Meshfree Adaptative Aitken-Schwarz
Domain Decomposition for Darcy flow

D. Tromeur-Dervout

CDCSP/ICJ-UMR5208 Université Lyon 1, 15 Bd Latarjet, 69622 Villeurbanne, France.

Dedicated to Alain Bourgeat’s 60th birthday
Scaling Up and Modeling for Transport and Flow in Porous Media
Dubrovnik, Croatia, 13-16 October 2008
Partially founded by: GDR MOMAS, ANR-TL-07 LIBRAERO, ANR-CIS-07 MICAS
Objectives: make a Schwarz DDM that has:

- scalable properties
- Artificial condition independent of the parameter (even make convergent a divergent Schwarz method)
- can be used as "black box", no direct impact on the implementation of local solver.
1. The Dirichlet-Neumann Map
2. The Generalized Schwarz Alternating Method
3. The Aitken-Schwarz Method
4. Non separable operator, non regular mesh, adaptive Aitken-Schwarz
5. Aitken meshfree acceleration
Let $\Omega \subset \mathbb{R}^n$ a bounded domain with $\Gamma := \partial \Omega$ Lipschitz.

The trace operator : γ_0

$\forall u \in H^1(\Omega), \ \exists \gamma_0 u \in H^{1/2}(\Gamma)$ satisfying

$$\|\gamma_0 u\|_{H^{1/2}(\Gamma)} \leq c_T \|u\|_{H^1(\Omega)}. \ (1)$$

vice versa the bounded extension operator : ε

$\forall v \in H^{1/2}(\Gamma), \ \exists \varepsilon v \in H^1(\Omega)$ satisfying $\gamma_0 \varepsilon v = v$ and

$$\|\varepsilon v\|_{H^1(\Omega)} \leq c_{IT} \|v\|_{H^{1/2}(\Gamma)}. \ (2)$$
Let $\Omega \subset \mathbb{R}^n$ a bounded domain with $\Gamma := \partial \Omega$ Lipschitz.

The trace operator : γ_0

$\forall u \in H^1(\Omega), \exists \gamma_0 u \in H^{1/2}(\Gamma)$ satisfying

$$\|\gamma_0 u\|_{H^{1/2}(\Gamma)} \leq c_T \|u\|_{H^1(\Omega)}. \quad (1)$$

vice versa the bounded extension operator : ε

$\forall v \in H^{1/2}(\Gamma), \exists \varepsilon v \in H^1(\Omega)$ satisfying $\gamma_0 \varepsilon v = v$ and

$$\|\varepsilon v\|_{H^1(\Omega)} \leq c_{IT} \|v\|_{H^{1/2}(\Gamma)}. \quad (2)$$
Set \(L(x)u(x) = -\sum_{i,j=1}^{n} \frac{\partial}{\partial x_j} [a_{ji}(x) \frac{\partial}{\partial x_i} u(x)], \quad a_{ji} \in L_{\infty}(\Omega) \)

\(L(.) \) is assumed to be uniformly elliptic,

\[
\sum_{i,j=1}^{n} a_{ji}(x) \xi_j \xi_i \geq c_0 |\xi|^2, \quad \forall \xi \in \mathbb{R}^n, \forall x \in \Omega
\]

The conormal derivative \(\gamma_1 \) is given by

\[
\gamma_1 u(x) := \sum_{i,j=1}^{n} n_j(x) [a_{ji}(x) \frac{\partial}{\partial x_i} u(x)], \quad \forall x \in \Gamma
\]

where \(n(x) \) is the exterior unit normal vector.

\[
a(u, v) = \sum_{i,j=1}^{n} \int_{\Omega} \frac{\partial}{\partial x_j} v(x) a_{ji}(x) \frac{\partial}{\partial x_i} u(x)
\]

\[
= \int_{\Omega} Lu(x)v(x)dx + \int_{\Gamma} \gamma_1 u(x) \gamma_0 v(x) dS_x
\]
Set \(L(x)u(x) = -\sum_{i,j=1}^{n} \frac{\partial}{\partial x_j} [a_{ji}(x) \frac{\partial}{\partial x_i} u(x)] \), \(a_{ji} \in L_\infty(\Omega, \mathcal{B}) \)

\(L(.) \) is assumed to be uniformly elliptic,

\[
\sum_{i,j=1}^{n} a_{ji}(x) \xi_j \xi_i \geq c_0 |\xi|^2, \forall \xi \in \mathbb{R}^n, \forall x \in \Omega
\]

The conormal derivative \(\gamma_1 \) is given by

\[
\gamma_1 u(x) := \sum_{i,j=1}^{n} n_j(x) [a_{ji}(x) \frac{\partial}{\partial x_i} u(x)], \forall x \in \Gamma
\]

where \(n(x) \) is the exterior unit normal vector.

\[
a(u, v) = \sum_{i,j=1}^{n} \int_{\Omega} \frac{\partial}{\partial x_j} v(x) a_{ji}(x) \frac{\partial}{\partial x_i} u(x)
\]

\[
= \int_{\Omega} Lu(x) v(x) dx + \int_{\Gamma} \gamma_1 u(x) \gamma_0 v(x) dS_x
\]
Set \(L(x)u(x) = -\sum_{i,j=1}^{n} \frac{\partial}{\partial x_j} \left[a_{ji}(x) \frac{\partial}{\partial x_i} u(x) \right] \), \(a_{ji} \in L_\infty(\Omega) \)

\(L(.) \) is assumed to be uniformly elliptic,

\[\sum_{i,j=1}^{n} a_{ji}(x) \xi_j \xi_i \geq c_0 |\xi|^2, \forall \xi \in \mathbb{R}^n, \forall x \in \Omega \]

The conormal derivative \(\gamma_1 \) is given by

\[\gamma_1 u(x) := \sum_{i,j=1}^{n} n_j(x) [a_{ji}(x) \frac{\partial}{\partial x_i} u(x)], \forall x \in \Gamma \]

where \(n(x) \) is the exterior unit normal vector.

\[a(u, v) = \sum_{i,j=1}^{n} \int_{\Omega} \frac{\partial}{\partial x_j} v(x) a_{ji}(x) \frac{\partial}{\partial x_i} u(x) \]

\[= \int_{\Omega} Lu(x)v(x)dx + \int_{\Gamma} \gamma_1 u(x)v(x)dS_x \]
Necas Lem. ⇒ \exists! u = u_0 + \varepsilon g \in H^1(\Omega) sol. of Dirichlet Pb

\[L(x)u(x) = f(x), \text{ for } x \in \Omega, \gamma_0 u(x) = g(x), \text{ for } x \in \Gamma (4) \]

Then defining the linear application \(\forall w \in H^{1/2}(\Gamma) \)

\[l(w) = a(u, \varepsilon w) - \int_\Omega f(x)\varepsilon w(x)dx. \]

Riez thm : \(\exists \lambda \in H^{-1/2}(\Gamma) : \langle \lambda, w \rangle_{L^2(\Gamma)} = l(w) \ \forall w \in H^{1/2}(\Gamma). \)

Hence, the conormal derivative \(\lambda \in H^{-1/2}(\Gamma) \) satisfies

\[\int_\Gamma \lambda w \ ds_x = a(u_0 + \varepsilon g, \varepsilon w) - \int_\Omega f \varepsilon w \ dx \ \forall w \in H^{1/2}(\Gamma). \]

