Numerical Zoom and Domain Decomposition http://www.ann.jussieu.fr/pironneau

Olivier Pironneau¹

¹University of Paris VI, Laboratoire J.-L. Lions, Olivier.Pironneau@upmc.fr

with J.-B. Apoung Kamga, H. Hecht, A. Lozinski

The Site of Bure

Figure: Schematic view of the Bure project (East of France)

Nuclear waste is cooled, processed, then buried safely for 1M years Simulation requires a super computer, or does it really?

4 6 1 1 4

The COUPLEX I Test Case

Figure: A 2D multilayered geometry 20km long, 500m high with permeability variations $\frac{K^+}{K^-} = O(10^9)$. Hydrostatic pressure by a FEM.

$$\nabla \cdot (K \nabla H) = 0$$
, *H* or $\frac{\partial H}{\partial n}$ given on Γ

COUPLEX I : Concentration of Radio-Nucleides

Figure: Concentration at 4 times with Discontinuous Galerkin FEM (Apoung-Despré).

$$r\partial_t \mathbf{c} + \lambda \mathbf{c} + u\nabla \mathbf{c} - \nabla \cdot (K\nabla \mathbf{c}) = q(t)\delta(\mathbf{x} - \mathbf{x}_R)$$

Olivier Pironneau (LJLL)

Numerical Zoom and Domain Decomposition

Bourgeat65 4 / 36

Couplex II: Geological figures

Layer	Permeability
Tithonien	3.10 ⁻⁵
Kimmeridgien I	3.10 ⁻⁴
Kimmeridgien II	10 ⁻¹²
Oxfordien I	2.10 ⁻⁷
Oxfordien II	8.10 ⁻⁹
Oxfordien III	4.10 ⁻¹²
Callovo-Oxfordien	10 ⁻¹³
Dogger	2.510 ⁻⁶

Layer decomposition: $K^+ \frac{\partial H}{\partial n}^+ = K^- \frac{\partial H}{\partial n}^-$ implies that $\frac{\partial H}{\partial n}^+ = O(\frac{K^-}{K^+})$. So $\frac{\partial H}{\partial n}|_{KI-KII} \approx 0$ is a B.C. that decouples the top from the bottom. Later $H^-|_{KII} = H^+$ is used as B.C for the bottom. Note that the Callovo-Oxfordian+Oxfordian III have $H|_{\Gamma}$ given from top and bottom separate calculations.

COUPLEX II Hydrostatic Pressure

Figure: Final result and comparison with a global solution on a supercomputer (Apoung)

The Clay Layer with the repository

Figure: A computation within the clay layer only with Dirichlet B.C. from the surrounding layers (Apoung-Delpino). Left: a geometrical zoom

Olivier Pironneau (LJLL)

First Numerical Zoom

Figure: Mesh and Sol of Darcy's in a portion of the entire site.

Olivier Pironneau (LJLL)

Numerical Zoom and Domain Decomposition

Second Zoom

Figure: Mesh and Sol around a single gallery capable of evaluating the impact of a lining around the gallery.

Last Zoom and upscale comp. of the concentration

What are the errors in the end?

Olivier Pironneau (LJLL)

Numerical Zoom and Domain Decomposition

Bourgeat65 10 / 36

Other Examples: What are the errors in the end?

11/36 Bourgeat65

ъ

Olivier Pironneau (LJLL)

Why Numerical Zoom

The dream is to combine graphical zoom and numerical zoom.

- Numerical zoom are needed when it is very expensive or impossible to solve the full problem
- For instance if the problem has multiple scales
- Improved precision may be found necessary a posteriori
- Numerical zoom methods exist:
 - Steger's Chimera method,
 - J.L. Lions's Hilbert space decomposition (HSD),
 - Glowinski-He-Rappaz-Wagner's Subspace correction methods (SCM), etc.
- The 3 methods are really the same: Schwarz-Hilbert Enrichment (SHE).
- We need error estimates .

