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Figure 1: Cascade thick junction with random transmission zone
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Geometrical description

Let a, h < 1 be positive real numbers, Ih(1/2) :=
(

1−h
2

, 1+h
2

)
belong to (0, 1). The

segment I0 := [0, a] consists of N subsegments [εj, ε(j + 1)], j = 0, . . . , N − 1. Here
ε = a/N is a small parameter.
Cascade thick junction Dε with random transmission zone consists of a body

D0 = {x ∈ R2 : 0 < x1 < a, 0 < x2 < Φ(x1) },

Φ ∈ C1([0, a]), min
[0,a]

Φ > 0; thin rectangles

Ĝj(ε) =

{
x ∈ R2 : (x1, 0) ∈ I0,

∣∣∣∣x1 − ε (j +
1

2
)

∣∣∣∣ <
εh

2
, x2 ∈ (−l, 0)

}
, j = 0, . . . , N − 1

and thin layer with oscillating boundary

Πε =

{
x ∈ R2 : x1 ∈ (0, a), εθ(x1)F

( x1

ε
, ω

)
< x2 ≤ 0

}
,
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Geometrical description

where θ(x1) is a smooth nonnegative function with supp θ(x1) ⊂ I0 and F (ξ1, ω) is a
random statistically homogeneous ergodic nonpositive function with smooth realizations, ω is
an element of a standard probability space (Ω,A, µ). Thus,

Dε = D0 ∪ Πε ∪ Ĝε,

where

Ĝε =

N−1⋃

j=0

Ĝj(ε)

or Dε = D0 ∪ Πε ∪ Gε, where Gε = Ĝε\Πε. We denote also

B0
ε =

{
x ∈ R2 :

∣∣x1 − ε(j + 1
2
)
∣∣ < εh

2
, x2 = 0

}
,

Γε = {x ∈ R2 : x1 ∈ (0, a)\B0
ε , εθ(x1)F

( x1

ε
, ω

)
= x2}, Υ̂ε := ∂Ĝε\B

0
ε or

Υ̂ε = Ŝε ∪ Bε, where Ŝε is the lateral surface of the set Ĝε, Bε is the lower surface of Ĝε;
Υε := ∂Gε\∂Πε, Υε = Sε ∪ Bε, Γ1 = {x : x2 = Φ(x1), x1 ∈ [0, a]},

γε = ∂Dε \
(
Γε ∪ Υε ∪ Γ1

)
.
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Figure 2: Rectangles and random layer
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Setting of the problem

In Dε we consider the following problem:





− ∆x uε(x) = fε(x), x ∈ Dε;

∂νuε(x) + ετ θ(x1)p
( x1

ε
, ω

)
uε(x) = θ (x1) q

( x1

ε
, ω

)
, x ∈ Γε;

∂νuε(x) + εµ k uε(x) = εβ gε(x), x ∈ Υε;

uε(x) = 0, x ∈ Γ1;

∂νuε(x) = 0, x ∈ γε.

(1)

Here ∂ν = ∂/∂ν is the derivative with respect to the outer normal; the constant k is
positive; the parameters β ≥ 1, µ, τ are real; p (ξ1, ω) and q (ξ1, ω) are random statistically
homogeneous ergodic positive functions. The functions p and q have smooth realizations. It
should be noted that

[uε] = 0, [∂x2
uε] = 0 on I0 ∩ Πε,

where [·] is the jump of a function.
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Precise definition of randomness

Assume that (Ω,A, µ) is a probability space, i.e. the set Ω with σ-algebra A of its subsets
and σ-additive nonnegative measure µ on A such that µ(Ω) = 1.

Definition 1. A family of measurable maps

Tx1
: Ω → Ω, x1 ∈ R

we call a dynamical system, if the following properties hold true:

group property:

Tx1+y1
= Tx1

Ty1
∀x1, y1 ∈ R; T0 = Id

(Id is the identical mapping);

isometry property (the mapping Tx1
preserves the measure µ on Ω):

Tx1
A ∈ A, µ(Tx1

A) = µ(A) ∀x1 ∈ R, A ∈ A;

measurability: for any measurable functions Ψ(ω) on Ω the function Ψ(Tx1
ω) is measurable on

Ω × R and continuous in x1.
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Precise definition of randomness

Let Lq(Ω, µ) (q ≥ 1) be the space of measurable functions integrable in the power q with
respect to the measure µ. If Ux1

: Ω → Ω is a dynamical system, then in the space L2(Ω, µ)

we define a parametric group of operators {Ux1
}, x1 ∈ R (we keep the same notation) by

the formula

(Ux1
Ψ)(ω) := Ψ(Ux1

ω), Ψ ∈ L2(Ω, µ).

