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(b) Laboratoire de Mathématiques Appliquées, CNRS–UMR5142, Université de Pau, av.
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Abstract
Models describing global behavior of incompressible flow in fractured media are dis-

cussed. A fractured medium is regarded as a porous medium consisting of two super-
imposed continua, a continuous fracture system and a discontinuous system of medium-
sized matrix blocks. We derive global behavior of fractured media versus different para-
meters such as the fracture thickness, the size of blocks and the ratio of the block perme-
ability and the permeability of fissures, and oscillating source terms. The homogenization
results are obtained by mean of the convergence in domains of asymptotically degenerat-
ing measure.
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1 Setting of the problem

1.1 The geometry of the periodic medium

• Ω ⊂ Rd (d = 2, 3) – a bounded connected domain with a periodic structure;

• Y =]0, 1[d – the reference cell of a fractured porous medium;

• we assume that Y is made up of two homogeneous porous media M δ and F δ cor-
responding to parties of the domain occupied by the matrix block and the fracture,
respectively;

• we assume that M δ is an open cube centered at the same point as Y with length equal
to (1− δ), where 0 < δ < 1;

Thus Y = M δ ∪ Γδ
m,f ∪ F δ, where Γδ

m,f denotes the interface between the two media
(see Figure 1). Then Ω = Ωε,δ

m ∪ Γε,δ
m,f ∪ Ωε,δ

f , where Γε,δ
m,f = ∂Ωε,δ

m ∩ ∂Ωε,δ
f and the

subscripts m and f refer to the matrix and fracture, respectively (see Figure 2). For the
sake of simplicity, we will assume that ∂Ω ∩ Ωε,δ

m = ∅.
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Figure 1: The reference
cell Y .
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Figure 2: The periodic domain Ω.
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1.2 Permeability and porosity of the porous medium

Now let us introduce the permeability coefficient and the porosity of the porous medium
Ω. We set

Kε,δ(x) = km 1ε,δ
m (x) + kf 1ε,δ

f (x) and ωε,δ(x) = ωm 1ε,δ
m (x) + ωf 1ε,δ

f (x), (1.1)

where kf is the permeability or the hydraulic conductivity of fissures, km is the perme-
ability or the hydraulic conductivity of blocks, ωf is the porosity of fissures, ωm is the
porosity of blocks; 1ε,δ

f = 1ε,δ
f (x) and 1ε,δ

m = 1ε,δ
m (x) denote the (periodic) characteristic

functions of the sets Ωε,δ
f and Ωε,δ

m , respectively. Here 0 < kf , km, ωf , ωm < +∞.

4



1.3 Assumptions

We make the following assumptions on permeabilities of fissures and blocks as well as on
the source term.
(H.1) Porosities ωf , ωm of fissures and blocks are independent of ε, δ.
(H.2) The permeability of blocks is related to the permeability of fissures by r, the per-
meability ratio:

km = r kf . (1.2)

r is supposed to be small and then defined in the following way:

r = (εδ)θ, (1.3)

where θ > 0 is a parameter.
(H.3) The source term is given by

f ε,δ(x) = (f0 + fm)(x)1ε,δ
f (x) + fm(x)1ε,δ

m (x), (1.4)

where f0 ∈ L2(Ω) and fm ∈ C1(Ω).
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1.4 A model with two small parameters

We consider the following parabolic problem for the function uε,δ : Q → R:

(Pε,δ)





ωε,δ(x)uε,δ
t − div (Kε,δ(x)∇uε,δ) = f ε,δ(x) in Q;

∇uε,δ · ~ν = 0 on SQ;

uε,δ(0, x) = 0 in Ω,

(1.5)

where Q =]0, T [×Ω, ~ν is the outward normal vector to Ω, SQ =]0, T [×∂Ω, T > 0 is
given.

6



1.5 A model with one small parameter

The reference cell Y is represented as follows: Y = M ε∪Gε
m,f ∪F ε, where Gε

m,f denotes
the interface between the two media and M ε is the cube with length equal (1− `ε

α
2 ).

The porous medium Ω in this case is defined as follows: Ω = Ωε
m ∪ Γε

m,f ∪ Ωε
f , where

Γε
m,f = ∂Ωε

m ∩ ∂Ωε
f . For simplicity, we will assume that ∂Ω ∩ Ωε

m = ∅.

The permeability and porosity are given by:

Kε(x) = kfr(ε)1
ε
m(x) + kf 1ε

f(x) and ωε(x) = ωm 1ε
m(x) + ωf 1ε

f(x), (1.6)

where 1ε
f = 1ε

f(x) and 1ε
m = 1ε

m(x) denote characteristic periodic functions of the fissure
set Ωε

f and the matrix system Ωε
m, respectively.