The Schwarz-Zoom Method

Find $u_H^{m+1} \in V_H$, $u_h^{m+1} \in V_h$, such that $\forall w_H \in V_{0H}$, $\forall w_h \in V_{0h}$

 $\begin{aligned} a_{H}(u_{H}^{m+1}, w_{H}) &= (f, w_{H}), \ u_{H}^{m+1}|_{S_{H}} = \gamma_{H}u_{h}^{m}, \ u_{H}^{m+1}|_{\Gamma_{H}} = g_{H}, \\ a_{h}(u_{h}^{m+1}, w_{h}) &= (f, w_{h}), \ u_{h}^{m+1}|_{S_{h}} = \gamma_{h}u_{H}^{m}, \ u_{h}^{m+1}|_{\Gamma_{h}} = g_{h} \end{aligned}$

where γ_H (resp γ_h) is the interpolation operator on V_H (resp V_h), where S_H and Γ_H are the polygonal approximation of S_1 and Γ_1 and similarly for S_h , Γ_h with S_2 , Γ_2 .

Convergence of Discrete Schwarz-Zoom Method

Hypothesis 1 Assume that the maximum principle holds for each system independently and that the solution $\nu_H \in V_H$ of

 $a_{H}(\nu_{H}, w_{H}) = 0, \ \forall w_{H} \in V_{0H}, \ \nu_{H}|_{S_{H}} = 1, \ \nu_{H}|_{\Gamma_{H}} = 0$

satisfies $|\nu_H|_{\infty,S_h} := \lambda < 1$. **Theorem** Then the discrete Schwarz algorithm converges to:

 $\begin{aligned} a_{H}(u_{H}^{*}, w_{H}) &= (f, w_{H}), \ \forall w_{H} \in V_{0H}, \ u_{H}^{*}|_{S_{H}} = \gamma_{H}u_{h}^{*}, \ u_{H}^{*}|_{\Gamma_{H}} = g_{H} \\ a_{h}(u_{h}^{*}, w_{h}) &= (f, w_{h}), \ \forall w_{h} \in V_{0h}, \ u_{h}^{*}|_{S_{h}} = \gamma_{h}u_{H}^{*} \end{aligned}$

and

$$\max(||u_{H}^{*}-u||_{\infty,\Omega_{H}},||u_{h}^{*}-u||_{\infty,\Omega_{h}}) \le C(H^{2}\log\frac{1}{H}||u||_{H^{2,\infty}(\Omega_{H})} + h^{2}\log\frac{1}{h}||u||_{H^{2,\infty}(\Omega_{h})})$$
(1)

see also X.C. Cai and M. Dryja and M. Sarkis (SIAM 99)

Proof of Convergence

By the maximum principle and the fact that γ_H and γ_h decrease the L^{∞} norms, problems of the type: find $v_H \in V_H$, $v_h \in V_h$

 $\begin{aligned} a_{H}(v_{H}, w_{H}) &= 0, \ \forall w_{H} \in V_{0H}, \ v_{H}|_{S_{H}} = \gamma_{H}u_{h}, \ v_{H}^{m+1}|_{\Gamma_{H}} &= 0\\ a_{h}(v_{h}, w_{h}) &= 0, \ \forall w_{h} \in V_{0h}, \ v_{h}^{m+1}|_{S_{h}} = \gamma_{h}v_{H} \end{aligned}$

satisfy

 $\|\mathbf{v}_{\mathcal{H}}\|_{\infty} \leq \|\mathbf{u}_{h}\|_{\infty, \mathcal{S}_{\mathcal{H}}}, \quad \|\mathbf{v}_{h}\|_{\infty} \leq \|\mathbf{v}_{\mathcal{H}}\|_{\infty, \mathcal{S}_{h}}.$

Combining this with the estimate on the solution of (1) we obtain

 $\|\boldsymbol{v}_h\|_{\infty} \leq \|\boldsymbol{v}_H\|_{\infty, \mathcal{S}_h} \leq \lambda \|\boldsymbol{v}_H\|_{\infty} \leq \lambda \|\boldsymbol{u}_h\|_{\infty}.$

イロト 不得 トイヨト イヨト 二日

Proof of Error estimate (I of II)