⇒ \(f \) fixed, we have a DtoN map : \(g = \gamma_0 u \mapsto \lambda := \gamma_1 u \)

\[\gamma_1 u(x) = Sg(x) - Nf(x), \ \forall w \in \Gamma \]
Necas Lem. $\Rightarrow \exists! u = u_0 + \varepsilon g \in H^1(\Omega)$ sol. of Dirichlet Pb

$$L(x)u(x) = f(x), \text{ for } x \in \Omega, \gamma_0 u(x) = g(x), \text{ for } x \in \Gamma$$ (4)

Then defining the linear application $\forall w \in H^{1/2}(\Gamma)$

$$l(w) = a(u, \varepsilon w) - \int_{\Omega} f(x)\varepsilon w(x)dx.$$

Riesz thm : $\exists \lambda \in H^{-1/2}(\Gamma) : \langle \lambda, w \rangle_{L^2(\Gamma)} = l(w) \forall w \in H^{1/2}(\Gamma).$

Hence, the conormal derivative $\lambda \in H^{-1/2}(\Gamma)$ satisfies

$$\int_{\Gamma} \lambda w ds_x = a(u_0 + \varepsilon g, \varepsilon w) - \int_{\Omega} f \varepsilon w dx \forall w \in H^{1/2}(\Gamma).$$

$\Rightarrow f$ fixed, we have a DtoN map : $g = \gamma_0 u \mapsto \lambda := \gamma_1 u$

$$\gamma_1 u(x) = Sg(x) - Nf(x), \forall w \in \Gamma$$ (5)
Necas Lem. $\Rightarrow \exists! u = u_0 + \varepsilon g \in H^1(\Omega)$ sol. of Dirichlet Pb

$$L(x)u(x) = f(x), \text{ for } x \in \Omega, \gamma_0 u(x) = g(x), \text{ for } x \in \Gamma (4)$$

Then defining the linear application $\forall w \in H^{1/2}(\Gamma)$

$$l(w) = a(u, \varepsilon w) - \int_{\Omega} f(x)\varepsilon w(x) dx.$$

Riez thm : $\exists \lambda \in H^{-1/2}(\Gamma) : \langle \lambda, w \rangle_{L^2(\Gamma)} = l(w) \forall w \in H^{1/2}(\Gamma).$

Hence, the conormal derivative $\lambda \in H^{-1/2}(\Gamma)$ satisfies

$$\int_{\Gamma} \lambda w \, ds_x = a(u_0 + \varepsilon g, \varepsilon w) - \int_{\Omega} f \varepsilon w \, dx \forall w \in H^{1/2}(\Gamma).$$

$\Rightarrow f$ fixed, we have a DtoN map : $g = \gamma_0 u \mapsto \lambda := \gamma_1 u$

$$\gamma_1 u(x) = Sg(x) - Nf(x), \forall w \in \Gamma \quad (5)$$
Necas Lem. ⇒ ∃! \(u = u_0 + \varepsilon g \in H^1(\Omega) \) sol. of Dirichlet Pb

\[
L(x)u(x) = f(x), \text{ for } x \in \Omega, \quad \gamma_0 u(x) = g(x), \text{ for } x \in \Gamma \quad (4)
\]

Then defining the linear application \(\forall w \in H^{1/2}(\Gamma) \)

\[
l(w) = a(u, \varepsilon w) - \int_\Omega f(x)\varepsilon w(c)dx.
\]

Riez thm : \(\exists \lambda \in H^{-1/2}(\Gamma) : \langle \lambda, w \rangle_{L^2(\Gamma)} = l(w) \forall w \in H^{1/2}(\Gamma). \)

Hence, the conormal derivative \(\lambda \in H^{-1/2}(\Gamma) \) satisfies

\[
\int_\Gamma \lambda \ w \ ds_x = a(u_0 + \varepsilon g, \varepsilon w) - \int_\Omega f \varepsilon w \ dx \ \forall w \in H^{1/2}(\Gamma).
\]

⇒ \(f \) fixed, we have a DtoN map : \(g = \gamma_0 u \mapsto \lambda := \gamma_1 u \)

\[
\gamma_1 u(x) = Sg(x) - Nf(x), \forall w \in \Gamma \quad (5)
\]
Outline

1. The Dirichlet-Neumann Map
2. The Generalized Schwarz Alternating Method
3. The Aitken-Schwarz Method
4. Non separable operator, non regular mesh, adaptive Aitken-Schwarz
5. Aitken meshfree acceleration
The Generalized Schwarz Alternating Method (GSAM)

Consider $\Omega = \Omega_1 \cup \Omega_2$ with the two artificial boundaries Γ_1, Γ_2 intersecting $\partial \Omega$.

Algorithm

\[
L(x)u^{2n+1}_1(x) = f(x), \quad \forall x \in \Omega_1, \quad u^{2n+1}_1(x) = g(x), \quad \forall x \in \partial \Omega_1 \setminus \Gamma_1,
\]

\[
\Lambda_1 u^{2n+1}_1 + \lambda_1 \frac{\partial u^{2n+1}_1(x)}{\partial n_1} = \Lambda_1 u^{2n}_2 + \lambda_1 \frac{\partial u^{2n}_2(x)}{\partial n_1}, \quad \forall x \in \Gamma_1,
\]

\[
L(x)u^{2n+2}_2(x) = f(x), \quad \forall x \in \Omega_2, \quad u^{2n+2}_2(x) = g(x), \quad \forall x \in \partial \Omega_2 \setminus \Gamma_2,
\]

\[
\Lambda_2 u^{2n+2}_2 + \lambda_2 \frac{\partial u^{2n+2}_2(x)}{\partial n_2} = \Lambda_2 u^{2n+1}_1 + \lambda_2 \frac{\partial u^{2n+1}_1(x)}{\partial n_2}, \quad \forall x \in \Gamma_2.
\]

where Λ_i's are some operators and λ_i's are constants.

($\Lambda_1 = I, \lambda_1 = 0, \Lambda_2 = 0, \lambda_2 = 1$) Schwarz Neumann-Dirichlet Algorithm
If $\lambda_1 = 1$ and Λ_1 is the DtoN operator at Γ_1 associated to the homogeneous PDE in Ω_2 with homogeneous boundary condition on $\partial \Omega_2 \cap \partial \Omega$ then GSAM converge in two steps.

Proof Let $e^n_i = u - u^n$, $i = 1, 2$, then

\[
L(x)e_1^1(x) = 0, \ \forall x \in \Omega_1, \ e_1^1(x) = 0, \ \forall x \in \partial \Omega_1 \setminus \Gamma_1,
\]

\[
\Lambda_1 e_1^1 + \left. \frac{\partial e_1^1(x)}{\partial n_1} \right|_{\partial \Omega_2} = \Lambda_1 e_2^0 + \left. \frac{\partial e_2^0(x)}{\partial n_1} \right|_{\partial \Omega_2}, \ \forall x \in \Gamma_1
\]

since Λ_1 is the DtoN operator at Γ_1 in Ω_2

\[
\left. \frac{\partial e_2^0}{\partial n_1} \right|_{\partial \Omega_2} + \Lambda_1 e_2^0 = - \left. \frac{\partial e_2^0}{\partial n_2} \right|_{\partial \Omega_2} + \left. \frac{\partial e_2^0}{\partial n_2} \right|_{\partial \Omega_2} = 0, \ \Rightarrow e_1^1 = 0 \text{in } \Omega_1
\]

Hence we get the exact solution in two steps.
Pb : Λ_i DtoN operators are global operators (linking all the subdomains when > 3).

In practice, the algebraical approximations of this operators are used (see Nataf, Gander).

On the other hand, the convergence property of the Schwarz Alternating methodology is used to define the Aitken-Schwarz methodology.
Pb : $\bigwedge_i \text{DtoN}$ operators are global operators (linking all the subdomains when > 3).