From the condition 3) of the definition it follows that the group Ux1
is strongly continuous, i.e.

for any Ψ ∈ L2(Ω, µ)

lim
x1→0

‖Ux1
Ψ − Ψ‖L2(Ω,µ) = 0.

Definition 2. Suppose that Ψ(ω) is a measurable function on Ω. The function Ψ(Tx1
ω) of x1 ∈ R for fixed

ω ∈ Ω is called the realization of the function Ψ.

Proposition 1. Assume that Ψ ∈ Lq(Ω, µ), then almost all realizations Ψ(Tx1
ω) belong to Lq

loc
(R).

If the sequence Ψk ∈ Lq(Ω, µ) converges in Lq(Ω, µ) to the function Ψ, then there exists a subsequence

k′ such that almost all realizations Ψk′(Tx1
ω) converges in Lq

loc
(R) to the realization Ψ(Tx1

ω).

Definition 3. A measurable function Ψ(ω) on Ω is called invariant, if Ψ(Tx1
ω) = Ψ(ω) for any x1 ∈ R

and almost all ω ∈ Ω.

Definition 4. The dynamical system Tx1
is called ergodic, if any invariant function almost everywhere coincides

with a constant.
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Precise definition of randomness

We denote by B the natural Borel σ-algebra of subsets of the space R. Suppose that
(̥x1) ∈ L1

loc
(R).

Definition 5. We say that the function (̥x1) has a spatial average, if the limit

M( )̥ = lim
ε→0

1

|B|

∫

B

̥
( x1

ε

)
dx1 (2)

does exist for any bounded Borel sets B ∈ B and does not depend on the choice of B, and M( )̥ is called

the spatial average value of the function .̥

In equivalent form

M( )̥ = lim
t→+∞

1

|Bt|

∫

Bt

(̥x1) dx1, (3)

where Bt = {x ∈ R | x1

t
∈ B}.

Proposition 2. Let the function (̥x1) have a spatial meanvalue in R, and suppose that the family

{̥
(

x1

ε

)
, 0 < ε ≤ 1} is bounded in Lq(K) for some q ≥ 1, where K is a compact in R. Then

̥
( x1

ε

)
⇀ M( )̥ weakly in Lq

loc
(R) as ε → 0.
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Precise definition of randomness

Proposition 3. (Birkhoff ergodic theorem) Let Tx1
satisfy the Definition 1 and assume that

Ψ ∈ Lq(Ω, µ), q ≥ 1. Then for almost all ω ∈ Ω the realization Ψ(Tx1
ω) has the spatial meanvalue

M(Ψ(Tx1
ω)). Moreover, the spatial meanvalue M(Ψ(Tx1

ω)) is a conditional mathematical expectation of

the function Ψ(ω) with respect to the σ-algebra of invariant subsets. Hence, M(Ψ(Tx1
ω)) is an invariant

function and

E(Ψ) ≡

∫

Ω

Ψ(ω) dµ =

∫

Ω

M(Ψ(Tx1
ω)) dµ. (4)

In particular, if the dynamical system Tx1
is ergodic, then for almost all ω ∈ Ω the following formula

E(Ψ) = M(Ψ(Tx1
ω))

holds true.

Definition 6. A random function Ψ(x1, ω) (x1 ∈ R, ω ∈ Ω) is called statistically homogeneous, if the

following representation

Ψ(x1, ω) = Ψ(Tx1
ω)

holds for some function Ψ, where Tx1
is a dynamical system in Ω.

For statistically homogeneous functions with smooth realizations we denote

∂ωΨ(Tx1
ω) := ∂x1

Ψ(x1, ω).
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Assumptions

We assume that the following conditions are fulfilled. Without loss of generality fε ∈ L2(D1),

where D1 = D0 ∪ D2, D2 = (0, a) × (−l, 0), and

fε → f0 strongly in L2(D1) as ε → 0. (5)

The function gε ∈ H1(D2) and

gε ⇀ g0 weakly in H1(D2) as ε → 0. (6)

Now let us formulate the conditions for functions p, q and F . We assume that p, q and F are
statistically homogeneous, Tx1

is ergodic and a.s.

p(ω) ≥ 0, ‖p‖L∞(Ω,µ) < ∞, ‖q‖L∞(Ω,µ) < ∞,

‖F‖L∞(Ω,µ) < ∞, ‖∂ωF‖L∞(Ω,µ) < ∞.

