Numerical Zoom and Domain Decomposition http://www.ann.jussieu.fr/pironneau

Olivier Pironneau 1

${ }^{1}$ University of Paris VI, Laboratoire J.-L. Lions, Olivier.Pironneau@upmc.fr with J.-B. Apoung Kamga, H. Hecht, A. Lozinski

The Site of Bure

Figure: Schematic view of the Bure project (East of France)

Nuclear waste is cooled, processed, then buried safely for 1 M years Simulation requires a super computer, or does it really?

The COUPLEX I Test Case

Isocourbes de la pression

Figure: A 2D multilayered geometry 20km long, 500 m high with permeability variations $\frac{K^{+}}{K^{-}}=O\left(10^{9}\right)$. Hydrostatic pressure by a FEM.

$$
\nabla \cdot(K \nabla H)=0, \quad H \text { or } \frac{\partial H}{\partial n} \text { given on } \Gamma
$$

COUPLEX I : Concentration of Radio-Nucleides

$t=201115$ ans

Figure: Concentration at 4 times with Discontinuous Galerkin FEM (Apoung-Despré).

$$
r \partial_{t} c+\lambda c+u \nabla c-\nabla \cdot(K \nabla c)=q(t) \delta\left(x-x_{R}\right)
$$

Couplex II: Geological figures

Layer	Permeability
Tithonien	3.10^{-5}
Kimmeridgien I	3.10^{-4}
Kimmeridgien II	10^{-12}
Oxfordien I	2.10^{-7}
Oxfordien II	8.10^{-9}
Oxfordien III	4.10^{-12}
Callovo-Oxfordien	10^{-13}
Dogger	2.510^{-6}

Layer decomposition: $K^{+}{\frac{\partial H^{+}}{\partial n}}^{+}=K^{-}{\frac{\partial H^{-}}{\partial n}}^{\text {implies that } \frac{\partial H^{+}}{\partial n}}=O\left(\frac{K^{-}}{K^{+}}\right)$.
So $\left.\frac{\partial H}{\partial n}\right|_{K I-K I I} \approx 0$ is a B.C. that decouples the top from the bottom. Later $\left.\mathrm{H}^{-}\right|_{K I I}=H^{+}$is used as B.C for the bottom.
Note that the Callovo-Oxfordian+Oxfordian III have H_{Γ} given from top and bottom separate calculations.

COUPLEX II Hydrostatic Pressure

Figure: Final result and comparison with a global solution on a supercomputer (Apoung)

The Clay Layer with the repository

288. 288. | | Solution | | | |
| :--- | :--- | :--- | :--- | :---: |
| 288. | 289. | 289. | | |

Figure: A computation within the clay layer only with Dirichlet B.C. from the surrounding layers (Apoung-Delpino). Left: a geometrical zoom

First Numerical Zoom

Figure: Mesh and Sol of Darcy's in a portion of the entire site.

Second Zoom

Figure: Mesh and Sol around a single gallery capable of evaluating the impact of a lining around the gallery.

Last Zoom and upscale comp. of the concentration

What are the errors in the end?

Other Examples: What are the errors in the end?

Why Numerical Zoom

The dream is to combine graphical zoom and numerical zoom.

- Numerical zoom are needed when it is very expensive or impossible to solve the full problem
- For instance if the problem has multiple scales
- Improved precision may be found necessary a posteriori
- Numerical zoom methods exist:
- Steger's Chimera method,
- J.L. Lions's Hilbert space decomposition (HSD),
- Glowinski-He-Rappaz-Wagner's Subspace correction methods (SCM), etc.
- The 3 methods are really the same: Schwarz-Hilbert Enrichment (SHE).
- We need error estimates .

The Schwarz-Zoom Method

Find $u_{H}^{m+1} \in V_{H}, u_{h}^{m+1} \in V_{h}$, such that $\forall w_{H} \in V_{0 H}, \quad \forall w_{h} \in V_{0 h}$

$$
\begin{aligned}
& a_{H}\left(u_{H}^{m+1}, w_{H}\right)=\left(f, w_{H}\right),\left.\quad u_{H}^{m+1}\right|_{S_{H}}=\gamma_{H} u_{h}^{m},\left.\quad u_{H}^{m+1}\right|_{\Gamma_{H}}=g_{H}, \\
& a_{h}\left(u_{h}^{m+1}, w_{h}\right)=\left(f, w_{h}\right),\left.\quad u_{h}^{m+1}\right|_{s_{h}}=\gamma_{h} u_{H}^{m},\left.\quad u_{h}^{m+1}\right|_{\Gamma_{h}}=g_{h}
\end{aligned}
$$

where $\gamma_{H}\left(\operatorname{resp} \gamma_{h}\right)$ is the interpolation operator on $V_{H}\left(\right.$ resp $\left.V_{h}\right)$, where S_{H} and Γ_{H} are the polygonal approximation of S_{1} and Γ_{1} and similarly for S_{h}, Γ_{h} with S_{2}, Γ_{2}.