In practice, the algebraical approximations of this operators are used (see Nataf, Gander).

On the other hand, the convergence property of the Schwarz Alternating methodology is used to define the Aitken-Schwarz methodology.
Pb : Λ_i DtoN operators are global operators (linking all the subdomains when > 3).

In practice, the algebraical approximations of this operators are used (see Nataf, Gander).

On the other hand, the convergence property of the Schwarz Alternating methodology is used to define the Aitken-Schwarz methodology.
Let $\Omega = \Omega_1 \cup \Omega_2$, $\Omega_{12} = \Omega_1 \cap \Omega_2$, $\Omega_{ii} = \Omega_i \setminus \Omega_{12}$

$e_i^n = u - u_i^n$ in Ω_i satisfies:

$$(\Lambda_1 + \lambda_1 S_1) R_1 e_1^{2n+1} = (\Lambda_1 - \lambda_1 S_{22}) R_{22} P_2 e_2^{2n}$$
$$(\Lambda_2 + \lambda_2 S_2) R_2 e_2^{2n+2} = (\Lambda_2 - \lambda_2 S_{22}) R_{11} P_1 e_1^{2n+1}$$

with

- $P_i : H^1(\Omega_i) \rightarrow H^1(\Omega_{ii})$
- $S_i (S_{ii})$ the DtoN map operator in Ω_i (Ω_{ii}) on Γ_i ($\Gamma_{mod(i,2)+1}$).
- $R_i : H^1(\Omega_i) \rightarrow H^{1/2}(\Gamma_i)$, $R_{ii} : H^1(\Omega_{ii}) \rightarrow H^{1/2}(\Gamma_{mod(i,2)+1})$,
- $R_i^* : R_i R_i^* = I$,
- $\forall g \in H^{1/2}(\Gamma_i)$, $L(x) R_i^* g = 0$, $R_i^* g = g$ on Γ_i, $R_i^* g = 0$ on $\partial \Omega_i \setminus \Gamma_i$

Thus the convergence of GSAM is purely linear! Aitken-Schwarz DDM uses this property to accelerate the convergence:
Consequently, no direct approximation of the DtoN map is used, but an approximation of the operator of error linked to this DtoN map is performed.
Outline

1. The Dirichlet-Neumann Map
2. The Generalized Schwarz Alternating Method
3. The Aitken-Schwarz Method
4. Non separable operator, non regular mesh, adaptive Aitken-Schwarz
5. Aitken meshfree acceleration
Acceleration of Schwarz Method for Elliptic Problems

M. Garbey and D. Tromeur-Dervout: *On some Aitken like acceleration of the Schwarz method*,

- **additive Schwarz algorithm:**
 - \(L[u_1^{n+1}] = f \) in \(\Omega_1 \), \(u_1^{n+1}|_{\Gamma_1} = u_2^n|\Gamma_1 \),
 - \(L[u_2^{n+1}] = f \) in \(\Omega_2 \), \(u_2^{n+1}|_{\Gamma_2} = u_1^n|\Gamma_2 \).

- **the interface error operator** \(T \) is **linear**, i.e.
 - \(u_1^{n+1} - U|\Gamma_2 = \delta_1 (u_2^n|\Gamma_1 - U|\Gamma_1) \),
 - \(u_2^{n+1} - U|\Gamma_1 = \delta_2 (u_1^n|\Gamma_2 - U|\Gamma_2) \).

- Consequently
 - \(u_1^2|\Gamma_2 - u_1^1|\Gamma_2 = \delta_1 (u_2^1|\Gamma_1 - u_2^0|\Gamma_1) \),
 - \(u_2^2|\Gamma_1 - u_2^1|\Gamma_1 = \delta_2 (u_1^1|\Gamma_2 - u_1^0|\Gamma_2) \).

- **Computation of** \(\delta_{1/2} \):
 - \(L[v_{1/2}] = 0 \) in \(\Omega_{1/2} \), \(v_{\Gamma_{1/2}} = 1 \). Thus \(\delta_{1/2} = v_{\Gamma_{2/1}} \).

- **iff** \(\delta \neq 1 \) **Aitken-Schwarz** gives the solution with exactly 3 iterations and possibly 2 in the analytical case.
Acceleration of Schwarz Method for Elliptic Problems

- **additive Schwarz** algorithm:

 - \(L[u_1^{n+1}] = f \text{ in } \Omega_1, \quad u_1^{n+1}|_{\Gamma_1} = u_2^n|_{\Gamma_1}, \)

 - \(L[u_2^{n+1}] = f \text{ in } \Omega_2, \quad u_2^{n+1}|_{\Gamma_2} = u_1^n|_{\Gamma_2}. \)

- The interface error operator \(T \) is **linear**, i.e.

 - \(u_1^n|_{\Gamma_2} - U|_{\Gamma_2} = \delta_1(u_2^n|_{\Gamma_1} - U|_{\Gamma_1}), \)

 - \(u_2^n|_{\Gamma_1} - U|_{\Gamma_1} = \delta_2(u_1^n|_{\Gamma_2} - U|_{\Gamma_2}). \)

- Consequently

 - \(u_2^2|_{\Gamma_2} - u_1^1|_{\Gamma_2} = \delta_1(u_2^1|_{\Gamma_1} - u_2^0|_{\Gamma_1}), \)

 - \(u_2^2|_{\Gamma_1} - u_1^1|_{\Gamma_1} = \delta_2(u_1^1|_{\Gamma_2} - u_1^0|_{\Gamma_2}). \)

- Computation of \(\delta_{1/2} \):

 - \(L[v_{1/2}] = 0 \text{ in } \Omega_{1/2}, \quad v_{\Gamma_{1/2}} = 1. \) thus \(\delta_{1/2} = v_{\Gamma_{2/1}}. \)

- Iff \(\delta \neq 1 \) **Aitken-Schwarz** gives the solution with exactly 3 iterations and possibly 2 in the analytical case.
Acceleration of Schwarz Method for Elliptic Problems

- **additive Schwarz** algorithm:

 \[
 L[u_1^{n+1}] = f \text{ in } \Omega_1, \quad u_1^{n+1}|_{\Gamma_1} = u_2^n|_{\Gamma_1},
 \]

 \[
 L[u_2^{n+1}] = f \text{ in } \Omega_2, \quad u_2^{n+1}|_{\Gamma_2} = u_1^n|_{\Gamma_2}.
 \]

- the interface error operator \(T \) is **linear**, i.e

 \[
 u_1^{n+1}|_{\Gamma_2} - U|_{\Gamma_2} = \delta_1(u_2^n|_{\Gamma_1} - U|_{\Gamma_1}),
 \]

 \[
 u_2^{n+1}|_{\Gamma_1} - U|_{\Gamma_1} = \delta_2(u_1^n|_{\Gamma_2} - U|_{\Gamma_2}).
 \]

- Consequently

 \[
 u_1^2|_{\Gamma_2} - u_1^1|_{\Gamma_2} = \delta_1(u_2^1|_{\Gamma_1} - u_2^0|_{\Gamma_1}),
 \]

 \[
 u_2^2|_{\Gamma_1} - u_2^1|_{\Gamma_1} = \delta_2(u_1^1|_{\Gamma_2} - u_1^0|_{\Gamma_2}).
 \]

- Computation of \(\delta_{1/2} \):

 \[
 L[v_{1/2}] = 0 \text{ in } \Omega_{1/2}, \quad v_{\Gamma_{1/2}} = 1. \text{ thus } \delta_{1/2} = v_{\Gamma_{2/1}}.
 \]

 iff \(\delta \neq 1 \) **Aitken-Schwarz** gives the solution with exactly 3 iterations and possibly 2 in the analytical case.
Acceleration of Schwarz Method for Elliptic Problems

- **additive Schwarz** algorithm:
 - \(L[u_1^{n+1}] = f \) in \(\Omega_1 \), \(u_1^{n+1}|_{\Gamma_1} = u_2^n|_{\Gamma_1} \),
 - \(L[u_2^{n+1}] = f \) in \(\Omega_2 \), \(u_2^{n+1}|_{\Gamma_2} = u_1^n|_{\Gamma_2} \).