(H.4) The source term is given by

f ε(x) = (f0 + fm)(x)1ε
f(x) + fm(x)1ε

m(x) with f0 ∈ L2(Ω), fm ∈ C1(Ω). (1.7)

(Pε)





ωε(x)uε
t − div (Kε(x)∇uε) = f ε(x) in Q;

∇uε(t, x) · ~ν = 0 on SQ;

uε(0, x) = 0 in Ω.

(1.8)
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1.6 The concepts of convergence

From now on |O| denotes the measure of the set O.

Definition 1.1 Let Ω = Ωε,δ
m ∪ Γε,δ

m,f ∪ Ωε,δ
f with limδ→0 limε→0 |Ωε,δ

f | = 0. A sequence

{uε,δ} ⊂ L2(Ωε,δ
f ) is said to Lε,δ–converge to a function u ∈ L2(Ω) if

lim
δ→0

lim
ε→0

1

|Ωε,δ
f |
‖uε,δ − u‖2

L2(Ωε,δ
f ) = 0.

Definition 1.2 Let Ω = Ωε
m∪Γε

m,f∪Ωε
f with limε→0 |Ωε

f | = 0. A sequence {uε} ⊂ L2(Ωε
f)

is said to Lε–converge to a function u ∈ L2(Ω) if

lim
ε→0

1

|Ωε
f |
‖uε − u‖2

L2(Ωε
f ) = 0.
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2 A double porosity model with thin fissures: (Pε,δ) model

In this Section we assume that
δ → 0 (2.1)

and study the asymptotic behavior of the solution of problem (1.5) first as ε → 0 and
then as δ → 0.

The measure of F δ, |F δ|, for δ sufficiently small, is calculated as follows

|F δ| =
{

2 δ + O(δ2) if d = 2;

3 δ + O(δ2) if d = 3;
(2.2)

then the assumption (2.1) implies that

lim
δ→0

lim
ε→0

|Ωε,δ
f | = 0. (2.3)

Notation:

uε,δ =

{
ρε,δ in Ωε,δ

f ;

σε,δ in Ωε,δ
m ;
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2.1 Effective equations for (Pε,δ) when θ = 2

We study the asymptotic behavior of uε,δ as ε, δ → 0. We will show that, for any fixed
δ, problem (1.5) admits (as ε → 0) a homogenization problem and that the homogenized
solution converges, as δ → 0, to the solution of the following effective problem:





ωfρ
∗
t −Kf(d) ∆ρ∗ = (f0 + fm)(x) + S(ρ∗) in Q;

∇ρ∗ · ~ν = 0 on SQ;

ρ∗(0, x) = 0 in Ω,

(2.4)

where

Kf(d) =

{
kf/2 if d = 2;

2kf/3 if d = 3;
(2.5)

and the additional source term S(ρ∗) is given by:

S(ρ∗) = −2
√

kfωm√
π

∫ t

0

ρ∗t (x, τ)√
t− τ

dτ + 4fm(x)

√
t kf

πωm
. (2.6)

The following convergence result is valid.

Theorem 2.1 Let uε,δ = 〈ρε,δ, σε,δ〉 be the solution of (1.5) and let θ = 2 in (1.3). Then,

under assumptions (H.1)–(H.3), for any t ∈]0, T [,

(I) the function σε,δ, as well as the function uε,δ, converges to (tfm(x)), namely:

lim
δ→0

lim
ε→0

∥∥ωmσε,δ(t)− t fm

∥∥2
L2(Ωε,δ

m ) = lim
δ→0

lim
ε→0

∥∥ωε,δuε,δ(t)− t fm

∥∥2
L2(Ω) = 0; (2.7)

(II) the function ρε,δ Lε,δ–converges to ρ∗ the solution of a global model (2.4) with the

additional source term (2.6) and the fracture porosity as effective porosity.
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2.2 Effective equations for (Pε,δ) when θ > 2

In this case the homogenized problem has the form:




ωfρ
∗
t −Kf(d)∆ρ∗ = (f0 + fm)(x) in Q;

∇ρ∗ · ~ν = 0 on SQ;

ρ∗(0, x) = 0 in Ω,

(2.8)

where the coefficient Kf(d) is defined in (2.5).

The following convergence result is valid.

