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Abstract

Models describing global behavior of incompressible flow in fractured media are dis-
cussed. A fractured medium is regarded as a porous medium consisting of two super-
imposed continua, a continuous fracture system and a discontinuous system of medium-
sized matrix blocks. We derive global behavior of fractured media versus different para-
meters such as the fracture thickness, the size of blocks and the ratio of the block perme-
ability and the permeability of fissures, and oscillating source terms. The homogenization
results are obtained by mean of the convergence in domains of asymptotically degenerat-

ing measure.



1 Setting of the problem

1.1 The geometry of the periodic medium
e () C RY(d = 2,3)—abounded connected domain with a periodic structure;
e Y =]0, 1[¢ — the reference cell of a fractured porous medium;

e we assume that Y is made up of two homogeneous porous media M° and F° cor-
responding to parties of the domain occupied by the matrix block and the fracture,

respectively;

e we assume that M/? is an open cube centered at the same point as Y with length equal
to (1 —6), where 0 < § < 1;

Thus Y = M U I’fn s U F9, where an f denotes the interface between the two media
(see Figure 1). Then Q = Q:° U Ff,’ff U Q°, where Ff,’ff = 0050 N 89?5 and the

subscripts m and f refer to the matrix and fracture, respectively (see Figure 2). For the

sake of simplicity, we will assume that 902 N Qi:f = ().

el £8
¢ & Dy Qm
. Q
< =
3 / ~
M \
Figure 1: The reference A
cell Y.

& €

Figure 2: The periodic domain (2.



1.2 Permeability and porosity of the porous medium

Now let us introduce the permeability coefficient and the porosity of the porous medium
2. We set

€ € €,0 € 5 e,0
K(x) = kp 150 (2) + Ky 17%(z) and w ) = Wy 159 () + wy 1%(x), (1.1

where £ is the permeability or the hydraulic conductivity of fissures, £, is the perme-
ability or the hydraulic conductivity of blocks, w; is the porosity of fissures, w,, is the
porosity of blocks; 1?5 = l?g(x) and 159 = 1%°(z) denote the (periodic) characteristic

functions of the sets Q?’é and 257, respectively. Here 0 < k Frkm,wp, Wy < +00.



1.3 Assumptions

We make the following assumptions on permeabilities of fissures and blocks as well as on
the source term.
(H.1) Porosities wy, w,, of fissures and blocks are independent of ¢, 9.
(H.2) The permeability of blocks is related to the permeability of fissures by r, the per-
meability ratio:

Ky =1 ky. (1.2)

r is supposed to be small and then defined in the following way:

r = (0)?, (1.3)
where 6 > 0 is a parameter.
(H.3) The source term is given by
£ (@) = (fo+ f) (@)15° () + fn(@)15) (@), (1.4)

where fy € L*(Q) and f,, € C}(Q).



1.4 A model with two small parameters

We consider the following parabolic problem for the function v : Q — R:

W (2)us — div (K59 (2)Vusd) = f9(z)  in Q;
(Pes) Vus’ -7 =0 on Sp; (1.5)
u*(0,2) =0 in Q,

where Q =|0,T[x€2, ¥/ is the outward normal vector to 2, Sg =|0,T[x0Q, T > 0 is

given.



1.5 A model with one small parameter

The reference cell Y is represented as follows: Y = M*UGT, ,UF*, where GG, , denotes

the interface between the two media and M¢ is the cube with length equal (1 — (g3).

The porous medium 2 in this case is defined as follows: £ = Q2F, U T U5, where
7, ;= 095, N 095, For simplicity, we will assume that 92 N 7, = 0.
The permeability and porosity are given by:
K*(x) = kpr(e) 15,(z) + kp 15(z) and  w(z) = wy, 1, (7) +wp 15(x),  (1.6)

m

where 13 = 15(z) and 17, = 17, () denote characteristic periodic functions of the fissure

set {27 and the matrix system {27, respectively.

(H.4) The source term is given by

Fo(@) = (fo + ) (@)15(2) + fin(2)15, () with fo € L(Q), fm € C(Q).  (1.7)

W (z)u; — div (K¢(x)Vu®) = f(z) in Q;
(P:) Vus(t,z) -7V =0 on Sg; (1.8)
u(0,2) =0 in Q.



1.6 The concepts of convergence

From now on |O| denotes the measure of the set O.