Convergence of Discrete Schwarz-Zoom Method

Hypothesis 1 Assume that the maximum principle holds for each system independently and that the solution $\nu_{H} \in V_{H}$ of

$$
a_{H}\left(\nu_{H}, w_{H}\right)=0, \quad \forall w_{H} \in V_{0 H}, \quad \nu_{H}\left|s_{H}=1, \quad \nu_{H}\right| \Gamma_{H}=0
$$

satisfies $\left|\nu_{H}\right|_{\infty, S_{h}}:=\lambda<1$.
Theorem Then the discrete Schwarz algorithm converges to:

$$
\begin{aligned}
& a_{H}\left(u_{H}^{*}, w_{H}\right)=\left(f, w_{H}\right), \quad \forall w_{H} \in V_{0 H}, u_{H}^{*}\left|s_{H}=\gamma_{H} u_{h}^{*}, \quad u_{H}^{*}\right| \Gamma_{H}=g_{H} \\
& a_{h}\left(u_{h}^{*}, w_{h}\right)=\left(f, w_{h}\right), \quad \forall w_{h} \in V_{0 h}, u_{h}^{*} \mid s_{h}=\gamma_{h} u_{H}^{*}
\end{aligned}
$$

and

$$
\begin{align*}
\max \left(\| u_{H}^{*}\right. & \left.-u\left\|_{\infty, \Omega_{H}},\right\| u_{h}^{*}-u \|_{\infty, \Omega_{h}}\right) \\
& \leq C\left(H^{2} \log \frac{1}{H}\|u\|_{H^{2, \infty}\left(\Omega_{H}\right)}+h^{2} \log \frac{1}{h}\|u\|_{H^{2, \infty}\left(\Omega_{h}\right)}\right) \tag{1}
\end{align*}
$$

see also X.C. Cai and M. Dryja and M. Sarkis (SIAM 99)

Proof of Convergence

By the maximum principle and the fact that γ_{H} and γ_{h} decrease the L^{∞} norms, problems of the type: find $v_{H} \in V_{H}, v_{h} \in V_{h}$

$$
\begin{aligned}
& a_{H}\left(v_{H}, w_{H}\right)=0, \quad \forall w_{H} \in V_{0 H}, \quad v_{H}\left|s_{H}=\gamma_{H} u_{h}, \quad v_{H}^{m+1}\right| r_{H}=0 \\
& a_{h}\left(v_{h}, w_{h}\right)=0, \quad \forall w_{h} \in V_{0 h}, \quad v_{h}^{m+1} \mid s_{h}=\gamma_{h} v_{H}
\end{aligned}
$$

satisfy

$$
\left\|v_{H}\right\|_{\infty} \leq\left\|u_{h}\right\|_{\infty, s_{H}}, \quad\left\|v_{h}\right\|_{\infty} \leq\left\|v_{H}\right\|_{\infty, s_{h}} .
$$

Combining this with the estimate on the solution of (1) we obtain

$$
\left\|v_{h}\right\|_{\infty} \leq\left\|v_{H}\right\|_{\infty, S_{h}} \leq \lambda\left\|v_{H}\right\|_{\infty} \leq \lambda\left\|u_{h}\right\|_{\infty} .
$$

Proof of Error estimate (I of II)

The solution u to the continuous problem satisfies $\left.u\right|_{\Gamma}=g$ and

$$
\begin{aligned}
& a_{H}(u, w)=(f, w) \forall w \in H_{0}^{1}\left(\Omega_{H}\right), \quad u=\gamma_{H} u+\left(u-\gamma_{H} u\right) \text { on } S_{H}, \\
& a_{h}(u, w)=(f, w) \quad \forall w \in H_{0}^{1}\left(\Omega_{h}\right), \quad u=\gamma_{h} u+\left(u-\gamma_{h} u\right) \text { on } S_{h}
\end{aligned}
$$

