Homogenization of spectral problem for elliptic operators with sign-changing density

Andrey Piatnitski

Narvik University College, Postbox 385, Narvik, 8505, Norway

and

Lebedev Physical Institute RAS, Leninski prospect 53, Moscow, 119991, Russia;

(andrey@sci.lebedev.ru)

This work was done in collaboration with Sergey Nazarov (St-Petersburg, Russia) and Iryna Pankratova (Narvik, Norway).

Problem setup

The talk will focus on homogenization of spectral problem for a formally self-adjoint elliptic operator of the form

$$\operatorname{div}\left(a\left(\frac{x}{\varepsilon}\right)\nabla u^{\varepsilon}\right) = \lambda^{\varepsilon}\rho\left(\frac{x}{\varepsilon}\right)u^{\varepsilon}, \qquad x \in \Omega,$$

 $u^{\varepsilon} = 0$ on $\partial \Omega$,

with a small positive parameter ε ; here λ^{ε} is a spectral parameter. We assume that

- $\square \ \Omega \subset \mathbb{R}^n$ is a regular (say, Lipschitz) bounded domain;
- If the matrix $a(y) = \{a_{ij}(y)\}$ is symmetric and positive definite;
- a(y) and $\rho(y)$ are $[0,1]^n$ -periodic;
- moreover, we assume that $\rho(y)$ changes sign (this is a crucial condition):

 $\max\{y \in [0,1]^n : \rho(y) > 0\} > 0, \ \max\{y \in [0,1]^n : \rho(y) < 0\} > 0.$

Possible generalizations

For presentation simplicity we will mostly dwell on Dirichlet spectral problem for a divergence form second order scalar operators.

The results can be generalized to the case of

- Higher order self-adjoint elliptic operators;
- Spectral problem for a system of equations of the form

$$\mathcal{L}\Big(\frac{x}{\varepsilon},\nabla_x\Big)U^{\varepsilon} = \lambda^{\varepsilon}\rho\Big(\frac{x}{\varepsilon}\Big)U^{\varepsilon}$$

with

$$\mathcal{L}(y, \nabla_y) = \overline{\mathcal{D}(-\nabla_y)}^t \mathcal{A}(y) \mathcal{D}(-\nabla_y),$$

 $\mathcal{D}(-\nabla_y) - K \times k$ matrix of first order homogeneous differential operators with constant coefficients, $\mathcal{A}(y)$ is a periodic Hermitian positive definite $K \times K$ matrix. It is supposed that $\mathcal{D}(\xi)$ is algebraically complete i.e. for some $\sigma_0 > 0$ and for any row $P(\xi) = (P_1(\xi), \dots, P_k(\xi)))$ of homogeneous polynomials of degree $\sigma > \sigma_0$ there exists a polynomial row $Q(\xi) = (Q_1(\xi), \dots, Q_K(\xi))$ such that $P(\xi) = Q(\xi)\mathcal{D}(\xi)$.

• other boundary conditions on $\partial \Omega$.

Previously, homogenization of spectral problems for elliptic operators with periodic coefficients has been studied by S. Kesavan (1979), the eigenvalue problem in perforated domains – by M. Vanninatan (1981), and then this topic has been considered by many mathematicians.

Among the studied problems are:

- homogenization of spectral problem for elasticity system;
- homogenization of spectral problem for operators with random stationary coefficients;
- the asymptotic behaviour of spectrum in the double porosity model;
- the spectrum of thin periodic structures.

Preliminary results

In what follows for simplicity we assume that a(y) and $\rho(y)$ are smooth functions. We denote $a^{\varepsilon}(x) = a(x/\varepsilon)$, $\rho^{\varepsilon}(x) = \rho(x/\varepsilon)$. (\cdot, \cdot) – inner product in $L^{2}(\Omega)$.

Lemma 0.1. For each $\varepsilon > 0$ the spectrum of problem

$$\operatorname{div}\left(a\big(\frac{x}{\varepsilon}\big)\nabla u^{\varepsilon}\right) = \lambda^{\varepsilon}\rho\big(\frac{x}{\varepsilon}\big)u^{\varepsilon} \quad \text{in }\Omega, \qquad u^{\varepsilon} = 0 \quad \text{on } \partial\Omega,$$

consists of two series:

$$0 < \lambda_1^{\varepsilon,+} \le \lambda_2^{\varepsilon,+} \le \dots \le \lambda_j^{\varepsilon,+} \le \dots \to +\infty$$

and

$$0 > \lambda_1^{\varepsilon,-} \ge \lambda_2^{\varepsilon,-} \ge \cdots \le \lambda_j^{\varepsilon,-} \ge \cdots \to -\infty.$$

Moreover,

$$\lambda_1^{\varepsilon,+} = \min(a^{\varepsilon} \nabla u, \nabla u)$$

where the minimum is taken over all $u\in H^1_0(\Omega)$ such that $(\rho^\varepsilon u,u)=1$,

Preliminary results (cont.)