- The interface error operator \(T \) is *linear*, i.e
 - \(u_1^{n+1}|_{\Gamma_2} - U|_{\Gamma_2} = \delta_1(u_2^n|_{\Gamma_1} - U|_{\Gamma_1}) \),
 - \(u_2^{n+1}|_{\Gamma_1} - U|_{\Gamma_1} = \delta_2(u_1^n|_{\Gamma_2} - U|_{\Gamma_2}) \).

- Consequently
 - \(u_1^2|_{\Gamma_2} - u_1^1|_{\Gamma_2} = \delta_1(u_2^1|_{\Gamma_1} - u^0_2|_{\Gamma_1}) \),
 - \(u_2^2|_{\Gamma_1} - u_2^1|_{\Gamma_1} = \delta_2(u_1^1|_{\Gamma_2} - u^0_1|_{\Gamma_2}) \).

- Computation of \(\delta_{1/2} \):
 - \(L[v_{1/2}] = 0 \) in \(\Omega_{1/2} \), \(v_{\Gamma_{1/2}} = 1 \). Thus \(\delta_{1/2} = v_{\Gamma_{2/1}} \).

- Iff \(\delta \neq 1 \) **Aitken-Schwarz** gives the solution with exactly 3 iterations and possibly 2 in the analytical case.
Acceleration of Schwarz Method for Elliptic Problems

M. Garbey and D. Tromeur-Dervout: *On some Aitken like acceleration of the Schwarz method*,

- **additive Schwarz** algorithm:
 - \(L[u_1^{n+1}] = f \text{ in } \Omega_1, \ u_1^{n+1}|_{\Gamma_1} = u_2^n|_{\Gamma_1}, \)
 - \(L[u_2^{n+1}] = f \text{ in } \Omega_2, \ u_2^{n+1}|_{\Gamma_2} = u_1^n|_{\Gamma_2}. \)

- the interface error operator \(T \) is **linear**, i.e
 - \(u_1^{n+1}|_{\Gamma_2} - U|_{\Gamma_2} = \delta_1(u_2^n|_{\Gamma_1} - U|_{\Gamma_1}), \)
 - \(u_2^{n+1}|_{\Gamma_1} - U|_{\Gamma_1} = \delta_2(u_1^n|_{\Gamma_2} - U|_{\Gamma_2}). \)

- Consequently
 - \(u_1^2|_{\Gamma_2} - u_1^1|_{\Gamma_2} = \delta_1(u_2^1|_{\Gamma_1} - u_2^0|_{\Gamma_1}), \)
 - \(u_2^2|_{\Gamma_1} - u_2^1|_{\Gamma_1} = \delta_2(u_1^1|_{\Gamma_2} - u_1^0|_{\Gamma_2}). \)

- Computation of \(\delta_{1/2} : \)
 - \(L[v_{1/2}] = 0 \text{ in } \Omega_{1/2}, \ v|_{\Gamma_{1/2}} = 1. \text{ thus } \delta_{1/2} = v_{\Gamma_{2/1}}. \)

- **iff** \(\delta \neq 1 \) **Aitken-Schwarz** gives the solution with **exactly 3** iterations and possibly **2** in the analytical case.
Example on a toy problem: Darcy-Stokes coupling

\[
\begin{align*}
\begin{cases}
-\nabla \cdot T(u_1, p_1) &= f_1, \text{ in } \Omega_1 \\
\nabla \cdot u_1 &= 0, \text{ in } \Omega_1 \\
T &:= -p_1 I + 2\mu D(u_1), \\
D(u_1) &:= \frac{1}{2} \nabla u_1 + \frac{1}{2} \nabla u_1^T \\
\mu u_2 + K^2 \nabla p_2 &= 0, \text{ in } \Omega_2 \\
\nabla \cdot u_2 &= f_2, \text{ in } \Omega_2
\end{cases}
\end{align*}
\]

\[
B.C. : \quad u_1 = 0, \text{ on } \partial \Omega_1 \setminus \Gamma, \quad p_2 = 0 \text{ on } \partial \Omega_2 \setminus \Gamma
\]

Beavers-Joseph-Saffman boundary condition on \(\Gamma\)

\[
- n_1 \cdot T(u_1, p_1) \cdot \tau_1 = \frac{\alpha}{K} u_1 \cdot \tau_1, \text{ on } \Gamma
\]

Transmission conditions to close the system:

\[
\begin{align*}
u_1 \cdot n_1 &= u_2 \cdot n_1, \text{ on } \Gamma \\
- n_1 \cdot T(u_1, p_1) \cdot n_1 &= p_2, \text{ on } \Gamma.
\end{align*}
\]
Example on a toy problem: Darcy-Stokes coupling

\[u_{i1}(x, y) = \sum \hat{u}_{i1,k}(x) \cos(ky), \]
\[u_{i2}(x, y) = \sum \hat{u}_{i2,k}(x) \cos(ky), \]
\[p_i(x, y) = \sum \hat{p}_{i,k}(x) \sin(ky). \]

Schwarz errors \(e_{i1}, e_{i2}, e_{ip} \) for each mode \(k \) in \(\Omega_i \) satisfy:

\[
\begin{align*}
\mu \frac{\partial^2}{\partial x^2} e_{11}^n(x) - \mu k^2 e_{11}^n(x) - \frac{\partial}{\partial x} e_{1p}^n(x) &= 0, \forall x \in]0, \gamma[, \\
\mu \frac{\partial^2}{\partial x^2} e_{12}^n(x) - \mu k^2 e_{12}^n(x) - ke_{1p}^n(x) &= 0, \forall x \in]0, \gamma[, \\
\frac{\partial}{\partial x} e_{11}^n(x) - ke_{12}^n(x) &= 0, \forall x \in]0, \gamma[\\
\mu ke_{11}^n(\gamma) - mu \frac{\partial}{\partial x} e_{12}^n(\gamma) - \frac{\alpha}{K} e_{12}^n(\gamma) &= 0 \\
e_{11}^n(0) &= e_{12}^n(0) = 0 \\
e_{1p}^n(\gamma) - 2\mu \frac{\partial}{\partial x} e_{11}^n(\gamma) &= \eta^n = e_{2p}^{n-1/2}(\gamma) \\
\frac{\partial}{\partial x} e_{21}^{n+1/2}(x) - ke_{22}^{n+1/2}(x) &= 0, \forall x \in]\gamma, 1[\\
e_{2p}^{n+1/2}(1) &= 0 \\
e_{21}^{n+1/2}(\gamma) &= x \xi^{n+1/2} = e_{11}^n(\gamma)
\end{align*}
\]
\[
\begin{pmatrix}
\eta^{n+1} \\
\xi^{n+1/2}
\end{pmatrix} = \begin{pmatrix}
0 & \rho_1 \\
\rho_2 & 0
\end{pmatrix} \begin{pmatrix}
\eta^n \\
\xi^{n-1/2}
\end{pmatrix}
\]

\[
\rho_1 = \frac{\mu \tanh(k(1 - \gamma))}{kK^2}
\]

\[
\rho_2 = \frac{-4\alpha \sinh(k\gamma) + 2\mu kK(e^{-2k\gamma} - e^{2k\gamma} + 4k\gamma) + 4k^2\gamma^2\alpha}{-2k\alpha(e^{-2k\gamma} - 2 + e^{2k\gamma}) \mu}
\]