We define the continuation by zero for functions from H1
(
Gε

)
in the following manner:

ỹε(x) =





yε, x ∈ Gε,

0, x ∈ D2 \ Gε,

where D2 = (0, a) × (−l, 0).
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Main results

Theorem 1 (The case τ ≥ 0 and µ ≥ 1). The solution uε to the problem (1) for almost all ω (a.s.)

satisfies

uε ⇀ v+
0 in H1(D0, Γ1), ũε ⇀ h v−0 in L2(D2),

∂̃x2
uε ⇀ h ∂x2

v−0 in L2(D2), ∂̃x1
uε ⇀ 0 in L2(D2),

(7)

as ε → 0, where the function v0(x) =





v+
0 (x), x ∈ D0,

v−0 (x), x ∈ D2,
is the unique solution to the problem





− ∆x v+
0 (x) = f0(x), x ∈ D0

v+
0 (x) = 0, x ∈ Γ1

∂νv+
0 (x) = 0, x ∈ ∂D0\

(
Γ1∪I0

)
,

− h∂2
x2x2

v−0 (x) + 2δµ,1kv−0 (x) = hf0(x)+δβ,1g0(x), x ∈ D2,

v+
0 (x1, 0) = v−0 (x1, 0), (x1, 0) ∈ I0,

(
h∂x2

v−0 − ∂x2
v+
0 + δτ,0(1−h)θ(x1)P (x1) v+

0

)
(x1, 0)=(1−h)θ(x1)Q(x1), (x1, 0) ∈ I0,

∂x2
v−0 (x1,−l) = 0, (x1,−l) ∈ Il,

(8)
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Main results

which is called homogenized problem for the problem (1). Here

Il = {x : x2 = −l, x1 ∈ (0, a)};

δα,k is the Kroneker symbol;

P (x1) = E

(
p(ξ1, ω)

√
1 +

(
θ(x1) ∂ξ1F (ξ1, ω)

)2
)

= E

(
p(ω)

√
1 + (θ(x1) ∂ωF(ω))2

)
,

Q(x1) = E

(
q(ξ1, ω)

√
1 +

(
θ(x1) ∂ξ1F (ξ1, ω)

)2
)

= E

(
q(ω)

√
1 + (θ(x1) ∂ωF(ω))2

)
.

Moreover the convergence of energy

Eε(uε) :=

∫

Dε

|∇xuε|
2 dx + ετ

∫

Γε

θ(x1) p
( x1

ε
, ω

)
u2

ε dσx + εµk

∫

Υε

u2
ε dσx −→

−→

∫

D0

|∇v+
0 |2 dx +

∫

D2

(
h|∂x2

v−0 |2 + 2δµ,1k|v−0 |2
)

dx+

+δτ,0(1 − h)

∫

I0

θ(x1)P (x1)|v+
0 (x1, 0)|2 dx1 =: E0(v0)

(9)

holds true as ε → 0 for almost all ω.
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Main results

Theorem 2 (The case τ < 0 and µ ≥ 1). For solutions uε to the problem (1) the limits

uε ⇀ v+
0 in H1(D0, Γ1), ũε ⇀ h v−0 in L2(D2),

∂̃x2
uε ⇀ h ∂x2

v−0 in L2(D2), ∂̃x1
uε ⇀ 0 in L2(D2),

(10)

as ε → 0 are valid for almost all ω, where the functions v+
0 and v−0 are respectively the solutions to the

following problems:





−∆x v+
0 (x) = f0(x), x ∈ D0

v+
0 (x) = 0, x ∈ Γ1 ∪ I0

∂νv+
0 (x) = 0, x ∈ ∂D0 \

(
Γ1 ∪ I0

)
,

(11)





−h∂2
x2x2

v−0 (x) + 2 δµ,1 k v−0 (x) = h f0(x) + δβ,1 g0(x), x ∈ D2,

v−0 (x1, 0) = 0, (x1, 0) ∈ I0,

∂x2
v−0 (x1,−l) = 0, (x1,−l) ∈ Il,

(12)

which together are called the homogenized problem for the problem (1).
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Main results

Moreover the convergence of the energy integrals

Eε(uε) →

∫

D0

|∇v+
0 |2 dx + h

∫

D2

|∂x2
v−0 |2 dx +

+2 δµ,1 k

∫

D2

|v−0 |2 dx =: E0(v+
0 ) + E0(v−0 ).