Theorem 2.2 Let uε,δ = 〈ρε,δ, σε,δ〉 be the solution of (1.5) and let θ > 2 in (1.3). Then,

under assumptions (H.1)–(H.3), for any t ∈]0, T [,

(I) the function σε,δ, as well as the function uε,δ, converges to (tfm(x)), namely:

lim
δ→0

lim
ε→0

∥∥ωmσε,δ(t)− t fm

∥∥2
L2(Ωε,δ

m ) = lim
δ→0

lim
ε→0

∥∥ωε,δuε,δ(t)− t fm

∥∥2
L2(Ω) = 0; (2.9)

(II) the function ρε,δ Lε,δ–converges to ρ∗ the solution of the effective model (2.8).
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2.3 Effective equations for (Pε,δ) when 0 < θ < 2

In this case the following convergence result is valid.

Theorem 2.3 Let uε,δ = 〈ρε,δ, σε,δ〉 be the solution of (1.5) and let θ < 2 in (1.3). Then,

under assumptions (H.1)–(H.3), for any t ∈]0, T [,

(I) the function σε,δ, as well as the function uε,δ, converges to (tfm(x)), namely:

lim
δ→0

lim
ε→0

∥∥ωmσε,δ(t)− t fm

∥∥2
L2(Ωε,δ

m ) = lim
δ→0

lim
ε→0

∥∥ωε,δuε,δ(t)− t fm

∥∥2
L2(Ω) = 0; (2.10)

(II) the function ρε,δ Lε,δ–converges to (t ω−1
m fm(x)).
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3 A double porosity model with thin fissures: (Pε) model

In the previous Section, for the modeling of thin fissures two small parameters ε, δ

were used. It was supposed that δ was a small parameter such that 0 < ε ¿ δ ¿ 1

and independent of ε. In this Section we relate the thickness of the fractured part δ to the
relative size of a bloc ε as follows:
(H.5) Fissures are thin with respect to the periodicity of blocks. Namely, δ is given by

δ = δ(ε) = ` εα/2−1, (3.1)

and the thickness of fissures is given by

`ε = εδ(ε) = ` εα/2, (3.2)

where α > 2 and ` > 0 is a constant.

(H.6) The coefficient r in (1.2) is given by

r = εβ, (3.3)

where β is a positive parameter.

It is clear that the condition (3.1) imply that

lim
ε→0

|Ωε,δ(ε)
f | := lim

ε→0
|Ωε

f | = 0. (3.4)
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3.1 Effective equations for (Pε) model when α = β

The homogenized problem is of the form:




ωfρ
∗
t −Kf(d)∆ρ∗ = (f0 + fm)(x) + S(ρ∗) in Q;

∇ρ∗ · ~ν = 0 on SQ;

ρ∗(0, x) = 0 in Ω.

(3.5)

where the coefficient Kf(d) is defined in (2.5) and

S(ρ∗) = −2
√

kfωm√
π`

∫ t

0

ρ∗t (x, τ)√
t− τ

dτ + 4fm(x)
1

`

√
t kf

πωm
. (3.6)

The following convergence result is valid.

Theorem 3.1 Let uε = 〈ρε, σε〉 be the solution of (1.8) and let β = α in (3.3), where α, β

are parameters defined in (3.1)–(3.3). Then, under assumptions (H.1), (H.2), (H.4)–(H.6),
for any t ∈]0, T [,

(I) the function σε, as well as the function uε, converges to (tfm(x)), namely:

lim
ε→0

‖ωmσε(t)− t fm‖2
L2(Ωε

m) = lim
ε→0

‖ωεuε(t)− t fm‖2
L2(Ω) = 0; (3.7)

(II) the function ρε Lε–converges to ρ∗ the solution of the global model (3.5) with the

additional source term (3.6) and the fracture porosity as effective porosity.
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3.2 Effective equations for (Pε) model when 2 < α < β

In this case the homogenized problem has the following form:




ωfρ
∗
t −Kf(d)∆ρ∗ = (f0 + fm)(x) in Q;

∇ρ∗ · ~ν = 0 on SQ;

ρ∗(0, x) = 0 in Ω.

(3.8)

The following convergence result is valid.

Theorem 3.2 Let uε = 〈ρε, σε〉 be the solution of (1.8) and let β > α in (3.3). Then,

under assumptions (H.1), (H.2), (H.4)–(H.6), for any t ∈]0, T [,

(I) the function σε, as well as the function uε, converges to (tfm(x)), namely:

lim
ε→0

‖ωεσε − t fm‖2
L2(Ωε

m) = lim
ε→0

‖ωεuε − t fm‖2
L2(Ω) = 0; (3.9)

(II) the function ρε Lε–converges to ρ∗ the solution of a single porosity model (3.8) with

the fracture porosity as an effective porosity.
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3.3 Effective equations for (Pε) model when 0 < β < α

In this case the following convergence result is valid.