Definition 1.1 Let Q = Q5% U I‘E’(5 U 98’5 with limgs_o lim._,g \Qg’é\ = 0. A sequence
{us} C L2(Qj{ ) is said to L. s;~converge to a function u € L*(Q) if

1
lim lim —6Hu€’5 — |, e, = 0.
0—0e—0 |Q€ |

Definition 1.2 Ler Q = Q; UT, UQ5 with lim. o |Q3] = 0. A sequence {u"} C L*(Q3)
is said to L.—converge to a function u € L*(Q) if

_ 1
0[]

- UH%?(Q;) = 0.



2 A double porosity model with thin fissures: (P- ;) model

In this Section we assume that
5 =0 (2.1)

and study the asymptotic behavior of the solution of problem (1.5) first as ¢ — 0 and
then as 0 — 0.
F(S

The measure of F?°, , for ¢ sufficiently small, is calculated as follows

20 +0(6%) if d=2;
po = ] 20T 00 ’ (2.2)
30 +0(6%) if d=3;
then the assumption (2.1) implies that
lim lim |Q5°] = 0. (2.3)

0—0e—0 I

Notation:



2.1 Effective equations for (P. ;) when ¢ = 2

We study the asymptotic behavior of u*° as €,6 — 0. We will show that, for any fixed
J, problem (1.5) admits (as ¢ — 0) a homogenization problem and that the homogenized

solution converges, as ¢ — 0, to the solution of the following effective problem:
wrpy — Ky(d) Ap* = (fo + f)(x) +S(p*) in Q;

Vp*-v =0 on Sg; (2.4)
p(0,2) =0 1in Q,

ko) ke/2 if d=2; 03)
P\ 2ky/3 it d=3; '

where

and the additional source term S(p*) is given by:

o 2k [T pi(x,T) Ly

The following convergence result is valid.
Theorem 2.1 Let us® = (p™°, 0°°) be the solution of (1.5) and let = 2 in (1.3). Then,
under assumptions (H.1)-(H.3), for any t €]0,T],

o

() the function o=, as well as the function u®’, converges to (tf,,(x)), namely:

gﬁgwwﬁmwﬁmﬁmm:gg%W%ﬂw—uM@M:m(M)

(1) the function p*° L. s—converges to p* the solution of a global model (2.4) with the

additional source term (2.6) and the fracture porosity as effective porosity.
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2.2 Effective equations for (P. ;) when ¢ > 2

In this case the homogenized problem has the form:

wrp; — K(d)Ap™ = (fo + fm)(@) in Q;
Vp*- =0 on Sp; (2.8)
p(0,2) =0 in Q,

where the coefficient K f(d) is defined in (2.5).

The following convergence result is valid.

Theorem 2.2 Let u’ = (p™°, 0°°) be the solution of (1.5) and let 6 > 2 in (1.3). Then,
under assumptions (H.1)-(H.3), for any t €]0,T],

€,0

(@) the function o°°, as well as the function u°, converges to (tf,,(z)), namely:

.. c 2 s €0, € 2
}Sli%&l:li% mea ’5(t) — tmeLz(Qfﬁa) = }sﬁ%lﬁ% Hw O ’5(t) — tmeL2(Q) =0; (2.9

(1) the function p*° L. s—converges to p* the solution of the effective model (2.8).

11



2.3 Effective equations for (P. ;) when 0 < 0 < 2

In this case the following convergence result is valid.

Theorem 2.3 Let u® = (p™°, 0°°) be the solution of (1.5) and let § < 2 in (1.3). Then,
under assumptions (H.1)-(H.3), for any t €]0,T],

o

(D) the function o=, as well as the function u®’, converges to (tf,,(x)), namely:

lion i [0 (8) = £ fin | ) = Himlim [l (8) =t fi] 2 = 0 (2:10)

(1) the function p°° L. s—converges to (tw,! f,.(1)).
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3 A double porosity model with thin fissures: (P-) model

In the previous Section, for the modeling of thin fissures two small parameters ¢, o
were used. It was supposed that ) was a small parameter such that 0 < ¢ < § < 1
and independent of . In this Section we relate the thickness of the fractured part J to the
relative size of a bloc ¢ as follows:

(H.5) Fissures are thin with respect to the periodicity of blocks. Namely, ¢ is given by

0 =0d(e) =271, (3.1
and the thickness of fissures is given by

(. =ed(e) = e, (3.2)

where o« > 2 and ¢ > 0 is a constant.
(H.6) The coefficient r in (1.2) is given by

r=¢’ (3.3)

where (3 is a positive parameter.

