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Andro.Mikelic@univ-lyon1.fr

Institut Camille Jordan, UFR Mathématiques
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Thanks:
It is a great pleasure for me to give a talk at this conference
in the honor of Alain. Many thanks to the organizers for the
invitation.
I will talk on a diffusion process in a porous medium.
Structure of the equations is a consequence of multiscale
deformable geometry in which the process happens.
Filtration process through porous media and their modeling
using homogenization are subject of many publications I
wrote with Alain. In this case we do not know how to write
the model at the microscopic level and I will present only
the mathematical analysis of the effective model. But it is
only a starting point and I dedicate it to Alain’s anniversary
and to the forthcoming multiscale analysis of it, as we have
done in many joint publications.
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Thanks II:
These results are obtained in collaboration with Johannes
Bruining form Dietz Laboratory, Geo-Environmental
Engineering, TU Delft, The Netherlands and the
corresponding article is accepted for publication in SIAM J.
Math. Anal..
This research is supported in part by the Groupement
MOMAS (Modélisation Mathématique et Simulations
numériques liées aux problèmes de gestion des déchets
nucléaires): (PACEN/CNRS, ANDRA, BRGM, CEA, EDF,
IRSN)as a part of the project
"Modèles de dispersion efficace pour des problèmes de
Chimie-Transport: Changement d’échelle dans la mod́elisation
du transport ŕeactif en milieux poreux, en présence des nombres
caract́eristiques dominants.”
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Intro
One of the promising methods to reduce the discharge of
the ”greenhouse gas” carbon dioxide (CO2) into the
atmosphere is its sequestration in unminable coal seams. A
typical procedure is the injection of carbon dioxide via
deviated wells drilled inside the coal seams. Carbon dioxide
displaces the methane adsorbed on the internal surface of
the coal. A production well gathers the methane as free
gas. This process, known as carbon dioxide-enhanced coal
bed methane production (CO2-ECBM), is a producer of
energy and at the same time reduces greenhouse
concentrations as about two carbon dioxide molecules
displace one molecule of methane. World-wide application
of ECBM can reduce greenhouse gas emissions by a few
percent.
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Intro 2
Coal has an extensive fracturing system called the cleat
system.
Matrix blocks consist of polymeric structure (dehydrated
cellulose), which provides the adsorption sites for the
gases. At low temperatures or low sorption concentration
the coal structure behaves like a rigid glassy polymer, in
which movement is difficult. At high temperatures or high
sorption concentrations the glassy structure is converted to
the less rigid and open rubber like (swollen) structure. As
coal is less dense in the rubber like state a conversion from
the glassy state to the rubber like state exhibits swelling.
Therefore modelling of diffusion is not only relevant for
modelling transport into the matrix blocks, but also for the
modelling of swelling, which affects the permeability of the
coal seam.
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Intro 3
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Intro 4
Caption: A coal face exposed to a sorbent (CO2) . Far to the
right the virgin coal, which behaves as a glassy polymer. As
the sorbent penetrates in the coal a reorientation of the
polymeric coal structure occurs and the coal becomes
rubber like. The diffusion coefficient in the rubber like
structure is much higher (> 1000 ×) than in the glassy
structure. The rubber like structure has also a lower density
leading to swelling.

Thomas and Windle (1982):
the diffusion transport was enhanced by stress gradients
that resulted from the accommodation of large molecules in
the small cavities providing the adsorption sites.
(superdiffusion or case II diffusion).
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Model 1
volume fraction φ i.e., φ = c/Ω, where c is the molecular
concentration and Ω is the molecular volume.

the molar (diffusive) flux J is not only driven by the
volume fraction (φ) (concentration) gradient , but also
by the stress (Pxx) gradient, i.e.

