iterates can be set according to the
computer architecture

Its adaptive computation is required to save computing.

The Fourier mode convergence gives a tool to select the
Fourier modes that slow the convergence.
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Fourier modes that slow the convergence.
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P[[.,.]] can be compute in parallel, (# local subdomain solve =
# interface points, and the number of columns computed
during the Schwarz iterates can be set according to the
computer architecture

Its adaptive computation is required to save computing.

The Fourier mode convergence gives a tool to select the
Fourier modes that slow the convergence.
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Outline

1 The Dirichlet-Neumann Map

2 The Generalized Schwarz Alternating Method

3 The Aitken-Schwarz Method

4 Non separable operator , non regular mesh, adaptive
Aitken-Schwarz

5 Aitken meshfree acceleration
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Adaptive building of the non diagonal matrix P[[.,.]] (non separable pb/non

uniform mesh)

A. Frullone & DTD :Adaptive acceleration of the Aitken-Schwarz Domain Decomposition on nonuniform

nonmatching grids submitted (Non Uniform Fourier basis ortogonal with
respect to a numerical hermitian form)

Select Fourier modes higher than a fixed tolerance.
Index = array containing the list of selected modes.
Take the subset ṽ of Fourier modes from 1 to
max(Index).
Approximate P[[.,.]] with P∗[[.,.]] using only ṽ .

Accelerate ṽ through the equation :

ṽ∞ = (Id − P∗[[.,.]])
−1(ṽn+1 − P∗[[.,.]]ṽ

n)

Other modes are not accelerated.
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Adaptive building of the non diagonal matrix P[[.,.]] (non separable pb/non

uniform mesh)
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AS-DDM on a strongly non separable operator and irregular matching grids

{
∇.(a(x , y)∇)u(x , y) = f (x , y), on Ω =]0,1[2

u(x , y) = 0, (x , y) ∈ ∂Ω

a(x , y) = a0 + (1− a0)(1 + tanh((x − (3h ∗ y + 1/2− h))/µ))/2,
and a0 = 101, µ = 10−2.
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Numerical results

FIG.: adaptive acceleration using sub-blocks of P[[.,.]], with 100
points on the interface, overlap= 1, ε = hu/8 and Fourier modes
tolerance = ||ûk ||∞/10i for i = 1.5 and 3 for 1st iteration and i = 4
for successive iterations.
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1 The Dirichlet-Neumann Map

2 The Generalized Schwarz Alternating Method

3 The Aitken-Schwarz Method

4 Non separable operator , non regular mesh, adaptive
Aitken-Schwarz

5 Aitken meshfree acceleration
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Toward a mesh free acceleration

The two salient features of the Aitken-Schwarz methodology

Have a representation in a basis of the Boundary
condition. This basis having some orthogonality
property in order to separate the coefficient associated
to a vector of this basis.
Have a decreasing of the coefficients of this
representation of the BC in this basis, in order to select
only the mode of interest in the Aitken acceleration
process.
⇒ Singular value Decomposition (or Proper orthogonal
Decomposition) have these properties.

We can use the SVD of the BC values in order to build P
and to accelerate the convergence to the right BC.
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Aitken-Schwarz SVD : version 1

Let X q
1 = [x1, ..., xq], be the traces of the q Schwarz

iterates.

Let X q
1 = USV the singular value decomposition of X .

(U ′ ∗ U = I,V ′V = I)

Schwarz : X q+2
3 − X q+1

2 = P(X q+1
2 − X q

1 )

Then U ′(X q+2
3 − X q+1

2 )(U ′(X q+1
2 − X q

1 ))−1 = U ′PU = P̃

x∞ = U((I − P̃)−1(U ′xq+2 − P̃U ′xq+1)

Subject to numerical problem in the inverting
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1 = [x1, ..., xq], be the traces of the q Schwarz

iterates.

Let X q
1 = USV the singular value decomposition of X .

(U ′ ∗ U = I,V ′V = I)

Schwarz : X q+2
3 − X q+1

2 = P(X q+1
2 − X q

1 )

Then U ′(X q+2
3 − X q+1

2 )(U ′(X q+1
2 − X q

1 ))−1 = U ′PU = P̃
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Aitken-Schwarz SVD : version 2
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1 = [x1, ..., xq], be the traces of the q Schwarz
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Select the modes that be involved in the acceleration
based on the singular value
Applied one Schwarz on the basis functions U∗ to
determine columns of P̃∗

then x∗∞ = U∗((I − P̃∗)−1((U ′xq+2)∗ − P̃∗(U ′xq+1)∗)

Complete with the last iterate components.

no inverting, more accurate
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∇.(K (x , y)∇u) = f , onΩ, u = 0, on ∂Ω in random porous media

Exponential covariance : CY (x , y) = σ2
Y exp(−[( x

λx
)2 + ( y

λy
)2]

1
2 )

λx ( λy ) is the directional ln(K ) correlation length scales
σ2 is the variance of ln(K)
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Schwarz DDM : random distribution of K along the interfaces
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Singular values of the SVD of the Schwarz iterates on Γ1
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Basis U of the SVD of the Schwarz iterates on Γ1
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Convergence of the Aitken-Schwarz SVD

only

16 modes are used in the acceleration process
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Convergence of AS with acceleration based on SVD
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Conclusions

The two main features for Aitken acceleration are
orthogonal basis with decreasing coefficients for the
representation of the traces in this basis.
It works very well when this basis link to the mesh on
interfacial interface is available
SVD decomposition as the right properties without the
drawback to be link to the underlying mesh.
Parallel implementation of Aitken-Schwarz with SVD is
under progress in the framework of MICAS project for
large computational domain.
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