It is clear that the condition (3.1) imply that

lim 0% = lim €25 = 0. (3.4)
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3.1 Effective equations for (P.) model when o = (3

The homogenized problem is of the form:

wrpy — Kp(d)Ap* = (fo+ fu)(@) +S(p*) in Q;
Vp*-U=0 on Sp; (3.5)
p*(0,2) =0 1in €.

where the coefficient K (d) is defined in (2.5) and

o 2 kfwm p;(z, T tk:f
s(p) = 22 [T gy g, 7 [EL 36)

The following convergence result is valid.

Theorem 3.1 Let u® = (p°, 0°) be the solution of (1.8) and let = « in (3.3), where «, 3
are parameters defined in (3.1)—(3.3). Then, under assumptions (H.1), (H.2), (H.4)-(H.6),
foranyt €]0,T],

(I) the function o¢, as well as the function u®, converges to (t f,,(x)), namely:
lin [lwn0®(8) = ¢ funll 2y = Mm lw*u () = ¢ fullfoey =05 G7)

(II) the function p° L.—converges to p* the solution of the global model (3.5) with the

additional source term (3.6) and the fracture porosity as effective porosity.
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3.2 Effective equations for (7.) model when 2 < o < (8

In this case the homogenized problem has the following form:

wrp; — K(d)Ap™ = (fo + fm)(@) in Q;
Vp*- =0 on Sp; (3.8)
p(0,2) =0 1in Q.

The following convergence result is valid.

Theorem 3.2 Let u* = (p°,0°) be the solution of (1.8) and let 3 > « in (3.3). Then,
under assumptions (H.1), (H.2), (H.4)—(H.6), for any t €]0,T],

(I) the function 0%, as well as the function u®, converges to (t f,,(x)), namely:
: 2 : 2
};Lm() ngag o tmeLQ(an) - lli% stue - tmeLQ(Q) - O; (39)

(IN) the function p° L.—converges to p* the solution of a single porosity model (3.8) with

the fracture porosity as an effective porosity.

15



3.3 Effective equations for (P.) model when 0 < 3 < «
In this case the following convergence result is valid.

Theorem 3.3 Let u* = (p°, 0%) be the solution of (1.8) and let f < « in (3.3). Then,
under assumptions (H.1), (H.2), (H.4)—(H.6), for any t €|0, T,

() the function o¢, as well as the function u®, converges to (t f,,(x)), namely:

lim ||wy,,0°(t) —t me%Q(Q?
e—0

m

) = lim [|wu(t) - t fnll220) = 0; (3.10)

(I1) the function p° L.—converges to (w,,'t f(2)).
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4 Homogenization of a single phase flow through a porous medium

in a thin layer

Let ¢ be a rectangle in R?,

0 = (-245) < 0.0

We introduce a periodic structure in £2° as follows. Denote by ) the reference cell

Y = <—%,+%> x (0,1)

and by F?° the reference fracture part 7° = {yey, dist(y,0))< 5} The reference
matrix bloc is then defined by M°® = )\ F9. Fa

Assuming that L is an integer multiplier of e: L = Ne, N € N, we define

N-1 N-1
0 = Je(F+0.9), 9= Je(M+0.5).
J=0 §=0

The flow in the matrix—fracture medium 2° is described by:

W (@)uy” — div (K= (2) V) = f*°(z) in (0,T) x Q;
Vu - 7=0 on(0,T)x 00 (4.1)
u*(0,7) =0 in QF,

where
K%(x) =k, (£0)*150 () + kp15°(z)  and  w™(2) = w, 150(7) + wy 15°(2)

£ (@) = (fo+ fr)(@)15° (@) + fin() 150 (2)
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Notation:

The goal of this section is to study the asymptotic behavior of u*? as e, § — 0.

We show that for any fixed 6 problem (4.1) admits homogenization (as € — 0) and the

homogenized solution converges, as 6 — 0, to a solution of :

\

with an the additional source term

t
o 2Vkpwn [ pi(T,§) t ko
S(p7) =~ g/\/?——;d7%4ﬁnﬂhﬁ) o

( 82 *

WfPZk - 852 (fO + fm)<075> + S(p*) in (O>T> X (07 L>’
& 00 o9, .

e (¢,0) = e (¢,L) =0 on(0,7);

§(0,€) =0 in (0, L)

4.2)



Theorem 4.1 Let u*’ = < p°,0°° > be the solution of (4.1). Then, for any t € (0,T),

€,0

(@) the function o=°, as well as the function u®’, converges to (tf,,()), namely:

e A T

0—0e—0 ’Q ‘
— lim lim —— [0 — ¢ f|[2qe, = O 4.3)
0—0e—0 ’Q ‘ MIL2(0F) ) .
(IT) the function p5’5 satisfies the limit relation
2
(lsl_rf(l)lg(l) ‘Qsé H'O —p HLz(Qjﬁ) =0, 4.4)

where p* = p(t,€) is a solution of (4.2).