J = −D

(

∂φ

∂x
+

Ωφ

kT

∂Pxx

∂x

)

, (1)

where k is the Boltzmann constant.

stress (Pxx) is related to the volumetric flux gradient as

Pxx = −ηl
∂J

∂x
= ηl

∂φ

∂t
, (2)
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Model 2
With ηl we denote the elongational viscosity, i.e. the

resistance of movement due to a velocity gradient
∂J

∂x
in the

direction of flow.
The elongational viscosity ηl is supposed to depend on the
volume fraction of the penetrant as

ηl = ηo exp (−mφ) , (3)

where m is a material constant and η0 is the volumetric
viscosity of the unswollen coal sample.
(1) – (2) implies that in QT = (0, L) × (0, T ) we have

∂tφ = ∂x

{

D (φ) ∂xφ +
D (φ) φ

B
∂x

(

e−mφ∂tφ
)

}

, (4)

Talk at the conference ”Scaling Up and Modeling for Transport and Flow in Porous Media”, Dubrovnik, Croatia, October 13-16, 2008 – p. 9/36



Model 3
As initial condition we have that the concentration is

φ (x, t = 0) = 0 on (0, T ) . (5)

The boundary condition at x = 0 must be derived from
thermodynamic arguments and it reads φ(0, x) = φ0 with

t = −φo
η0Ω

kBT

φ/φo
∫

0

exp(−mφoy)

ln y
dy, (6)

B = kBT/ (ηoΩ) . Next at x = L

D (φ)

(

∂xφ +
1

B
φ∂x (exp (−mφ) ∂tφ)

)

x=L

= 0. (7)
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Model 3a
Nonlinear diffusion equations with a pseudoparabolic
regularizing term being the Laplacean of the time derivative
are considered in by Novick-Cohen and Pego in
Transactions of the American Mathematical Society, 1991
and by Padron in Comm. Partial Differential Equations,
1998.
Global existence of a strong solution is proved by writing
the problem as a linear elliptic operator, acting on the time
derivative, equal to the nonlinear diffusion term. Then the
linear elliptic operator, acting on the time derivative, was
inverted and the standard geometric theory of nonlinear
parabolic equations is applicable.
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Model 4
Equations like equation (4) can occur in many transport
problems in which the flux is calculated using classical
irreversible thermodynamics (CIT) or extended irreversible
thermodynamics (EIT). A well known example for CIT in
porous media flow is that the deviation of the capillary
pressure Pc from its equilibrium value at a given oil
saturation So, i.e., P o

c = P o
c (So) is a driving force leading to a

rate of change of the saturation (scalar flux). This leads, as
introduced by M. Hassanizadeh, to ∂tSo = L (Pc − P o

c ) , and
to the transport equation for counter current imbibition

ϕ∂tSo = ∂x (Λ (So) ∂xPc) =

= ∂x (Λ (So) ∂xP
o
c (So)) + ∂x

(

Λ (So) ∂x
1

L (So)
∂tSo

)

.
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Model 4a
See e.g. Hassanizadeh, Gray: Water Resources Research
1993 and Beliaev, Hassanizadeh, Transport in Porous
Media 2001.
This application to multiphase and unsaturated flows
through porous media motivated a number of recent
papers. In paper Hulshof, King, SIAM J. Appl. Math., 1998,
one finds a detailed study of possible travelling wave
solutions and in particular of the behavior of such travelling
waves near fronts where the concentration is zero. Further
studies of the travelling waves are in the papers Cuesta, van
Duijn, Hulshof, European J. Appl. Math., 2000, and Cuesta,
Hulshof Nonlinear Analysis-Theory Methods & Applications,
2003. The small- and waiting time behavior of the equations
was studied in King, Cuesta, SIAM J. Appl. Math., 2006.
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Model 4b
Study of the viscosity limit for the linear relaxation model of
the dynamic term is in van Duijn, Peletier, Pop, SIAM J.
Math. Anal., 2007.
Nevertheless, the study of existence of a solution to the
nonlinear model from Hassanizadeh, Gray: Water
Resources Research 1993 was undertaken only in papers
Beliaev. European J. Appl. Math., 2003, and Beliaev,
Hassanizadeh, Transport in Porous Media 2001, where the
non-degeneracy was supposed and existence is local in
time.
Another existence result, also local in time, is in the paper
Düll. Comm. Partial Differential Equations, 2006, where a
related pseudoparabolic equation modeling solvent uptake
in polymeric solids was studied.
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Model 4c
Düll proved the short time existence of a solution with for
the problem in R, supposing non-negative compactly
supported initial datum. Contrary to our approach, the
problem was written as a system containing a linear elliptic
equation and an evolution equation. With such approach,
we did not manage to get as good estimates as with the
entropy approach undertaken in this paper.
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Model 5
EIT differs from CIT as it not only characterizes a system by
its local thermodynamic variables (pressure, temperature,
concentration) but also by its gradients. In isothermal
systems and in the absence of other applied fields, e.g.
electric fields, the volumetric flux J is, according to EIT,
given by the following system of equations