- convergence (eventually divergence) depends on parameters value but not of the iteration and not of the solution.
- each mode can be accelerated by the Aitken process
- even with \(\rho_1 \rho_2\) very closed to 1.

\[
\begin{array}{c}
\rho_1 \rho_2
\end{array}
\]

with \(\alpha = 100, K^2 = 0.01, \mu = 1, \gamma = 0.5\).
Example of linear convergence for the Schwarz Neumann-Dirichlet algo.

\[[\alpha, \Gamma_1] \cup [\Gamma_1, \Gamma_2] \cup [\Gamma_2, \beta], \Gamma_1 < \Gamma_2. \text{ Schwarz writes:} \]

\[
\begin{align*}
\Delta u_1^{(j)} &= f \text{ on } [\alpha, \Gamma_1] \\
 u_1^{(j)}(\alpha) &= 0 \\
 u_1^{(j)}(\Gamma_1) &= u_1^{(j-\frac{1}{2})}(\Gamma_2)
\end{align*}
, \quad
\begin{align*}
\Delta u_2^{(j+\frac{1}{2})} &= f \text{ on } [\Gamma_1, \Gamma_2] \\
 \frac{\partial u_2^{(j+\frac{1}{2})}(\Gamma_1)}{\partial n} &= \frac{\partial u_1^{(j)}(\Gamma_1)}{\partial n} \\
 u_2^{(j+\frac{1}{2})}(\Gamma_2) &= u_3^{(j)}(\Gamma_2)
\end{align*}
\]

\[
\begin{align*}
\Delta u_3^{(j)} &= f \text{ on } [\Gamma_2, \beta] \\
 \frac{\partial u_3^{(j)}(\Gamma_2)}{\partial n} &= \frac{\partial u_2^{(j-\frac{1}{2})}(\Gamma_2)}{\partial n} \\
 u_3^{(j)}(\beta) &= 0
\end{align*}
\]

The error on subdomain \(i \) writes \(e_i(x) = c_i x + d_i \).

\[
e_1^{(j)}(x) = e_2^{(j-\frac{1}{2})}(\Gamma_1) \frac{(\alpha - x)}{\alpha - \Gamma_1}, \quad e_3^{(j)}(x) = \frac{\partial}{\partial n} e_2^{(j-\frac{1}{2})}(\Gamma_2)(x - \beta)
\]
Num. analysis for the Neumann-Dirichlet algo. (3 subdomains)

Error on the second subdomain satisfies

$$e_{2}^{(j+\frac{1}{2})}(x) = \frac{\partial}{\partial n}e_{1}^{(j)}(\Gamma_{1})(x - \Gamma_{2}) + e_{3}^{(j)}(\Gamma_{2})$$ (8)

Replacing $e_{3}^{(j)}(\Gamma_{2})$ and $\frac{\partial}{\partial n}e_{1}^{(j)}(\Gamma_{1})$, $e_{2}^{(j+\frac{1}{2})}(x)$ writes :

$$e_{2}^{(j+\frac{1}{2})}(x) = -\frac{x - \Gamma_{2}}{\alpha - \Gamma_{1}}e_{2}^{(j-\frac{1}{2})}(\Gamma_{1}) + (\Gamma_{2} - \beta)\frac{\partial}{\partial n}e_{2}^{(j-\frac{1}{2})}(\Gamma_{2})$$ (9)

Consequently, the following identity holds :

$$\begin{pmatrix}
e_{2}^{(j)}(\Gamma_{1}) \\
\frac{\partial}{\partial n}e_{2}^{(j)}(\Gamma_{2})
\end{pmatrix} = \begin{pmatrix}
\Gamma_{2} - \Gamma_{1} \\
\alpha - \Gamma_{1}
\end{pmatrix} \begin{pmatrix}
\Gamma_{2} - \beta \\
-1
\end{pmatrix} \begin{pmatrix}
e_{2}^{(j-1)}(\Gamma_{1}) \\
\frac{\partial}{\partial n}e_{2}^{(j-1)}(\Gamma_{2})
\end{pmatrix}$$ (10)

Consequently the matrix do not depends of the solution, neither of the iteration, but only of the operator and the shape of the domain.
Num. analysis for the Neumann-Dirichlet algo. (3 subdomains)

Cvg for 1D Poisson pb with 3 non-overlapping subdomains $\alpha = 0, \beta = 1, \Gamma_1 = 0.44, \Gamma_2 = 0.7$
Aitken acceleration of convergence in n-D

\[\vec{x}_{i+1} - \vec{\xi} = P(\vec{x}_i - \vec{\xi}), \quad i = 0, 1, \ldots \]

\[
\begin{pmatrix}
\vec{x}_{N+1} - \vec{x}_N \\
\vdots \\
\vec{x}_2 - \vec{x}_1
\end{pmatrix}
= P \begin{pmatrix}
\vec{x}_N - \vec{x}_{N-1} \\
\vdots \\
\vec{x}_1 - \vec{x}_0
\end{pmatrix}
\]

Thus if \((\vec{x}_N - \vec{x}_{N-1} \ldots \vec{x}_1 - \vec{x}_0)\) is non singular then \(P = \begin{pmatrix}
\vec{x}_{N+1} - \vec{x}_N \\
\vdots \\
\vec{x}_2 - \vec{x}_1
\end{pmatrix} (\vec{x}_N - \vec{x}_{N-1} \ldots \vec{x}_1 - \vec{x}_0)^{-1}\)

If \(\|P\| < 1\) then \(\vec{\xi} = (Id - P)^{-1}(\vec{x}_{N+1} - P\vec{x}_N)\)

The construction of \(P\) claims at least \(N + 1\) iterates if the error components are linked together. \(\Rightarrow\)

- write the solution in a functional basis were the components error are decoupled
- Construct an approximation of \(P\)
The Aitken-Schwarz Adaptive Aitken meshfree acceleration of convergence in n-D

\[\vec{x}_{i+1} - \vec{\xi} = P(\vec{x}_i - \vec{\xi}), \quad i = 0, 1, \ldots \]

\[\begin{pmatrix} \vec{x}_{N+1} - \vec{x}_N \\ \vdots \\ \vec{x}_2 - \vec{x}_1 \end{pmatrix} = P \begin{pmatrix} \vec{x}_N - \vec{x}_{N-1} \\ \vdots \\ \vec{x}_1 - \vec{x}_0 \end{pmatrix} \]

Thus if \(\begin{pmatrix} \vec{x}_N - \vec{x}_{N-1} \\ \vdots \\ \vec{x}_1 - \vec{x}_0 \end{pmatrix} \) is non singular then

\[P = \begin{pmatrix} \vec{x}_{N+1} - \vec{x}_N \\ \vdots \\ \vec{x}_2 - \vec{x}_1 \end{pmatrix} (\begin{pmatrix} \vec{x}_N - \vec{x}_{N-1} \\ \vdots \\ \vec{x}_1 - \vec{x}_0 \end{pmatrix})^{-1} \]

If \(||P|| < 1 \) then

\[\vec{\xi} = (Id - P)^{-1}(\vec{x}_{N+1} - P\vec{x}_N) \]

The construction of \(P \) claims at least \(N + 1 \) iterates if the error components are linked together. \(\Rightarrow \)