The solution u to the continuous problem satisfies $u|_{\Gamma} = g$ and

 $a_{H}(u,w) = (f,w) \quad \forall w \in H_{0}^{1}(\Omega_{H}), \quad u = \gamma_{H}u + (u - \gamma_{H}u) \text{ on } S_{H},$ $a_{h}(u,w) = (f,w) \quad \forall w \in H_{0}^{1}(\Omega_{h}), \quad u = \gamma_{h}u + (u - \gamma_{h}u) \text{ on } S_{h}$

Let $e = u_H^* - u$ and $\varepsilon = u_h^* - u$. Setting $w = w_H$ in the first equation and $w = w_h$ in the second, we have

 $a_H(e, w_H) = 0 \quad \forall w_H \in V_{0H}, \ e = \gamma_H \varepsilon - (u - \gamma_H u) \text{ on } S_H, \ e|_{\Gamma} = g_H - g$ $a_h(\varepsilon, w_h) = 0 \quad \forall w_h \in V_{0h}, \ \varepsilon = \gamma_h e - (u - \gamma_h u) \text{ on } S_h$

Let $\Pi_H u \in V_H$ and $\Pi_h u \in V_h$ be the solutions of

 $\begin{aligned} a_H(\Pi_H u, w_H) &= a_H(u, w_H) \ \forall w_H \in V_{0H}, \ \Pi_H u = \gamma_H u \text{ on } S_H, \ \Pi_H u|_{\Gamma} &= g_H \\ a_h(\Pi_h u, w_h) &= a_h(u, w_h) \ \forall w_h \in V_{0h}, \ \Pi_h u = \gamma_h u \text{ on } S_h \end{aligned}$

By Schatz& Wahlbin, we have

$$\begin{split} ||\Pi_H u - u||_{\infty,\Omega_H} &\leq H^2 \log \frac{1}{H} ||u||_{H^{2,\infty}(\Omega_H)}, \\ ||\Pi_h - u||_{\infty,\Omega_h} &\leq h^2 \log \frac{1}{h} ||u||_{H^{2,\infty}(\Omega_h)}. \end{split}$$

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・

Proof of Error estimate (II)

Finally let

$$\varepsilon_H = u_H - \Pi_H u = e + u - \Pi_H u, \quad \varepsilon_h = u_h - \Pi_h u = \varepsilon + u - \Pi_h u$$

Then $\varepsilon_H \in V_H$, $\varepsilon_h \in V_h$ and

 $\begin{aligned} a_{H}(\varepsilon_{H}, w_{H}) &= 0 \quad \forall w_{H} \in V_{0H}, \quad \varepsilon_{H} = \gamma_{H}(\varepsilon_{h} + \Pi_{h}u - u) \text{ on } S_{H}, \quad \varepsilon_{H}|_{\Gamma} = 0 \\ a_{h}(\varepsilon_{h}, w_{h}) &= 0 \quad \forall w_{h} \in V_{0h}, \quad \varepsilon_{h} = \gamma_{h}(\varepsilon_{H} + \Pi_{H}u - u) \text{ on } S_{h} \end{aligned}$

The maximum principle (like in (2) and (2)) again yields

$$\begin{aligned} \|\varepsilon_{H}\|_{\infty} &\leq \|\Pi_{h}u - u\|_{\infty,S_{H}} + \|\varepsilon_{h}\|_{\infty,S_{H}}, \\ \|\varepsilon_{h}\|_{\infty} &\leq \|\Pi_{H}u - u\|_{\infty,S_{h}} + \|\varepsilon_{H}\|_{\infty,S_{h}}, \\ \|\varepsilon_{H}\|_{\infty,S_{h}} &\leq \lambda \|\varepsilon_{H}\|_{\infty} \end{aligned}$$

Therefore

$$\max(\|\varepsilon_h\|_{\infty}, \|\varepsilon_H\|_{\infty}) \leq \frac{1}{1-\lambda}(\|\Pi_H u - u\|_{\infty,\Omega_H} + \|\Pi_h u - u\|_{\infty,\Omega_h})$$

Hilbert Space Decomposition (JL. Lions)

All would be well if Schwarz didn't require to dig a hole in the zoom.