Let $e=u_{H}^{*}-u$ and $\varepsilon=u_{h}^{*}-u$. Setting $w=w_{H}$ in the first equation and $w=w_{h}$ in the second, we have

$$
\begin{aligned}
& a_{H}\left(e, w_{H}\right)=0 \quad \forall w_{H} \in V_{0 H}, \quad e=\gamma_{H} \varepsilon-\left(u-\gamma_{H} u\right) \text { on } S_{H},\left.\quad e\right|_{\Gamma}=g_{H}-g \\
& a_{h}\left(\varepsilon, w_{h}\right)=0 \quad \forall w_{h} \in V_{0 h}, \quad \varepsilon=\gamma_{h} e-\left(u-\gamma_{h} u\right) \text { on } S_{h}
\end{aligned}
$$

Let $\Pi_{H} u \in V_{H}$ and $\Pi_{h} u \in V_{h}$ be the solutions of

$$
\begin{aligned}
& a_{H}\left(\Pi_{H} u, w_{H}\right)=a_{H}\left(u, w_{H}\right) \forall w_{H} \in V_{0 H}, \quad \Pi_{H} u=\gamma_{H} u \text { on } S_{H},\left.\Pi_{H} u\right|_{\Gamma}=g_{H} \\
& a_{h}\left(\Pi_{h} u, w_{h}\right)=a_{h}\left(u, w_{h}\right) \forall w_{h} \in V_{0 h}, \quad \Pi_{h} u=\gamma_{h} u \text { on } S_{h}
\end{aligned}
$$

By Schatz\& Wahlbin, we have

$$
\begin{aligned}
& \left\|\Pi_{H} u-u\right\|_{\infty, \Omega_{H}} \leq H^{2} \log \frac{1}{H}\|u\|_{H^{2}, \infty\left(\Omega_{H}\right)}, \\
& \left\|\Pi_{h}-u\right\|_{\infty, \Omega_{h}} \leq h^{2} \log \frac{1}{h}\|u\|_{H^{2}, \infty\left(\Omega_{h}\right)} .
\end{aligned}
$$

Proof of Error estimate (II)

Finally let

$$
\varepsilon_{H}=u_{H}-\Pi_{H} u=e+u-\Pi_{H} u, \quad \varepsilon_{h}=u_{h}-\Pi_{h} u=\varepsilon+u-\Pi_{h} u
$$

Then $\varepsilon_{H} \in V_{H}, \varepsilon_{h} \in V_{h}$ and

$$
\begin{aligned}
& a_{H}\left(\varepsilon_{H}, w_{H}\right)=0 \quad \forall w_{H} \in V_{0 H}, \quad \varepsilon_{H}=\gamma_{H}\left(\varepsilon_{h}+\Pi_{h} u-u\right) \text { on } S_{H},\left.\quad \varepsilon_{H}\right|_{\Gamma}=0 \\
& a_{h}\left(\varepsilon_{h}, w_{h}\right)=0 \quad \forall w_{h} \in V_{0 h}, \quad \varepsilon_{h}=\gamma_{h}\left(\varepsilon_{H}+\Pi_{H} u-u\right) \text { on } S_{h}
\end{aligned}
$$

The maximum principle (like in (2) and (2)) again yields

$$
\begin{aligned}
& \left\|\varepsilon_{H}\right\|_{\infty} \leq\left\|\Pi_{h} u-u\right\|_{\infty, S_{H}}+\left\|\varepsilon_{h}\right\|_{\infty, s_{H}}, \\
& \left\|\varepsilon_{h}\right\|_{\infty} \leq\left\|\Pi_{H} u-u\right\|_{\infty, s_{h}}+\left\|\varepsilon_{H}\right\|_{\infty, s_{h}}, \\
& \left\|\varepsilon_{H}\right\|_{\infty, S_{h}} \leq \lambda\left\|\varepsilon_{H}\right\|_{\infty}
\end{aligned}
$$

Therefore

$$
\max \left(\left\|\varepsilon_{h}\right\|_{\infty},\left\|\varepsilon_{H}\right\|_{\infty}\right) \leq \frac{1}{1-\lambda}\left(\left\|\Pi_{H} u-u\right\|_{\infty, \Omega_{H}}+\left\|\Pi_{h} u-u\right\|_{\infty, \Omega_{h}}\right)
$$

Hilbert Space Decomposition (JL. Lions)

All would be well if Schwarz didn't require to dig a hole in the zoom.