- write the solution in a functional basis were the components error are decoupled
- Construct an approximation of \(P \)
Aitken acceleration of convergence in n-D

\[\vec{x}_{i+1} - \vec{\xi} = P(\vec{x}_i - \vec{\xi}), \ i = 0, 1, \ldots \]

\[
\begin{pmatrix}
\vec{x}_{N+1} - \vec{x}_N \\
\vdots \\
\vec{x}_2 - \vec{x}_1
\end{pmatrix}
= \begin{pmatrix}
P(\vec{x}_N - \vec{x}_{N-1}) \\
\vdots \\
P(\vec{x}_1 - \vec{x}_0)
\end{pmatrix}
\]

Thus if \((\vec{x}_N - \vec{x}_{N-1}) \ldots (\vec{x}_1 - \vec{x}_0)\) is non singular then

\[P = \begin{pmatrix}
\vec{x}_{N+1} - \vec{x}_N \\
\vdots \\
\vec{x}_2 - \vec{x}_1
\end{pmatrix}
(\vec{x}_N - \vec{x}_{N-1}) \ldots (\vec{x}_1 - \vec{x}_0)^{-1}
\]

If \(\|P\| < 1\) then \(\vec{\xi} = (Id - P)^{-1}(\vec{x}_{N+1} - P\vec{x}_N)\)

The construction of \(P\) claims at least \(N + 1\) iterates if the error components are linked together. ⇒

- write the solution in a functional basis were the components error are decoupled
- Construct an approximation of \(P\)
Aitken acceleration of convergence in n-D

\[\vec{x}_{i+1} - \vec{\xi} = P(\vec{x}_i - \vec{\xi}), \quad i = 0, 1, \ldots \]

\[(\vec{x}_{N+1} - \vec{x}_N \quad \ldots \quad \vec{x}_2 - \vec{x}_1) = P(\vec{x}_N - \vec{x}_{N-1} \quad \ldots \quad \vec{x}_1 - \vec{x}_0) \]

Thus if \((\vec{x}_N - \vec{x}_{N-1} \quad \ldots \quad \vec{x}_1 - \vec{x}_0)\) is non singular then \(P = \frac{(\vec{x}_{N+1} - \vec{x}_N \quad \ldots \quad \vec{x}_2 - \vec{x}_1)}{(\vec{x}_N - \vec{x}_{N-1} \quad \ldots \quad \vec{x}_1 - \vec{x}_0)^{-1}}\)

If \(\|P\| < 1\) then \(\vec{\xi} = (Id - P)^{-1}(\vec{x}_{N+1} - P\vec{x}_N)\)

The construction of \(P\) claims at least \(N + 1\) iterates if the error components are linked together. \(\Rightarrow\)

- write the solution in a functional basis were the components error are decoupled
- Construct an approximation of \(P\)
For GSAM with two subdomains, errors $e_{\Gamma h}^{i} = U_{\Gamma h}^{i+1} - U_{\Gamma h}^{i}$ satisfy

$$
\begin{pmatrix}
 e_{\Gamma_1 h}^{i+1} \\
 e_{\Gamma_2 h}^{i+1}
\end{pmatrix}
= P
\begin{pmatrix}
 e_{\Gamma_1 h}^{i} \\
 e_{\Gamma_2 h}^{i}
\end{pmatrix}
$$

(11)

- Γ_h^j a discretisation of the interfaces
- Γ_h to be the coarsest discretisation in the sense that it produces V the smallest set of orthonormal vectors Φ_k that belong to Γ_h with respect to a discrete hermitian form $[[\cdot, \cdot]]$.

- Let $U_{\Gamma h}$ be the decomposition of U_{Γ} with respect to the orthogonal basis V.

 $U_{\Gamma h} = \sum_{k=0}^{N} \alpha_k \Phi_k$

- The α_k represents the "Fourier" coefficients of the solution with respect to the basis V.

 The orthogonality $\Rightarrow \alpha_k = [[U_{\Gamma}, \Phi_k]]$

- Then

$$
\begin{pmatrix}
 \beta_{\Gamma_1 h}^{i+1} \\
 \beta_{\Gamma_2 h}^{i+1}
\end{pmatrix}
= P[[\cdot]]
\begin{pmatrix}
 \beta_{\Gamma_1 h}^{i} \\
 \beta_{\Gamma_2 h}^{i}
\end{pmatrix}
$$

(12)
For a separable operator in 2D or 3D and regular step size mesh

No coupling between the modes thus the operator P for the speed up is a block diagonal matrix and n-D is analogous to the 1-D

1. for Schwarz each wave has its own linear rate of convergence and high frequencies are damped first.

2. for high modes the matrix \(P \) can be approximate with neglecting far Macro-Domains interactions.

- **step1**: build \(P \) analytically or numerically from data given by two Schwarz iterates
- **step2**: apply one Jacobi Schwarz iterate to the differential problem with block solver of choice i.e. multigrids, FFT etc...

- **step3**: exchange boundary information:
step 4: compute the Fourier expansion $\hat{u}^n_{j|\Gamma_i}, n = 0, 1$ of the traces on the artificial interface $\Gamma_i, i = 1..nd$ for the initial boundary condition $u^0_{|\Gamma_i}$ and the Schwarz iterate solution $u^1_{|\Gamma_i}$.

step 5: apply generalized Aitken acceleration based on

$$\hat{u}^\infty = (Id - P)^{-1}(\hat{u}^1 - P\hat{u}^0)$$

in order to get $\hat{u}^\infty_{|\Gamma_i}$.
3D DDM: Scalability of 1D AS (with PDC3D as inner solver)

- 3 Crays with 1280 procs (2 Germany, 1 USA),
- 732×10^6 unknowns Pb solved in less than 60s with $\|\epsilon\|_\infty < 10^{-8}$
- network 3-5 Mb/s (communication between 17s and 23s)

Explicit building of $P_{[[\ldots]]}$

uses how basis Φ_k are modified by the Schwarz iterate.

Steps to build the $P_{[[\ldots]]}$ matrix

a. starts from the the basis function Φ_k and get its value on interface in the physical space

b. performs two schwarz iterates with zeros local right hand sides and homogeneous boundary condition on $\partial \Omega = \partial (\Omega_1 \cap \Omega_2)$

c. decomposes the trace solution on the interface in the basis V. We then obtains the column k of the matrix $P_{[[\ldots]]}$
Explicit building of $P_{[[\ldots]]}$

uses how basis Φ_k are modified by the Schwarz iterate.

Steps to build the $P_{[[\ldots]]}$ matrix

a. starts from the basis function Φ_k and get its value on interface in the physical space

b. performs two schwarz iterates with zeros local right hand sides and homogeneous boundary condition on $\partial\Omega = \partial(\Omega_1 \cap \Omega_2)$

c. decomposes the trace solution on the interface in the basis V. We then obtains the column k of the matrix $P_{[[\ldots]]}$.
Explicit building of $P_{[[\ldots]]}$ uses how basis Φ_k are modified by the Schwarz iterate.

Steps to build the $P_{[[\ldots]]}$ matrix

a. starts from the the basis function Φ_k and get its value on interface in the physical space

b. performs two schwarz iterates with zeros local right hand sides and homogeneous boundary condition on $\partial \Omega = \partial (\Omega_1 \cap \Omega_2)$

c. decomposes the trace solution on the interface in the basis V. We then obtains the column k of the matrix $P_{[[\ldots]]}$
\(P_{[\ldots,\ldots]} \) can be computed in parallel, (\# local subdomain solve = \# interface points, and the number of columns computed during the Schwarz iterates can be set according to the computer architecture.