τ1∂tJ + J = −D

(

∂φ

∂x
+

Ωφ

kT

∂Pxx

∂x

)

, (8)

τ2∂tPxx + Pxx = −ηl
∂J

∂x
. (9)

Here τ1, τ2 are time constants, which are small with respect
to L2/D. Hence EIT or CIT can lead to transport equations
of the form of equation (4).
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Entropy 1
Engineering community tries to solve the problem (4), (5),
(6) and (7) using direct discretization.
We will propose the ENTROPY approach. Motivation:

Here we deal with a nonlinear degenerate
pseudo-parabolic equation.

Straightforward discretization leads to numerical
difficulties (oscillations, blow-up . . . )

What is the source of the difficulties? Using the
solution (if there is a solution!), as a test function, does
not give an energy estimate, because of the third order
derivative term. For discretized problem this means
that we do not control well the discretized energy.
Furthermore, the problem is not explicit in time
derivative and it could happen that the time stepping
does not work.

Talk at the conference ”Scaling Up and Modeling for Transport and Flow in Porous Media”, Dubrovnik, Croatia, October 13-16, 2008 – p. 17/36



Entropy 2
In the case of the linear heat equation, Kullback’s entropy
functional from statistical physics plays a special role. It is
given by E(ϕ) = ϕ log ϕ, ϕ > 0. Our PDE allows a natural
generalization of the classic Kullback entropy:

E(ϕ) =

∫ ϕ

0

ϕ − ξ

ξ

(

e−mξ 1

D(ξ)
− 1

D(0)

)

dξ +
1

D(0)
(ϕ log ϕ − ϕ).

(10)
Following ideas from the work of A. Mikelić and R. Robert
(SIAM J. Math Anal. 1998) on the equation of Robert and
Sommeria from statistical hydrodynamics, we will use E ′(ϕ)
as a test function, with the hope to obtain a convenient a
priori estimate. For more information about the entropy
methods, see the book to appear by L.C. Evans and the
survey of entropy methods for PDEs, by the same author, in
Bulletin of the American Mathematical Society, 2004.
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Entropy 3
Formal calculation gives the equality

∂t

∫ L

0

{

E(φ) − ϕE ′(ϕg) +
1

2B
(e−mφ∂xφ)2

}

dx+

∫ L

0

(1

φ
e−mφ(∂xφ)2 + φ∂tE ′(ϕg)

)

dx = 0. (11)

Presence of the initial and the boundary conditions lead to
unbounded non-integrable E ′. The equality (11) can not be
directly used and we have to do careful regularizations.
We will use regularized E ′(ϕ) as the unknown. Existence is
proven by showing that the ’energy’ of the system remains
bounded during the time evolution of the system.
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Existence 1
We introduce Φδ by

Φ′
δ :=

e−m min{|ξ|,1/δ}

(|ξ| + δ) D (ξ)
, δ > 0, ξ ∈ R, (12)

and

Φδ (φ) :=



































φ
∫

0

e−m min{ξ,1/δ}

(ξ+δ)D(ξ) dξ, φ > 0

−
0

∫

φ

e−m min{−ξ,1/δ}

(−ξ+δ)D(−ξ) dξ, φ < 0.