$$
u \in V: a(u, v)=<f \mid v>\quad \forall v \in V
$$

If V_{H} is not rich enough, use $V_{H}+V_{h}$ and solve $u_{H} \in V_{H}, u_{h} \in V_{h}$:

$$
a\left(u_{H}+u_{h}, v_{H}+v_{h}\right)=<f \mid v_{H}+v_{h}>\quad \forall v_{H} \in V_{H}, v_{h} \in V_{h}
$$

$$
f=1+\delta_{0}
$$

If solved iteratively, it is similar to Schwarz'DDM or Steger's Chimera at the continuous level: when $\Omega_{1} \cup \Omega_{2}=\Omega, \Omega_{1} \cap \Omega_{2} \neq \emptyset$.

Discretization and Proof of Uniqueness (Brezzi)

Find $U_{H} \in V_{0 H} \approx H_{0}^{1}(\Omega), u_{h} \in V_{0 h} \approx H_{0}^{1}(\Lambda)$

$$
a\left(U_{H}+u_{h}, W_{H}+w_{h}\right)=<f \mid W_{H}+w_{h}>\quad \forall W_{H} \in V_{0 H} \quad \forall w_{h} \in V_{0 h}
$$

Theorem The solution is unique if no vertex belong to both triangulations.

Proof

If $u_{h}=U_{H}$ on Λ then they are linear on Λ because $\Delta u_{h}=\Delta U_{H}$ and each is a distribution on the edges. The only singularity, if any, are at the intersection of both set of edges (which are points), but being in H^{-1} it cannot be singular at isolated points. So $\Delta u_{h}=\left.\Delta U_{H}\right|_{\Lambda}=0$

Subspace Correction Method (SCM)

Find $U_{H} \in V_{0 H} \approx H_{0}^{1}(\Omega), u_{h} \in V_{0 h} \approx H_{0}^{1}(\Lambda)$

$$
a\left(U_{H}+u_{h}, W_{H}+w_{h}\right)=<f \mid W_{H}+w_{h}>\quad \forall W_{H} \in V_{0 H} \quad \forall w_{h} \in V_{0 h}
$$

Theorem (Lozinski et al)

If u_{H} is computed with FEM of degree r and u_{h} with FEM of degree s, then with $q=\max \{r, s\}+1$,

$$
\left\|u_{H}+u_{h}-u\right\|_{1} \leq c\left(H^{r}\|u\|_{H q(\Omega \backslash \Lambda)}+h^{s}\|u\|_{H^{q}(\Lambda)}\right)
$$

Iterative process? Inexact quadrature?

Hilbert Space Decomposition with Inexact Quadrature

$a_{h}\left(u_{1}+u_{2}, w_{1}+w_{2}\right)=a_{h}\left(u_{1}, w_{1}\right)+a_{h}\left(u_{2}, w_{2}\right)+a_{h}\left(u_{1}, w_{2}\right)+a_{h}\left(u_{2}, w_{1}\right)$
2 grids: $\left\{T_{k}^{1}\right\} \quad\left\{T_{k}^{2}\right\} \quad a_{h}(u, v)=\left.\sum_{k} \sum_{j=1.3} \frac{\left|T_{k}^{1}\right|}{3} \frac{\nabla u \cdot \nabla v}{I_{\Omega^{1}}+I_{\Omega^{2}}}\right|_{\xi_{j k}^{1}}+$ id with T_{k}^{2}
The gradients are computed on their native grids at vertices ξ.
Proposition When vertices of \mathcal{T}^{i} are strictly inside the T^{j} the discrete Solution is unique and $\left\|u_{h}^{1}+u_{h}^{2}-u\right\|_{1} \leq \frac{c}{C} h\left(\left\|u^{1}\right\|_{2}+\left\|u^{2}\right\|_{2}\right)$

		$u-\left(u_{1}+u_{2}\right)$		
$N 1$	L^{2} error	rate	∇L^{2} error	rate
10	$1.696 E-02$	-	$2.394 E-01$	-
20	$5.044 E-03$	1.75	$1.204 E-01$	0.99
40	$1.129 E-03$	2.16	$5.596 E-02$	1.10

Table: Numerical L^{2} and H^{1} errors, and convergence rate. Results are sensitive to rotation and translation of inner mesh

Harmonic Patch Iterator for Speed-up (Lozinski)