- Its adaptive computation is required to save computing.
- The Fourier mode convergence gives a tool to select the Fourier modes that slow the convergence.
\(P_{[[\ldots]]} \) can be compute in parallel, (# local subdomain solve = # interface points, and the number of columns computed during the Schwarz iterates can be set according to the computer architecture.

Its adaptive computation is required to save computing.

The Fourier mode convergence gives a tool to select the Fourier modes that slow the convergence.
\[P_{[\ldots]} \] can be compute in parallel, (# local subdomain solve = # interface points, and the number of columns computed during the Schwarz iterates can be set according to the computer architecture.

- Its adaptive computation is required to save computing.
- The Fourier mode convergence gives a tool to select the Fourier modes that slow the convergence.
1. The Dirichlet-Neumann Map

2. The Generalized Schwarz Alternating Method

3. The Aitken-Schwarz Method

4. Non separable operator, non regular mesh, adaptive Aitken-Schwarz

5. Aitken meshfree acceleration
Adaptive building of the non diagonal matrix $P_{[[..]]}$ (non separable pb/non uniform mesh)

A. Frullone & DTD : Adaptive acceleration of the Aitken-Schwarz Domain Decomposition on nonuniform nonmatching grids submitted (Non Uniform Fourier basis orthogonal with respect to a numerical hermitian form)

- Select Fourier modes higher than a fixed tolerance. Index = array containing the list of selected modes.
- Take the subset \tilde{v} of Fourier modes from 1 to max(Index).
- Approximate $P_{[[..]]}$ with $P^{*}_{[[..]]}$ using only \tilde{v}.
- Accelerate \tilde{v} through the equation:

$$\tilde{v}^\infty = (Id - P^{*}_{[[..]]})^{-1}(\tilde{v}^{n+1} - P^{*}_{[[..]]}\tilde{v}^n)$$

Other modes are not accelerated.
Adaptive building of the non diagonal matrix $P_{[[.,.]]}$ \(\text{ (non separable pb/non uniform mesh)}\)

A. Frullone & DTD : Adaptive acceleration of the Aitken-Schwarz Domain Decomposition on nonuniform nonmatching grids submitted (Non Uniform Fourier basis ortogonal with respect to a numerical hermitian form)

- Select Fourier modes higher than a fixed tolerance. Index = array containing the list of selected modes.
- Take the subset $\tilde{\mathbf{v}}$ of Fourier modes from 1 to $\max(\text{Index})$.
 - Approximate $P_{[[.,.]]}$ with $P^*_{[[.,.]]}$ using only $\tilde{\mathbf{v}}$.
 - Accelerate $\tilde{\mathbf{v}}$ through the equation:
 \[
 \tilde{\mathbf{v}}^\infty = (\mathbf{I}d - P^*_{[[.,.]]})^{-1}(\tilde{\mathbf{v}}^{n+1} - P^*_{[[.,.]]}\tilde{\mathbf{v}}^n)
 \]

Other modes are not accelerated.
Adaptive building of the non-diagonal matrix $P_{[\ldots]}$ (non separable pb/non uniform mesh)

A. Frullone & DTD: Adaptive acceleration of the Aitken-Schwarz Domain Decomposition on nonuniform nonmatching grids submitted (Non Uniform Fourier basis orthogonal with respect to a numerical hermitian form)

- Select Fourier modes higher than a fixed tolerance. Index = array containing the list of selected modes.
- Take the subset \tilde{v} of Fourier modes from 1 to max(\text{Index}).
- Approximate $P_{[\ldots]}$ with $P^*_{[\ldots]}$ using only \tilde{v}.
- Accelerate \tilde{v} through the equation:

$$\tilde{v}^\infty = (I - P^*_{[\ldots]})^{-1}(\tilde{v}^{n+1} - P^*_{[\ldots]}\tilde{v}^n)$$

Other modes are not accelerated.
Adaptive building of the non diagonal matrix $P_{[.,.]}$ (non separable pb/non uniform mesh)

A. Frullone & DTD : Adaptive acceleration of the Aitken-Schwarz Domain Decomposition on nonuniform nonmatching grids submitted (Non Uniform Fourier basis orthogonal with respect to a numerical hermitian form)

- Select Fourier modes higher than a fixed tolerance. Index = array containing the list of selected modes.
- Take the subset \tilde{v} of Fourier modes from 1 to $\text{max}(\text{Index})$.
- Approximate $P_{[.,.]}$ with $P^*_{[.,.]}$ using only \tilde{v}.
- Accelerate \tilde{v} through the equation:

$$\tilde{v}^\infty = (\text{Id} - P^*_{[.,.]})^{-1}(\tilde{v}^{n+1} - P^*_{[.,.]}\tilde{v}^n)$$

Other modes are not accelerated.
AS-DDM on a strongly non separable operator and irregular matching grids

\[
\begin{aligned}
\begin{cases}
\nabla \cdot (a(x, y) \nabla) u(x, y) &= f(x, y), \quad \text{on } \Omega =]0, 1[^2 \\
u(x, y) &= 0, \quad (x, y) \in \partial \Omega \\
a(x, y) &= a_0 + (1 - a_0)(1 + tanh((x - (3h \ast y + 1/2 - h))/\mu))/2,
\end{cases}
\end{aligned}
\]

and \(a_0 = 10^1, \mu = 10^{-2}\).
Numerical results

Fig.: adaptive acceleration using sub-blocks of $P_{\ldots\ldots}$, with 100 points on the interface, overlap $= 1$, $\epsilon = h_u/8$ and Fourier modes tolerance $= \|\hat{u}^k\|_\infty/10^i$ for $i = 1.5$ and 3 for 1st iteration and $i = 4$ for successive iterations.
1. The Dirichlet-Neumann Map
2. The Generalized Schwarz Alternating Method
3. The Aitken-Schwarz Method
4. Non separable operator, non regular mesh, adaptive Aitken-Schwarz
5. Aitken meshfree acceleration
The two salient features of the Aitken-Schwarz methodology

- Have a representation in a basis of the Boundary condition. This basis having some orthogonality property in order to separate the coefficient associated to a vector of this basis.
- Have a decreasing of the coefficients of this representation of the BC in this basis, in order to select only the mode of interest in the Aitken acceleration process.

⇒ Singular value Decomposition (or Proper orthogonal Decomposition) have these properties.

We can use the SVD of the BC values in order to build P and to accelerate the convergence to the right BC.
Let $X_1^q = [x_1, \ldots, x_q]$, be the traces of the q Schwarz iterates.

Let $X_1^q = USV$ the singular value decomposition of X. ($U' \ast U = I, V'V = I$)

Schwarz : $X_2^{q+2} - X_2^{q+1} = P(X_2^{q+1} - X_1^q)$

Then $U'(X_2^{q+2} - X_2^{q+1})(U'(X_2^{q+1} - X_1^q))^{-1} = U'PU = \tilde{P}$

$x_\infty = U((I - \tilde{P})^{-1}(U'x_{q+2} - \tilde{P}U'x_{q+1})$

Subject to numerical problem in the inverting
Let $X_1^q = [x_1, ..., x_q]$, be the traces of the q Schwarz iterates.

Let $X_1^q = USV$ the singular value decomposition of X. ($U' * U = I$, $V' V = I$)

Schwarz: $X_3^{q+2} - X_2^{q+1} = P(X_2^{q+1} - X_1^q)$

Then $U'(X_3^{q+2} - X_2^{q+1})(U'(X_2^{q+1} - X_1^q))^{-1} = U'PU = \tilde{P}$

$x_\infty = U((I - \tilde{P})^{-1}(U'x_{q+2} - \tilde{P}U'x_{q+1})$

Subject to numerical problem in the inverting
Let $X_1^q = [x_1, ..., x_q]$, be the traces of the q Schwarz iterates.