Theorem 3.3 Let uε = 〈ρε, σε〉 be the solution of (1.8) and let β < α in (3.3). Then,

under assumptions (H.1), (H.2), (H.4)–(H.6), for any t ∈]0, T [,

(I) the function σε, as well as the function uε, converges to (tfm(x)), namely:

lim
ε→0

‖ωmσε(t)− t fm‖2
L2(Ωε

m) = lim
ε→0

‖ωεuε(t)− t fm‖2
L2(Ω) = 0; (3.10)

(II) the function ρε Lε–converges to (ω−1
m tfm(x)).

16



4 Homogenization of a single phase flow through a porous medium
in a thin layer

Let Ωε be a rectangle in R2,

Ωε =
(
−ε

2
, +

ε

2

)
× (0, L).

We introduce a periodic structure in Ωε as follows. Denote by Y the reference cell

Y =

(
−1

2
, +

1

2

)
× (0, 1)

and by F δ the reference fracture part F δ =
{
y ∈ Y , dist (y, ∂Y) < δ

2

}
. The reference

matrix bloc is then defined by Mδ = Y \ F δ.

Assuming that L is an integer multiplier of ε: L = Nε, N ∈ N, we define

Ωε,δ
f =

N−1⋃
j=0

ε
(
F δ + (0, j)

)
, Ωε,δ

m =
N−1⋃
j=0

ε
(
Mδ + (0, j)

)
.

The flow in the matrix–fracture medium Ωε is described by:




ωε,δ(x)uε,δ
t − div (Kε,δ(x)∇uε,δ) = f ε,δ(x) in (0, T )× Ωε;

∇uε,δ · ~ν = 0 on (0, T )× ∂Ωε;

uε,δ(0, x) = 0 in Ωε,

(4.1)

where

Kε,δ(x) = km (εδ)21ε,δ
m (x) + kf 1ε,δ

f (x) and ωε,δ(x) = ωm 1ε,δ
m (x) + ωf 1ε,δ

f (x)

f ε,δ(x) = (f0 + fm)(x)1ε,δ
f (x) + fm(x)1ε,δ

m (x)
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Notation:

uε,δ =

{
ρε,δ in Ωε,δ

f ;
σε,δ in Ωε,δ

m

The goal of this section is to study the asymptotic behavior of uε,δ as ε, δ → 0.

We show that for any fixed δ problem (4.1) admits homogenization (as ε → 0) and the
homogenized solution converges, as δ → 0, to a solution of :





ωfρ
∗
t −

1

2
kf

∂2ρ∗

∂ξ2 = (f0 + fm)(0, ξ) + S(ρ∗) in (0, T )× (0, L);

∂ρ∗

∂ξ
(t, 0) =

∂ρ∗

∂ξ
(t, L) = 0 on (0, T );

ρ∗(0, ξ) = 0 in (0, L)

(4.2)

with an the additional source term

S(ρ∗) = −2
√

kmωm√
π

t∫

0

ρ∗t (τ, ξ)√
t− τ

dτ + 4fm(0, ξ)

√
t km

πωm
.
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Theorem 4.1 Let uε,δ = < ρε,δ, σε,δ > be the solution of (4.1). Then, for any t ∈ (0, T ),

(I) the function σε,δ, as well as the function uε,δ, converges to (tfm(x)), namely:

lim
δ→0

lim
ε→0

1

|Ωε|
∥∥ωε,δσε,δ − t fm

∥∥2
L2(Ωε,δ

m ) =

= lim
δ→0

lim
ε→0

1

|Ωε|
∥∥ωε,δuε,δ − t fm

∥∥2
L2(Ωε) = 0; (4.3)

(II) the function ρε,δ satisfies the limit relation

lim
δ→0

lim
ε→0

1

|Ωε,δ
f |

∥∥ρε,δ − ρ∗
∥∥2

L2(Ωε,δ
f ) = 0, (4.4)

where ρ∗ = ρ(t, ξ) is a solution of (4.2).