Proximity of vertices could lead to drastically slow convergence \Rightarrow 1: for $n=1 \ldots N$ do
2: Find $\lambda_{H}^{n} \in V_{H}^{0}=\left\{v_{H} \in V_{0 H}\right.$: $\left.\operatorname{supp} v_{H} \subset \Lambda\right\}$ such that

$$
a\left(\lambda_{H}^{n}, \mu\right)=\langle f \mid v\rangle-a\left(u_{h}^{n-1}, \mu\right), \quad \forall \mu \in V_{0 H}
$$

3: Find $u_{H}^{n} \in V_{0 H}$ such that

$$
a\left(u_{H}^{n}, v\right)=\langle f \mid v\rangle-a\left(u_{h}^{n-1}, v\right)-a\left(\lambda_{H}^{n}, v\right), \quad \forall v \in V_{O H}
$$

4: Find $u_{h}^{n} \in V_{0 h}$ such that

$$
a\left(u_{h}^{n}, v\right)=\langle f \mid v\rangle-a\left(u_{H}^{n-1}, v\right), \quad \forall v \in V_{0 h}
$$

5: \quad Set $u_{H h}^{n}=u_{H}^{n}+u_{h}^{n}$
6: end for
Note: with $\tilde{u}_{h}^{n-1}=u_{h}^{n-1}+\lambda_{H}^{n}$ is it Schwarz?

Harmonic Patches

Discrete one way Schwarz

If the Λ_{h} is a submesh of Ω_{H} then the same algorithm is:

1: for $n=1 \ldots N$ do
2: Find $u_{H}^{n}-g_{H} \in V_{0 H}$ such that

$$
a\left(u_{H}^{n}, v\right)=\langle f \mid v\rangle-a_{h}\left(w_{h}^{n-1}, v\right)+a_{\Lambda}\left(u_{H}^{n-1}, v\right), \quad \forall v \in V_{0 H}
$$

3: Find $w_{h}^{n} \in V_{h}$ such that (r_{h} is a trace interpolation operator)

$$
a\left(w_{h}^{n}, v\right)=\langle f \mid v\rangle, \quad \forall v \in V_{0 h},\left.\quad w_{h}^{n}\right|_{\partial \Lambda}=\left.r_{h} u_{H}^{n}\right|_{\partial \Lambda}
$$

4: end for

5: Set

$$
u_{H h}^{n}=\left\{\begin{array}{l}
w_{h}^{n}, \text { in } \Lambda \\
u_{H}^{n}, \text { outside } \wedge
\end{array}\right.
$$

Implementation in 2D with freefem++ (F. Hecht)

http://www.freefem.org

// embedded meshes with keyword splitmesh
int $\mathrm{n}=10, \mathrm{~m}=4$;
real $\mathrm{x} 0=0.33, \mathrm{y} 0=0.33, \mathrm{x} 1=0.66, \mathrm{y} 1=0.66$;
mesh TH=square (n, n);
mesh $T h=s p l i t m e s h(T H,(x>x 0 \& \& x<x 1 \& \& y>y 0 \& \& y<y 1) * m) ;$
mesh THh=splitmesh(TH,1+(x>x0\&\&x<x1\&\&y>y0\&\& $y<y 1) *(m-1)) ;$
solve $a H(U, V)=$ int2d(TH) (K*(dx(U) *dx(V) +dy (U) *dy (V)))

+ int2d(Th) (K*(dx(u)*dx (V) +dy (u) *dy (V)))
- int2d(THh) (K*(dx(Uold) *dx(V) +dy (Uold) *dy (V)))
- int2d(TH) (f*V) + on(dOmega, U=g);

2D Academic case

$K=1$ except in a Disk 0.1 in the center where $K=100$:

$$
\begin{equation*}
u=y-\frac{1}{2}, \text { in the disk }=-\frac{1+K}{4}-\frac{(1-K) \delta^{2}}{4\left(x^{2}+y^{2}\right)} \text { elsewhere } \tag{2}
\end{equation*}
$$

Figure: The initial mesh Ω_{H} is is divided 4 times in the zoom. Convergence history for 3 different initial meshes of the unit square: a coarse, medium (documented in the text) and fine mesh. 3 curves correspond to the errors on the mesh H and 3 for the mesh h.

Figure: Error at each point for the converge solution in \wedge (left) and outside (right) \wedge on the fine mesh of Fig. The color scales from -0.23 to 0.24 on the left and from -0.08 to 0.08 on the right.

Embedded Meshes: Relation with Schwarz' DDM

Left: Divide the Triangles which have a vertex in $(.33, .66)^{2} \Rightarrow$ not a valid mesh. Right: a valid mesh is obtained by joining the hanging vertices to their opposite vertex.