Let $X_1^q = USV$ the singular value decomposition of X. $(U' \ast U = I, V'V = I)$

Schwarz : $X_3^{q+2} - X_2^{q+1} = P(X_2^{q+1} - X_1^q)$

Then $U'(X_3^{q+2} - X_2^{q+1})(U'(X_2^{q+1} - X_1^q))^{-1} = U'PU = \tilde{P}$

$x_\infty = U((I - \tilde{P})^{-1}(U'x_{q+2} - \tilde{P}U'x_{q+1})$

Subject to numerical problem in the inverting
Let $X_1^q = [x_1, \ldots, x_q]$, be the traces of the q Schwarz iterates.

Let $X_1^q = USV$ the singular value decomposition of X. ($U' \ast U = I$, $V'V = I$)

Schwarz : $X_3^{q+2} - X_2^{q+1} = P(X_2^{q+1} - X_1^q)$

Then $U'(X_3^{q+2} - X_2^{q+1})(U'(X_2^{q+1} - X_1^q))^{-1} = U'PU = \tilde{P}$

$x_\infty = U((I - \tilde{P})^{-1}(U'x_{q+2} - \tilde{P}U'x_{q+1})$

Subject to numerical problem in the inverting
Let $X_1^q = [x_1, \ldots, x_q]$, be the traces of the q Schwarz iterates.

Let $X_1^q = USV$ the singular value decomposition of X. $(U' \ast U = I, V'V = I)$

Schwarz : $X_3^{q+2} - X_2^{q+1} = P(X_2^{q+1} - X_1^q)$

Then $U'(X_3^{q+2} - X_2^{q+1})(U'(X_2^{q+1} - X_1^q))^{-1} = U'PU = \tilde{P}$

$x_\infty = U((I - \tilde{P})^{-1}(U'x_{q+2} - \tilde{P}U'x_{q+1})$ Subject to numerical problem in the inverting
Let $X^q_1 = [x_1, \ldots, x_q]$, be the traces of the q Schwarz iterates.

Let $X^q_1 = USV$ the singular value decomposition of X.
($U' \ast U = I, V'V = I$)

Select the modes that be involved in the acceleration based on the singular value

Applied one Schwarz on the basis functions U^* to determine columns of \tilde{P}^*

then $x^*_\infty = U^*((I - \tilde{P}^*)^{-1}((U'x_{q+2})^* - \tilde{P}^*(U'x_{q+1})^*))$

Complete with the last iterate components.

no inverting, more accurate
Let $X_1^q = [x_1, \ldots, x_q]$, be the traces of the q Schwarz iterates.

Let $X_1^q = USV$ the singular value decomposition of X. ($U' \ast U = I, V'V = I$)

Select the modes that be involved in the acceleration based on the singular value

Applied one Schwarz on the basis functions U^* to determine columns of \tilde{P}^*

then $x_\infty^* = U^*((I - \tilde{P}^*)^{-1}((U'x_{q+2})^* - \tilde{P}^*(U'x_{q+1})^*))$

Complete with the last iterate components.

no inverting, more accurate
Let $X_1^q = [x_1, \ldots, x_q]$, be the traces of the q Schwarz iterates.

Let $X_1^q = USV$ the singular value decomposition of X.
($U' \ast U = I, V' V = I$)

Select the modes that be involved in the acceleration based on the singular value.

Applied one Schwarz on the basis functions U^* to determine columns of \tilde{P}^*

then $x_\infty^* = U^*((I - \tilde{P}^*)^{-1}((U'x_{q+2})^* - \tilde{P}^*(U'x_{q+1})^*))$

Complete with the last iterate components.

no inverting, more accurate
Let $X^q_1 = [x_1, \ldots, x_q]$, be the traces of the q Schwarz iterates.

Let $X^q_1 = USV$ the singular value decomposition of X.

$(U' \ast U = I, V' V = I)$

Select the modes that be involved in the acceleration based on the singular value

Applied one Schwarz on the basis functions U^* to determine columns of \tilde{P}^*

then $x^*_\infty = U^*((I - \tilde{P}^*)^{-1}((U'x_{q+2})^* - \tilde{P}^*(U'x_{q+1})^*)$ Complete with the last iterate components.

no inverting, more accurate
Let $X^q_1 = [x_1, ..., x_q]$, be the traces of the q Schwarz iterates.

Let $X^q_1 = USV$ the singular value decomposition of X. ($U' \ast U = I, V'V = I$)

Select the modes that be involved in the acceleration based on the singular value.

Applied one Schwarz on the basis functions U^* to determine columns of \tilde{P}^*

then $x^*_{\infty} = U^*((I - \tilde{P}^*)^{-1}((U'x_{q+2})^* - \tilde{P}^*(U'x_{q+1})^*)$

Complete with the last iterate components.

no inverting, more accurate
\[\nabla \cdot (K(x, y) \nabla u) = f, \quad \text{on} \Omega, \quad u = 0, \quad \text{on} \partial \Omega \text{ in random porous media} \]

Exponential covariance:
\[C_Y(x, y) = \sigma_Y^2 \exp \left(- \left[\left(\frac{x}{\lambda_x} \right)^2 + \left(\frac{y}{\lambda_y} \right)^2 \right]^{1/2} \right) \]

\(\lambda_x \) (\(\lambda_y \)) is the directional \(\ln(K) \) correlation length scales

\(\sigma^2 \) is the variance of \(\ln(K) \)

\[\log_{10}(K) \in [-7.28, 7.69] \text{ distribution } \lambda_x = \lambda_y = 5, \sigma^2 = 4 \]
Schwarz DDM: random distribution of K along the interfaces
Singular values of the SVD of the Schwarz iterates on Γ_1
Basis U of the SVD of the Schwarz iterates on Γ_1
Coefficients of the traces in the basis U

log10(abs(S^V'))

coefficient in basis U
16 modes are used in the acceleration process only.
Convergence of AS with acceleration based on SVD

K permeability with lognormal random distribution ($\lambda=5$, $\sigma^2=6$)

Aitken-Schwarz-SVD convergence for ($\lambda=5$, $\sigma^2=6$), overlap=5h
The two main features for Aitken acceleration are orthogonal basis with decreasing coefficients for the representation of the traces in this basis.

- It works very well when this basis link to the mesh on interfacial interface is available.
- SVD decomposition as the right properties without the drawback to be link to the underlying mesh.
- Parallel implementation of Aitken-Schwarz with SVD is under progress in the framework of MICAS project for large computational domain.
The two main features for Aitken acceleration are orthogonal basis with decreasing coefficients for the representation of the traces in this basis.

It works very well when this basis link to the mesh on interfacial interface is available.

SVD decomposition as the right properties without the drawback to be link to the underlying mesh.

Parallel implementation of Aitken-Schwarz with SVD is under progress in the framework of MICAS project for large computational domain.
The two main features for Aitken acceleration are orthogonal basis with decreasing coefficients for the representation of the traces in this basis.

It works very well when this basis link to the mesh on interfacial interface is available.

SVD decomposition as the right properties without the drawback to be link to the underlying mesh.

Parallel implementation of Aitken-Schwarz with SVD is under progress in the framework of MICAS project for large computational domain.
The two main features for Aitken acceleration are orthogonal basis with decreasing coefficients for the representation of the traces in this basis.

It works very well when this basis link to the mesh on interfacial interface is available.

SVD decomposition as the right properties without the drawback to be link to the underlying mesh.

Parallel implementation of Aitken-Schwarz with SVD is under progress in the framework of MICAS project for large computational domain.