 $u \in V : a(u, v) = \langle f | v \rangle \quad \forall v \in V$

If V_H is not rich enough, use $V_H + V_h$ and solve $u_H \in V_H$, $u_h \in V_h$:

 $a(u_H + u_h, v_H + v_h) = < f|v_H + v_h > \forall v_H \in V_H, v_h \in V_h$

If solved iteratively, it is similar to Schwarz'DDM or Steger's Chimera at the continuous level: when $\Omega_1 \cup \Omega_2 = \Omega$, $\Omega_1 \cap \Omega_2 \neq \emptyset$.

Olivier Pironneau (LJLL)

Discretization and Proof of Uniqueness (Brezzi)

Find $U_H \in V_{0H} \approx H_0^1(\Omega), u_h \in V_{0h} \approx H_0^1(\Lambda)$

 $a(U_H + u_h, W_H + w_h) = < f|W_H + w_h > \quad \forall W_H \in V_{0H} \ \forall w_h \in V_{0h}$

Theorem The solution is unique if no vertex belong to both triangulations.

Proof

If $u_h = U_H$ on Λ then they are linear on Λ because $\Delta u_h = \Delta U_H$ and each is a distribution on the edges. The only singularity, if any, are at the intersection of both set of edges (which are points), but being in H^{-1} it cannot be singular at isolated points. So $\Delta u_h = \Delta U_H|_{\Lambda} = 0$

Subspace Correction Method (SCM)

Find $U_H \in V_{0H} \approx H_0^1(\Omega)$, $u_h \in V_{0h} \approx H_0^1(\Lambda)$

 $a(U_H + u_h, W_H + w_h) = < f|W_H + w_h > \quad \forall W_H \in V_{0H} \quad \forall w_h \in V_{0h}$

Theorem (Lozinski et al)

If u_H is computed with FEM of degree r and u_h with FEM of degree s, then with $q = \max\{r, s\} + 1$,

 $\|u_H + u_h - u\|_1 \leq c(H^r \|u\|_{H^q(\Omega \setminus \Lambda)} + h^s \|u\|_{H^q(\Lambda)})$

Iterative process? Inexact quadrature?

Olivier Pironneau (LJLL)

Hilbert Space Decomposition with Inexact Quadrature

 $a_{h}(u_{1}+u_{2}, w_{1}+w_{2}) = a_{h}(u_{1}, w_{1}) + a_{h}(u_{2}, w_{2}) + a_{h}(u_{1}, w_{2}) + a_{h}(u_{2}, w_{1})$ 2 grids:{ T_{k}^{1} } { T_{k}^{2} } $a_{h}(u, v) = \sum_{k} \sum_{j=1..3} \frac{|T_{k}^{1}|}{3} \frac{\nabla u \cdot \nabla v}{l_{\Omega^{1}} + l_{\Omega^{2}}}|_{\xi_{jk}^{1}} + \text{id with } T_{k}^{2}$

The gradients are computed on their native grids at vertices ξ . Proposition When vertices of \mathcal{T}^i are strictly inside the T^j the discrete Solution is unique and $||u_h^1 + u_h^2 - u||_1 \leq \frac{c}{C} h(||u^1||_2 + ||u^2||_2)$

		$u - (u_1 + u_2)$		
<i>N</i> 1	L ² error	rate	∇L^2 error	rate
10	1.696 <i>E</i> – 02	—	2.394 <i>E</i> - 01	—
20	5.044 <i>E</i> – 03	1.75	1.204 <i>E</i> – 01	0.99
40	1.129 <i>E</i> – 03	2.16	5.596 <i>E</i> – 02	1.10

Table: Numerical L^2 and H^1 errors, and convergence rate. Results are sensitive to rotation and translation of inner mesh

Harmonic Patch Iterator for Speed-up (Lozinski)

Proximity of vertices could lead to drastically slow convergence \Rightarrow

- 1: for n = 1...N do
- 2: Find $\lambda_H^n \in V_H^0 = \{ v_H \in V_{0H} : \text{supp } v_H \subset \Lambda \}$ such that

$$a(\lambda_{H}^{n},\mu) = \langle f|v\rangle - a(u_{h}^{n-1},\mu), \quad \forall \mu \in V_{0H}$$

- 3: Find $u_H^n \in V_{0H}$ such that $a(u_H^n, v) = \langle f | v \rangle - a(u_h^{n-1}, v) - a(\lambda_H^n, v), \quad \forall v \in V_{0H}$
- 4: Find $u_h^n \in V_{0h}$ such that $a(u_h^n, v) = \langle f | v \rangle - a(u_H^{n-1}, v), \quad \forall v \in V_{0h}$
- 5: Set $u_{Hh}^n = u_H^n + u_h^n$
- 6: end for

Note: with $\tilde{u}_h^{n-1} = u_h^{n-1} + \lambda_H^n$ is it Schwarz?