Comparison with Schwarz: 3D academic case

Figure: Zoom around the small sphere, view of the solution and zoom

freefem3d (S. Delpino) + medit (P. Frey)

```
vector n = (50,50,50);
vector }\textrm{a}=(-2,-2,-2),\textrm{b}=(3,2,2),\textrm{c}=(2.2,-0.3,-0.3),d=(1.7,0.3,0.3)
scene S = pov("test.pov");
mesh M = structured(n,a,b);
domain O = domain(S,outside(<1,0,0>) and outside(<0,1,0>));
mesh L = structured(n,c,d);
domain P = domain(S,outside(<0,1,0>));
femfunction }u(M)=0,v(L)=0, uold(L)=0
double err;
do{
    solve(u) in O by M{
    pde(u) - div(grad(u)) =0; u = 0 on M; u=1 on < <1,0,0>; u = v on < <0,1,0>;
    };
    solve(v) in P by L{
    pde(v) - div(grad(v))=0; v=-1 on <0,1,0>; v=u on L;
    };
    err = int[L] ((u-uold) }\mp@subsup{}{}{2});\mathrm{ uold =u;
}while{err>3e-5);
```

Table: Convergence error on the zoom variable for Couplex

Schwarz 25	Schwarz 35	Schwarz 50	SHE 20	SHE 35	SHE 50
$1.297 \mathrm{E}-3$	$2.319 \mathrm{E}-3$	$1.890 \mathrm{E}-3$	$9.477 \mathrm{E}-2$	$8.766 \mathrm{E}-2$	$7.928 \mathrm{E}-2$
$2.209 \mathrm{E}-2$	$2.653 \mathrm{E}-2$	$3.189 \mathrm{E}-2$	$3.225 \mathrm{E}-02$	$3.782 \mathrm{E}-02$	$6.345 \mathrm{E}-02$
$1.321 \mathrm{E}-3$	$2.441 \mathrm{E}-4$	$8.320 \mathrm{E}-4$	$1.899 \mathrm{E}-2$	$2.309 \mathrm{E}-3$	$3.316 \mathrm{E}-2$
$5.519 \mathrm{E}-4$	$6.745 \mathrm{E}-06$	$9.425 \mathrm{E}-05$	$5.403 \mathrm{E}-05$	$1.504 \mathrm{E}-05$	$3.723 \mathrm{E}-05$
$1.146 \mathrm{E}-4$		$2.184 \mathrm{E}-05$		$2.521 \mathrm{E}-06$	$7.525 \mathrm{E}-06$
$9.885 \mathrm{E}-05$					
$1.055 \mathrm{E}-05$					

Comparison with Schwarz for Couplex

Figure: U_{H} and $U_{H}-(x y+20)$.

Schwarz	227.383	86.0596	6.42153	0.199725	0.0070609
SHE	507.434	0.015881	0.0030023	0.0013834	0.00096568

Table: Convergence

Conclusion

- Numerical zooms are inevitable
- Precision: given by GHLR.
- With embedded meshes:
- similar to DDM
- convergence similar to full overlapping Schwarz
- Advice to code developer: since DDM is built in due to computer architecture why not add the zoom facility also!

Bibliography on www.ann.jussieu.fr/pironneau

- Apoung-Kamga J.B. and J.L., Pironneau : O. Numerical zoom. DDM16 conf. proc, New-York Jan 2005. D. Keyes ed.
- Brezzi,F., Lions, J.L., Pironneau, O. : Analysis of a Chimera Method. C.R.A.S., 332, 655-660, (2001).
- P. Frey: medit, http://www.ann.jussieu.fr/~frey
- R. Glowinski, J. He, A. Lozinski, J. Rappaz, and J. Wagner. Finite element approximation of multi-scale elliptic problems using patches of elements. Numer. Math., 101(4):663-687, 2005.
- Hecht F.., O. Pironneau: http://www.freefem.org
- Lions, J.L., Pironneau, O. : Domain decomposition methods for CAD. C.R.A.S., 328 73-80, (1999).
- J. He, A. Lozinski and J. Rappaz: Accelerating the method of finite element patches using harmonic functions. C.R.A.S. 2007.
- Steger J.L. : The Chimera method of flow simulation. Workshop on applied CFD, Univ. of Tennessee Space Institute, (1991).
- Wagner J. : FEM with Patches and Appl. Thesis 3478, EPFL, 2006