(13)

holds true as ε → 0 for almost all ω.
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Main results

Theorem 3 (The case µ < 1). For the solution uε to the problem (1) for almost all ω the limits

uε ⇀ v+
0 in H1(D0, Γ1),

ũε → 0 in L2(D2),



 as ε → 0 (14)

hold true, where the function v+
0 is the solution to the problem





−∆x v+
0 (x) = f0(x), x ∈ D0

v+
0 (x) = 0, x ∈ Γ1 ∪ I0

∂νv+
0 (x) = 0, x ∈ ∂D0 \

(
Γ1 ∪ I0

)
.

(15)

Moreover, for almost all ω the following convergence

Eε(uε) →

∫

D0

|∇v+
0 |2 dx =: E0(v+

0 ) (16)

is valid as ε → 0.
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Auxiliary Lemmas

Lemma 1. Let H(ξ1, ω) be a random statistically homogeneous function, such that ‖H‖L∞(Ω,µ) < ∞

and

E(H(ξ1, ω)) ≡ 0. (17)

Then a.s. ∫

I0

H(
x1

ε
, ω) u(x1) v(x1) dx1 −→ 0 (18)

as ε → 0 for any functions u, v ∈ H
1

2 (I0).

Lemma 2. For any u, v ∈ H1(Dε) the following limit relations

∣∣∣∣∣∣∣

∫

Γε

θ(x1) q
( x1

ε
, ω

)
v(x) dσx − (1 − h)

∫

I0

θ(x1) Q(x1)v(x1, 0) dx1

∣∣∣∣∣∣∣
→ 0, (19)

∣∣∣∣∣∣∣

∫

Γε

θ(x1)p
( x1

ε
, ω

)
v(x)u(x) dσx − (1−h)

∫

I0

θ(x1)P (x1)v(x1, 0)u(x1, 0) dx1

∣∣∣∣∣∣∣
→ 0 (20)

hold as ε → 0 for almost all ω.
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Auxiliary Lemmas

Boundary value problems in dense junctions with different nonhomogeneous conditions on
the boundary of thin subdomains have specific difficulties. To homogenize problems in such
junctions we use special integral identities. In this case the identity has the following form:

εh

2

∫

Ŝε

v dx2 =

∫

Ĝε

v dx − ε

∫

Ĝε

Y2

( x1

ε

)
∂x1

v dx, ∀ v ∈ H1
(
Ĝε

)
. (21)

Here Y2(ξ) = −ξ + [ξ] + 1
2
, where [ξ] is the integer part of ξ; Sε is the union of the lateral

sides of the rectangles Gε.
Keeping in mind that max

R
|Y2| ≤ 1, we get the inequality

‖v‖L2(Sε) ≤ C2ε−
1

2 ‖v‖H1(Gε). (22)

Using the standard approach we obtain

‖v‖L2(Bε) ≤ C3‖v‖H1(Gε), (23)

where Bε = Υε\Sε.
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Comments

For 3D model with variable cross section of the rods we change the function Y2. Consider
the following identity:

ε

∫

Sε

ϕ(x) dσx√
1 + ε2|̺ ′(x3)|2

=

∫

Gε

lω(x3)

|ω(x3)|
ϕ dx + ε

∫

Gε

∇ξ′Y2(ξ
′, x3)|

ξ′= x′

ε

· ∇x′ϕ dx (24)

for any ϕ ∈ H1(Gε). Here Y2 is 1-periodic in ξ1 and ξ2 function which satisfies





∆ξ′Y2(ξ
′, x3) =

lω(x3)

|ω(x3)|
in ω(x3),

∂ν′(ξ′)Y2 = 1 on ∂ω(x3),
∫

ω(x3)

Y2(ξ′, x3) dξ′ = 0,

(25)

where ξ′ = (ξ1, ξ2), ν′(ξ′) =
(
ν1(ξ′), ν2(ξ′)

)
is outer normal to D.
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