(III) For any t ∈ (0, T ), and any function φ = φ(x) continuous in the vicinity of the

segment {x ∈ R2 : x1 = 0; 0 ≤ x2 ≤ L}, it holds

lim
δ→0

lim
ε→0

L

|Ωε,δ
f |

∫

Ωε

kε,δ(x)∇uε,δφ(x) dx =
kf

2

L∫

0

~R∗(t, ξ)φ(0, ξ) dξ (4.5)

with
~R∗(t, ξ) =

(
0,

∂ρ∗

∂ξ
(t, ξ)

)
.
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5 The double porosity model

We introduce the notation:

uε =

{
ρε in Ωε

f ;

σε in Ωε
m.

(5.6)

5.1 Effective model for θ = 2

The homogenized problem has the following form:



ω∗ρ∗t − div (K∗∇ρ∗) = |F |
|Y |(f0 + fm)(x) + S(ρ∗, %) in Q;

K∗∇ρ∗ · ~ν = 0 on SQ;

ρ∗(0, x) = 0 in Ω.

(5.7)

Here the effective porosity ω∗ is scaled by the volume fraction of fractures |F |/|Y |:

ω∗ =
|F |
|Y |ωf ; (5.8)

K∗ = {k∗ij} is the effective permeability tensor defined by:

k∗ij =
1

|Y |
∫

F

kf(~ei +∇ywi) · (~ej +∇ywj)dy (5.9)

where {~e1, .., ~ed} is the standard basis of Rd, and wi is the unique solution in the space
H1

#(F ) \ R of 



−∆wi = 0 in F ;

(~ei +∇ywi) · ~ν = 0 on ∂M ;

y → wi(y) Y − periodic;

(5.10)

the additional source term is given by:

S(ρ∗, %) = −ωm

t∫

0

%t(t− τ)ρ∗t (τ, x)dτ +

t∫

0

%t(t− τ)fm(x)dτ (5.11)

with

%(t) =

∫

M

Ũ(t, y) dy, where

{
ωmŨt − kfδ

2∆yŨ = 0 in (0, T )×M ;

Ũ(t, y) = 1 on (0, T )× ∂M and Ũ(0, y) = 0 in M.

(5.12)
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Theorem 5.1 Let uε = 〈ρε, σε〉 be the solution of (1.5) and let θ = 2 in (1.3). Then

for any t ∈]0, T [, under assumptions (H.1)–(H.3), the function ρε converges in L2(Ωε
f)

to ρ∗ the solution of the global model (5.7)–(5.12) with the effective porosity ω∗ defined

as (|F |/|Y |) ωf , the effective permeability tensor K∗ defined in (5.9)–(5.10), and the

additional source term (5.11).
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5.2 Effective model for θ > 2

The homogenized problem has the form:




ω∗ρ∗t − div (K∗∇ρ∗) = |F |
|Y |(f0 + fm)(x) in Q;

K∗∇ρ∗ · ~ν = 0 on SQ;

ρ∗(0, x) = 0 in Ω,

(5.13)

where the effective porosity ω∗ is scaled by the volume fraction of fractures, i.e., ω∗ =

|F |/|Y |ωf and K∗ = {k∗ij} is the effective permeability tensor defined by (5.9)–(5.10).

The following convergence result is valid.

Theorem 5.2 Let uε = 〈ρε, σε〉 be the solution of (1.5) and let θ > 2 in (1.3). Then for

any t ∈]0, T [, under assumptions (H.1)–(H.3), the function ρε converges in L2(Ωε
f) to ρ∗

the solution of a single porosity model (5.13) with the effective porosity ω∗ = |F |/|Y |ωf

and the permeability tensor K∗ given by (5.9)–(5.10).
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5.3 Effective model for θ < 2

The homogenized problem has the following form:




ω∗ρ∗t − div (K∗∇ρ∗) = |F |
|Y |f0(x) + fm(x) in Q;

K∗∇ρ∗ · ~ν = 0 on SQ;

ρ∗(0, x) = 0, in Ω,

(5.14)

where the effective porosity ω∗ is the arithmetic average given by

ω∗ =
|F |
|Y |ωf +

|M |
|Y | ωm =

|F |
|Y |ωf +

(
1− |F |

|Y |
)

ωm (5.15)

and K∗ = {k∗ij} is the effective permeability tensor defined by (5.9)–(5.10).

The following convergence result is valid.

Theorem 5.3 Let uε = 〈ρε, σε〉 be the solution of (1.5) and let θ < 2 in (1.3). Then for

any t ∈]0, T [, under assumptions (H.1)–(H.3), the function ρε converges in L2(Ωε
f) to ρ∗

the solution of a single porosity model (5.13) with the effective porosity ω∗ given by (5.15)

and the permeability tensor K∗ given by (5.9)–(5.10).
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