(IIT) For any t € (0,T), and any function ¢ = ¢(x) continuous in the vicinity of the
segment {x € R?: 11 =0; 0 < a9 < L}, it holds

lim lim 5
0—0e—0 |Q‘}7 |

L
/W( )Vu () _Ef/ d¢ (4.5
0

Qa

with

R(t,¢) = ( a’; (t 5))
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5 The double porosity model

We introduce the notation:
£ 3 QE .
uE = { P HREp (5.6)
5.1 Effective model for 6 = 2

The homogenized problem has the following form:
wp — div (K*Vp*) = §1(fo+ fu) (@) + S(p% 0) in Q;
K*Vp*-7=0 on Sg; (5.7)
p*(0,2) =0 1in Q.

Here the effective porosity w* is scaled by the volume fraction of fractures |F|/|Y|:
W' = mWr; (5.8)
K* = {kj;} is the effective permeability tensor defined by:

* ]‘ — —
kij = 4] / kr(€; + Vyw) - (€ + Vyw;)dy (5.9)
F

where {&], .., €;} is the standard basis of R?, and w; is the unique solution in the space
H#(F) \ R of
—Aw; =0 in F}
(i +Vyw;)- V=0 on dM; (5.10)
y — w;(y) Y — periodic;
the additional source term is given by:
t t

S(p*,0) = —wm/gt(t — 7)p; (T, z)dT + / ot(t — 7) fun(x)dT (5.11)

0 0
with

o(t) = /ﬁ(t,y) dy, where {

M

WU — kp82A,U =0 in (0,T) x M;
U(t,y) =1 on (0,7) x M and U(0,y) = 0 in M.
(5.12)
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Theorem 5.1 Let u* = (p°,0°) be the solution of (1.5) and let 6 = 2 in (1.3). Then
for any t €]0, T, under assumptions (H.1)-(H.3), the function p° converges in LQ(Qjc)
to p* the solution of the global model (5.7)—(5.12) with the effective porosity w* defined
as (|F|/|Y|)wy, the effective permeability tensor K* defined in (5.9)—(5.10), and the

additional source term (5.11).
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5.2 Effective model for 6 > 2

The homogenized problem has the form:

w'p; = div (K*Vp") = (G (fo+ fn)(x) in Q;
K*Vp*-U=0 on Sp; (5.13)
p(0,2) =0 in Q,

where the effective porosity w* is scaled by the volume fraction of fractures, i.e., w* =
|F'[/]Y|wy and K* = {k};} is the effective permeability tensor defined by (5.9)~(5.10).

The following convergence result is valid.

Theorem 5.2 Let u® = (p°, 0°) be the solution of (1.5) and let 0 > 2 in (1.3). Then for
any t €]0,T|, under assumptions (H.1)-(H.3), the function p° converges in LZ(Qjc) to p*
the solution of a single porosity model (5.13) with the effective porosity w* = |F|/|Y |wy
and the permeability tensor K* given by (5.9)—(5.10).
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5.3 Effective model for 60 < 2

The homogenized problem has the following form:

w¥p; — div (K*Vp*) = %fo(l’) + fm(x) in Q;
K*Vp*-7=0 on Sp; (5.14)
p*(0,2) =0, in £,

where the effective porosity w* is the arithmetic average given by

F| M| |F| ( |F\)
W= —wf+ —wy,, = —wr + — — | wn, (5.15)
Y v Y]

and K* = {k};} is the effective permeability tensor defined by (5.9)—(5.10).

The following convergence result is valid.

Theorem 5.3 Let u® = (p°, 0%) be the solution of (1.5) and let 0 < 2 in (1.3). Then for
any t €]0,T|, under assumptions (H.1)—(H.3), the function p® converges in LQ(Q?) to p*
the solution of a single porosity model (5.13) with the effective porosity w* given by (5.15)
and the permeability tensor K* given by (5.9)—(5.10).
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