(13)

we study the following regularized problem in
QT = (0, L) × (0, T ) :
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Existence 2

∂tφ = ∂x

{

D (φ) ∂xφ +
D (φ) (|φ| + δ)

B
∂x

(

e−mmin{|φ|,1/δ}∂tφ
)

}

(14)
with boundary condition at x = L

D (φ) ∂xφ +
D (φ) (|φ| + δ)

B
∂x

(

e−m min{|φ|,1/δ}∂tφ
)

∣

∣

∣

∣

x=L

= 0

(15)
and boundary and initial conditions (5) and (6).
We start by introducing a variational solution for the
problem (14), (15), (5) and (6).
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Existence 3
Definition: Let

V := {z ∈ C∞ [0, L] , z|x=0 = 0} and H := {C∞ [0, T ] , h (T ) = 0}
(16)

Then the variational formulation corresponding to the
problem (5), (6), (14) and (15) is

−
T

∫

0

L
∫

0

φg (x) ∂th (t) dxdt +

T
∫

0

L
∫

0

D (φ) ∂xφ ∂xg(x)h(t) dxdt

+

T
∫

0

L
∫

0

D (φ) (|φ| + δ)

B
∂xg(x) h(t) ∂x

(

e−m min{|φ|,1/δ}∂tφ
)

dxdt = 0,

∀g ∈ V and ∀h ∈ H (17)
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Existence 4
and at the boundary x = 0, we have

φ − φg = 0. (18)

Our first goal is to prove existence for (17)-(18).

STRATEGY

Let z := Φδ (φ) , φ = Φ−1
δ (z) , z|x=0 = Φδ (φg (t)) . We

reformulate the problem (5), (6), (14) and (15) in terms of z:

1

Φ′
δ

(

Φ−1
δ (z)

)∂tz = ∂x

{

D
(

Φ−1
δ (z)

)

Φ′
δ

(

Φ−1
δ (z)

)∂xz

+
D

(

Φ−1
δ (z)

) (
∣

∣Φ−1
δ (z)

∣

∣ + δ
)

B
∂x(D

(

Φ−1
δ (z)

) (
∣

∣Φ−1
δ (z)

∣

∣ + δ
)

∂tz)

}

in QT (19)
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Existence 5
Moreover we can express the boundary and initial
conditions in z as

z (0, t) = Φδ (φg (t)) on (0, T ); z (x, t = 0) = Φδ (0) = 0 on (0, L)
(20)

1

Φ′
δ

(

Φ−1
δ (z)

)∂xz +

(∣

∣Φ−1
δ (z)

∣

∣ + δ
)

B
∂x

(

D(Φ−1
δ (z)

)

(
∣

∣Φ−1
δ (z)

∣

∣ +

δ)∂tz) = 0 on x = L. (21)

d1 (z) :=
1

(

Φ′
δ

(

Φ−1
δ (z)

)) , d2 (z) :=
D

(

Φ−1
δ (z)

)

(

Φ′
δ

(

Φ−1
δ (z)

))

d (z) := D
(

Φ−1
δ (z)

) (∣

∣Φ−1
δ (z)

∣

∣ + δ
)

. (22)

Talk at the conference ”Scaling Up and Modeling for Transport and Flow in Porous Media”, Dubrovnik, Croatia, October 13-16, 2008 – p. 24/36