$$\lambda_j^{\varepsilon,+} = \min(a^{\varepsilon} \nabla u, \nabla u)$$

where the minimum is taken over all $u \in H_0^1(\Omega)$ such that $(\rho^{\varepsilon}u, u) = 1$ and $(\rho^{\varepsilon}u, u_i^{\varepsilon,+}) = 0$ for $i = 1, \ldots, j - 1$. Similarly,

$$\lambda_1^{\varepsilon,-} = -\min(a^{\varepsilon}\nabla u, \nabla u)$$

where the minimum is taken over all $u\in H^1_0(\Omega)$ such that $(\rho^{\varepsilon}u,u)=-1$,

$$\lambda_j^{\varepsilon,-} = -\min(a^{\varepsilon}\nabla u, \nabla u)$$

where the minimum is taken over all $u \in H_0^1(\Omega)$ such that $(\rho^{\varepsilon}u, u) = -1$ and $(\rho^{\varepsilon}u, u_i^{\varepsilon, -}) = 0$ for $i = 1, \ldots, j - 1$.

Spectrum asymptotics. Outline.

Our main aim is to study the asymptotic behaviour of $\lambda_i^{\varepsilon,\pm}$, as $\varepsilon \to 0$.

It turns out that this behaviour depend crucially on whether the mean value of $\rho(\cdot)$ over the period is positive, or negative, or equal to zero. We denote this mean value by $\bar{\rho}$.

- $\bar{\rho} > 0$ If $\bar{\rho} > 0$, then the limit behaviour of "positive" part of the spectrum $\{\lambda_j^{\varepsilon,+}, u_j^{\varepsilon,+}\}$ is governed by the homogenized equation. In particular, $\lambda_j^{\varepsilon,+}$ converges, as $\varepsilon \to 0$, to a finite limit.
- $\bar{\rho} < 0$ If $\bar{\rho} = 0$, then both $\lambda_j^{\varepsilon,+}$ and $\lambda_j^{\varepsilon,-}$ are of order ε^{-1} , and the limit behaviour of $\varepsilon \lambda_j^{\varepsilon,\pm}$ and $u_j^{\varepsilon,+}$ can be described in terms of a simple quadratic operator pencil for the homogenized operator.
- $\bar{\rho} < 0$ If $\bar{\rho} < 0$, then $\lambda_j^{\varepsilon,+}$ are of order ε^{-2} , in particular $\lambda_1^{\varepsilon,+} \ge c\varepsilon^{-2}$ with c > 0. In this case the corresponding eigenfunctions are rapidly oscillating, and the asymptotics of their amplitude can be described in terms of a homogenized operator which differs from the standard homogenized operator.

Clearly, the negative part of the spectrum in the case $\bar{\rho} > 0$ behaves like its positive part in the case $\bar{\rho} < 0$, and vice versa.

Case $\bar{\rho} > 0$

We begin the detail description by studying the case

$$\bar{\rho} = \int_{[0,1]^n} \rho(y) dy > 0.$$

Denote by a^{hom} the standard homogenized matrix:

$$a^{\text{hom}} = \int_{[0,1]^n} a(y) (\mathbf{I} + \nabla \chi(y)) dy,$$

where the symbol I stands for the unit matrix and the vector-function $chi(\cdot)$ is a periodic solution to the following equation

$$\operatorname{div}(a(y)\nabla(\chi(y)+y)) = 0.$$

Denote $A^{\text{hom}} = \text{div}(a^{\text{hom}}\nabla)$.

Case $\bar{\rho} > 0$. (cont.)

Theorem 0.1. Let $\bar{\rho} > 0$. Then for any $j \ge 1$ the sequence $\lambda_j^{\varepsilon,+}$ converges, as $\varepsilon \to 0$, towards the *j*-th eigenvalue $\bar{\lambda}_j$ of the limit spectral problem

$$A^{\text{hom}}u = \bar{\rho}\lambda u \quad \text{in }\Omega, \qquad u\big|_{\partial\Omega} = 0. \tag{1}$$

Moreover, the sequence of normalized eigenfunctions $u_j^{\varepsilon,+}$ converges (along a subsequence) in $L^2(\Omega)$ towards an eigenfunction of the limit problem that corresponds to $\bar{\lambda}_j$. If the eigenvalue $\bar{\lambda}_j$ is simple, then the whole sequence $u_j^{\varepsilon,+}$ converges to \bar{u}_j .

Case $\bar{\rho} = 0$.

We introduce a number of auxiliary quantities.