Olivier Pironneau (LJLL)

Harmonic Patches

	1/	10	1/20		1/40		
	H^1	L^2	H^1	L^2	H^1	L^2]
	1.00	8.50 E - 1	9.98E - 1	8.48E - 1	9.98E - 1	8.49E - 1	1
	1.03E - 2	6.18E - 3	2.18E - 3	1.25E - 3	6.08E - 4	4.05 E - 4	
	1.01E - 2	5.22E-3	2.36E - 3	1.27E-3	6.42E - 4	4.36E - 4	
	8.93E - 3	$4.79E\!-\!3$	2.10E - 3	1.11E - 3	5.56E - 4	3.01 E - 4	
	9.40E - 3	5.09E - 3	2.16E - 3	1.17E - 3	5.91 E - 4	3.72E - 4	
-							
Ī	8.72E-3	4.89E-3	2.09E-3	1.09E - 3	5.51E - 4	2.87E - 4	Ĩ
Ī	8.72E-3 1	4.89E-3 1	2.09E-3	1.09E-3 4	5.51E-4	2.87E-4 3	

Olivier Pironneau (LJLL)

ヘロト 人間 とくほとくほう

Discrete one way Schwarz

If the Λ_h is a submesh of Ω_H then the same algorithm is:

- 1: for n = 1...N do
- 2: Find $u_H^n g_H \in V_{0H}$ such that

 $a(u_{H}^{n}, v) = \langle f | v \rangle - a_{h}(w_{h}^{n-1}, v) + a_{\Lambda}(u_{H}^{n-1}, v), \quad \forall v \in V_{0H}$

- 3: Find $w_h^n \in V_h$ such that $(r_h \text{ is a trace interpolation operator})$ $a(w_h^n, v) = \langle f | v \rangle, \quad \forall v \in V_{0h}, \quad w_h^n |_{\partial \Lambda} = r_h u_H^n |_{\partial \Lambda}$
- 4: end for
- 5: Set

$$u_{Hh}^{n} = \begin{cases} w_{h}^{n}, \text{ in } \Lambda \\ u_{H}^{n}, \text{ outside } \Lambda \end{cases}$$

イロト イポト イヨト イヨト 二日

http://www.freefem.org

```
// embedded meshes with keyword splitmesh
int n=10, m=4;
real x0=0.33,y0=0.33,x1=0.66,y1=0.66;
mesh TH=square(n,n);
mesh Th = splitmesh(TH,(x>x0 && x<x1 && y>y0 && y<y1)*m);
mesh THh=splitmesh(TH,1+(x>x0&&x<x1&&y>y0&& y<y1)*(m-1));</pre>
```

solve aH(U,V) = int2d(TH)(K*(dx(U)*dx(V)+dy(U)*dy(V)))

- + int2d(Th)(K*(dx(u)*dx(V)+dy(u)*dy(V)))
- int2d(THh)(K*(dx(Uold)*dx(V)+dy(Uold)*dy(V)))
- int2d(TH)(f*V) + on(dOmega, U=g);

2D Academic case

K = 1 except in a Disk 0.1 in the center where K = 100:

$$u = y - \frac{1}{2}$$
, in the disk $= -\frac{1+K}{4} - \frac{(1-K)\delta^2}{4(x^2+y^2)}$ elsewhere (2)

Figure: The initial mesh Ω_H is is divided 4 times in the zoom. Convergence history for 3 different initial meshes of the unit square: a coarse, medium (documented in the text) and fine mesh. 3 curves correspond to the errors on the mesh *H* and 3 for the mesh *h*.

Figure: Error at each point for the converge solution in Λ (left) and outside (right) Λ on the fine mesh of Fig. The color scales from -0.23 to 0.24 on the left and from -0.08 to 0.08 on the right.