Existence 6
we introduce the discretization of the problem
(19)-(21): Find

zN =
N
∑

j=1
cj (t) αj (x) + Φδ (φg (t)) ∈ W 1,q([0, T ];VN ),

q ∈ (2,+∞), such that

L
∫

0

∂tzNd1 (zN ) αk dx +

L
∫

0

d2 (zN ) ∂xzN∂xαk dx+

L
∫

0

1

B
d (zN ) ∂x (d (zN ) ∂tzN ) ∂xαk dx = 0, (23)

for k = 1, ..., N and zN |t=0 == 0, (24)
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Existence 7
Let the vector valued function F be given by
Fκ (t, c, ∂tc) = left part of equation (23) and c is the
column vector consisting of elements (c1 (t) ...cN (t)) ,
then equations (23), (24) are equivalent to the
following Cauchy Problem in R

N :

{

F (t, c, ∂tc) = 0

c|t=0 = 0.
(25)

we see that the problem (23)–(24) is equivalent to the
Cauchy problem

Find c ∈ W 1,q(0, T )N such that
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Existence 7a

A(c)
dc

dt
= −B(c)c − f(c) a.e. in (0, T ); c|t=0 = 0. (26)

We note that A could loose its positive definiteness:
For bα(x) = b · α(x) =

∑N
j=1 bjαj(x) we have

(Ab) · b ≥
∫ L

0

{

d1(zN ) − 1

4B
(d′(zN ))2(∂xzN )2

}

(bα)2 dx. (27)

Since we start from "good" initial state, we are able to prove:
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Existence 8
Proposition 1: There is a TN > 0 such that the problem
(23)–(24) has a unique solution zN ∈ W 1,q(0, TN ;VN ),
for all q < +∞.

Proposition 2: There is a constant C, independent of
N , such that

‖∂xzN‖L∞(0,TN ;L2(0,L)) ≤ C. (28)

Consequently, the vector valued function c remains
bounded at t = TN .

Nevertheless, since the matrix A could degenerate,

some components of
∂c

∂t
could blow up at t = TN . In

other to exclude this possibility and to prove that the
maximal solution for (25) exists on [0, T ], we need
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Existence 9
an estimate for the time derivatives. Furthermore, if we
want to pass to the limit N → +∞ in equation (23), estimate
(28) is not sufficient. Our strategy is to obtain an estimate,
uniform with respect to N, for ∂xtzN in L2 (QT ) .
Theorem 1: There exists T0 > 0, independent of N , such
that

‖∂xzN‖L∞(0,T0;L2(0,L)) + ‖∂tzN‖L2(0,T0;L2(0,L)) ≤ C (29)

‖∂xtzN‖L2(0,T0;L2(0,L)) ≤ C (30)
∥

∥

∥

∥

∥

∥

∂xt

zN
∫

0

d (ξ) dξ

∥

∥

∥

∥

∥

∥

L2((0,T0)×(0,L))

≤ C, (31)

with constants independent of N . Consequently, the
maximal solution for (25) exists on [0, T0].
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Existence 10
The estimate (31) allow us to pass to the limit N → +∞.
Using classical compactness and weak compactness
arguments and due to the a priori estimate (31) we can
extract a subsequence of zN , denoted by the same
subscripts, which converges to an element
z ∈ H1 ((0, T0) × (0, L)) , ∂xtz ∈ L2 ((0, T0) × (0, L)) , in the
following sense

zN → z strongly in L2 ((0, T0) × (0, L))

and a.e. on (0, T0) × (0, L) (32)

∂xzN ⇀ ∂xz weakly in L2 ((0, T0) × (0, L)) (33)

∂tzN ⇀ ∂tz weakly in L2 ((0, T0) × (0, L)) (34)

∂xtzN ⇀ ∂xtz weakly in L2 ((0, T0) × (0, L)) (35)
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Existence 11

∂xt

zN
∫

0

d (ξ) dξ ⇀ ∂xt

z
∫

0

d (ξ) dξ weakly in L2 ((0, T0) × (0, L)) .

(36)
Now passing to the limit N → ∞ in equation (23) does not
pose problems and we conclude that z satisfies (19)-(21).
⇒
Theorem 2: Let φg ∈ H1 (0, T ) . Then there exists T0 > 0

such that problem (19)-(21) has at least one variational
solution z ∈ H1 ((0, T0) × (0, L)) , ∂xtz ∈ L2 ((0, T0) × (0, L)) .