• N(y) is defined as a periodic solution to the equation

$$\operatorname{div}(a(y)\nabla N(y)) = \rho(y);$$

• Positive number m is defined by

$$\mathbf{m} = \int_{[0,1]^n} \rho(y) N(y) dy = \int_{[0,1]^n} a(y) \nabla N(y) \cdot \nabla N(y) dy;$$

• Operator pencil

$$A^{\text{hom}}u - \mathbf{m}\beta^2 u = 0 \text{ in } \Omega, \qquad u\big|_{\partial\Omega} = 0.$$

Notice that since m > 0, the spectrum of this operator pencil is as follows:

 $\pm\beta_1, \pm\beta_2, \ldots, \pm\beta_j, \ldots$

with

$$0 < \beta_1 < \beta_2 \le \beta_3 \le \dots \le \beta_j \xrightarrow[j \to \infty]{} + \infty$$

Case $\bar{\rho} = 0$. The result

Theorem 0.2. Let $\bar{\rho} = 0$. Then

$$\lim_{\varepsilon \to 0} (\varepsilon \lambda_j^{\varepsilon,+}) = \beta_j, \qquad \lim_{\varepsilon \to 0} (\varepsilon \lambda_j^{\varepsilon,-}) = -\beta_j.$$

Moreover, the normalized sequence $u_j^{\varepsilon,\pm}$ converges (along a subsequence) to an eigenfunction of problem

$$A^{\text{hom}}u - \mathbf{m}\beta^2 u = 0 \quad \text{in } \Omega, \qquad u \big|_{\partial\Omega} = 0,$$

that corresponds to the eigenvalue β_j .

Remarks

Remark 1. Under the assumptions of Theorem 0.1 and Theorem 0.2 the asymptotic expansion of $\lambda_j^{\varepsilon,+}$ and $u_j^{\varepsilon,+}$ can be constructed:

$$\lambda_{j}^{\varepsilon,+} = \bar{\lambda}_{j} + \varepsilon \bar{\lambda}_{j}^{1} + \dots \qquad (\bar{\rho} > 0),$$
$$\lambda_{j}^{\varepsilon,+} = \beta_{j} + \varepsilon \beta_{j}^{1} + \dots \qquad (\bar{\rho} = 0),$$
$$u_{j}^{\varepsilon,+}(x) = \bar{u}_{j}(x) + \varepsilon \bar{u}_{j}^{1}(x) + \dots$$

Remark 2. In the general case the operator pencil takes the form

$$A^{\text{hom}}u(x) - \beta \mathbf{s}\mathcal{D}(\nabla)u(x) + \beta \overline{\mathcal{D}(\nabla)}^t \mathbf{s}^t u - \beta^2 \mathbf{m} u.$$

with

$$\mathbf{s} = \int_{[0,1]^n} \rho(y) \chi(y) dy.$$

In this case β_j^+ need not coincide with β_j^- . However, the spectrum remains real and consists of two sequences:

$$0 < \beta_1^+ \le \beta_2^+ \le \ldots \beta_j^+ \cdots \to +\infty \quad \text{and} \ 0 > \beta_1^- \ge \beta_2^- \ge \ldots \beta_j^- \cdots \to -\infty.$$

Case $\bar{\rho} < 0$ **.** Auxiliary quantities

In the space of $[0,1]^n$ periodic functions consider the eigenproblem

 $\operatorname{div}_{\mathbf{y}}(a(y)\nabla_{y}w) = \nu\rho(y)w(y).$

Lemma 0.2. The spectrum of the above problem consists of two sequences:

$$0 < \nu_1^+ < \nu_2^+ \le \nu_3^+ \dots \le \nu_j^+ \to +\infty$$

and

$$0 > \nu_1^- > \nu_2^- \ge \nu_3^- \dots \ge \nu_j^- \to -\infty.$$

We denote the eigenfunction related to ν_1^+ by $p_1^+(y)$. It is known that $0 < p_1^+(y) < +\infty$. **Proposition 0.3.** The inequality holds

$$\lambda_1^{\varepsilon,+} \ge \frac{1}{\varepsilon^2} \nu_1^+.$$

Case $\bar{\rho} < 0$. (Cont.)

Denote by \hat{a} the matrix of effective (homogenized) coefficients for the operator

$$\operatorname{div}\Big\{\Big(p_1^+\big(\frac{x}{\varepsilon}\big)\Big)^2a\big(\frac{x}{\varepsilon}\big)\nabla\Big\},\,$$

and consider the spectral problem

$$\operatorname{div}(\hat{a}\nabla u) = \kappa u \quad \text{in } \Omega, \qquad u\big|_{\partial\Omega} = 0.$$

Since \hat{a} is positive definite, the spectrum of this problem is discrete and

$$0 < \kappa_1 < \kappa_2 \le \kappa_3 \le \cdots \le \kappa_j \to +\infty.$$

Case $\bar{\rho} < 0$ **.** The result

Theorem 0.4. Let $\bar{\rho} < 0$. Then the eigenvalues $\lambda_i^{\varepsilon,+}$ admits the representation

$$\lambda_j^{\varepsilon,+} = \frac{1}{\varepsilon^2}\nu_1^+ + \kappa_j + o(1).$$

Also, along a subsequence,

$$u_j^{\varepsilon,+} = p_1^+ \left(\frac{x}{\varepsilon}\right) v(x) + r_{\varepsilon}(x),$$

where $||r_{\varepsilon}||_{L^{2}(\Omega)} \to 0$, as $\varepsilon \to 0$, and v(x) is an eigenfunction of problem

$$\operatorname{div}(\hat{a}
abla v)=\kappa v$$
 in $\Omega,$ $v\big|_{\partial\Omega}=0$

which corresponds to κ_j .

Bon anniversiare, Alain!