A b

Embedded Meshes: Relation with Schwarz' DDM

Left: Divide the Triangles which have a vertex in $(.33, .66)^2 \Rightarrow$ not a valid mesh. Right: a valid mesh is obtained by joining the hanging vertices to their opposite vertex.

Olivier Pironneau (LJLL)

Numerical Zoom and Domain Decomposition

Bourgeat65 28 / 36

Comparison with Schwarz: 3D academic case

Figure: Zoom around the small sphere, view of the solution and zoom

Olivier Pironneau (LJLL)

Numerical Zoom and Domain Decomposition

∃ ▶ ∢

freefem3d (S. Delpino) + medit (P. Frey)

```
vector n = (50, 50, 50);
vector a = (-2, -2, -2), b = (3, 2, 2), c = (2, 2, -0, 3, -0, 3), d = (1, 7, 0, 3, 0, 3);
scene S = pov("test.pov");
mesh M = structured(n,a,b);
domain O = domain(S,outside(<1,0,0>)and outside(<0,1,0>));
mesh L = structured(n.c.d):
domain P = domain(S,outside(<0,1,0>));
femfunction u(M)=0, v(L)=0, uold(L)=0;
double err:
do{
 solve(u) in O by M{
  pde(u) - div(grad(u)) = 0; u = 0 on M; u = 1 on < 1.0.0 >; u = v on < 0.1.0 >;
  }:
  solve(v) in P by L{
  pde(v) - div(grad(v)) = 0; v = -1 on < 0.1.0 >; v = u on L;
 3:
 err = int[L] ((u-uold)^2); uold = u;
}while{err>3e-5):
```

Table: Convergence error on the zoom variable for Couplex

Schwarz 25	Schwarz 35	Schwarz 50	SHE 20	SHE 35	SHE 50
1.297E-3	2.319E-3	1.890E-3	9.477E-2	8.766E-2	7.928E-2
2.209E-2	2.653E-2	3.189E-2	3.225E-02	3.782E-02	6.345E-02
1.321E-3	2.441E-4	8.320E-4	1.899E-2	2.309E-3	3.316E-2
5.519E-4	6.745E-06	9.425E-05	5.403E-05	1.504E-05	3.723E-05
1.146E-4		2.184E-05		2.521E-06	7.525E-06
9.885E-05					
1.055E-05					

Comparison with Schwarz for Couplex

Figure: U_H and $U_H - (xy + 20)$.

Schwarz	227.383	86.0596	6.42153	0.199725	0.0070609
SHE	507.434	0.015881	0.0030023	0.0013834	0.00096568

Table: Convergence

Conclusion

- Numerical zooms are inevitable
- Precision: given by GHLR.
- With embedded meshes:
 - similar to DDM
 - convergence similar to full overlapping Schwarz
- Advice to code developer: since DDM is built in due to computer architecture why not add the zoom facility also!

Olivier Pironneau (LJLL)

Bibliography on www.ann.jussieu.fr/pironneau

- Apoung-Kamga J.B. and J.L., Pironneau : O. Numerical zoom. DDM16 conf. proc, New-York Jan 2005. D. Keyes ed.
- Brezzi,F., Lions, J.L., Pironneau, O. : Analysis of a Chimera Method. C.R.A.S., 332, 655-660, (2001).
- P. Frey: medit, http://www.ann.jussieu.fr/~frey
- R. Glowinski, J. He, A. Lozinski, J. Rappaz, and J. Wagner. Finite element approximation of multi-scale elliptic problems using patches of elements. Numer. Math., 101(4):663–687, 2005.
- Hecht F., O. Pironneau: http://www.freefem.org
- Lions, J.L., Pironneau, O. : Domain decomposition methods for CAD. C.R.A.S., 328 73-80, (1999).
- J. He, A. Lozinski and J. Rappaz: Accelerating the method of finite element patches using harmonic functions. C.R.A.S. 2007.
- Steger J.L. : The Chimera method of flow simulation. Workshop on applied CFD, Univ. of Tennessee Space Institute, (1991).
- Wagner J. : FEM with Patches and Appl. Thesis 3478, EPFL, 2006.

Olivier Pironneau (LJLL)