Corollary 1: Let φg ∈ H1 (0, T ) . Then there exists T0 > 0

such that the variational formulation (17)-(18) has at least
one solution φ = Φ−1

δ (z) ∈ H1 ((0, T0) × (0, L)) , ∂xtφ ∈
L2 ((0, T0) × (0, L)) .
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Global 1
Now we test (17) by Φδ (φ) − Φδ (φg (t)) and then by

e−m min{|φ|,1/δ}∂tφ − e−m min{|φg|,1/δ}∂tφg

and obtain
Theorem 3: Let φg ∈ H1 (0, T ).Then for all T > 0 there
exists a weak solution φ ∈ H1 ((0, T ) × (0, L)) ,

∂xtφ ∈ L2 ((0, T ) × (0, L)) for the variational formulation
(17)-(18) of the problem (5), (6), (14) and (15).
We conclude this section by establishing uniform
L∞-bounds for φ. we have
Proposition 3: Let φg ∈ H1(0, T ) and φg ≥ 0. Then any
weak solution φ of the problem (5), (6), (14) and (15),
obtained in Theorem 3, satisfies φ(x, t) ≥ 0, a.e. on QT .
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Global 2
Proposition 4: Let φg ∈ H1(0, T ), φg ≥ 0 and ∂tφg ≥ 0 a.e.
on (0, T ). Then any weak solution φ of the problem (5), (6),
(14) and (15), obtained in Theorem 3, satisfies
φg(t) ≥ φ(x, t), a.e. on QT .
Proposition 5: Let φg ∈ H1(0, T ) and let us suppose in
addition that there are constants A0 > 0, α > 0 and C0 > 0
such that

A0 ≥ φg(t) ≥ C0t
α, ∀t ∈ [0, T ]. (37)

Then any weak solution φ of the problem (5), (6), (14)and
(15), obtained in Theorem 3, satisfies A0 ≥ φ(x, t) ≥ C0t

α,
a.e. on QT .
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Global 3
Theorem 4: Let φg ∈ H1 (0, T ) , A0 = max0≤t≤T φg(t),
A0 ≥ φg ≥ C0t

α and α > 1.Then there exists a weak solution
φ, C0t

α ≤ φ (x, t) ≤ A0, ∂xtφ ∈ L2 ((0, T ) × (0, L)) ,

φ ∈ H1 ((0, T ) × (0, L)) , for the problem (5), (6), (14), (15).
Remark 1:

By choosing δ < 1/A0, we can replace e−mmin{|φ|,1/δ} by
e−mφ and |φ| + δ by φ + δ.

In addition to the assumptions of Theorem 4 let us
suppose that ∂tφg ≥ 0. Then there exists a weak
solution φ, C0t

α ≤ φ (x, t) ≤ φg(t),

∂xtφ ∈ L2 ((0, T ) × (0, L)) , φ ∈ H1 ((0, T ) × (0, L)) , for
the problem (5), (6), (14) and (15).
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Original problem
It remains to pass to the limit δ → 0. This limit will give us
the solvability of the starting problem.
Theorem 5: Let α > 0, C0 and A0 be positive constants and

φg ∈ H1 (0, T ) , C0t
α ≤ φg ≤ A0 and log φg ∈ L2 (0, T ) .

(38)
Then problem (4)-(7) has at least one weak solution
φ ∈ H1 ((0, T ) × (0, L)) , such that

√
φ ∂x

(

e−mφ∂tφ
)

∈ L2 ((0, T ) × (0, L)) and C0t
α ≤ φ ≤ A0.
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Conclusion
Open questions and further challenges:

Uniqueness. Long time behavior. Convergence of the
fully discretized numerical schemes.

Similar model 1: Unsaturated flows with dynamic
capillary pressure.

Similar model 2: Multiphase flows with dynamic
capillary pressure.
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