Jacques Blum
University of Nice Sophia Antipolis
jblum@unice.fr

Didier Auroux
University of Toulouse auroux@math.univ-toulouse.fr

Back to the future :
 the Back and Forth Nudging

Motivations

Motivation : Identify the initial condition in a geophysical system

Fundamental for a chaotic system (Lorenz, atmosphere, ocean, ...)

Difficulty : These systems are generally irreversible.

Comparison with 4D-VAR : Optimal control method minimizing the quadratic difference between model and observations.

Forward nudging

Let us consider a model governed by a system of ODE :

$$
\frac{d X}{d t}=F(X), \quad 0<t<T
$$

with an initial condition $X(0)=x_{0}$.
$X_{\text {obs }}(t)$: observations of the system
C : observation operator.

$$
\left\{\begin{array}{l}
\frac{d X}{d t}=F(X)+K\left(X_{o b s}-C(X)\right), \quad 0<t<T \\
X(0)=x_{0}
\end{array}\right.
$$

where K is the nudging (or gain) matrix.

In the linear case (where F is a matrix), the forward nudging is called Luenberger or asymptotic observer.

Direct Nudging

- Meteorology : Hoke-Anthes (1976)
- Oceanography (QG model) : Verron-Holland (1989)
- Atmosphere (meso-scale) : Stauffer-Seaman (1990)
- Optimal determination of the nudging coeffcients :

Zou-Navon-Le Dimet (1992), Stauffer-Bao (1993),
Vidard-Le Dimet-Piacentini (2003)

Direct Nudging : linear case

Luenberger observer, or asymptotic observer
(Luenberger, 1966)

$$
\begin{aligned}
& \left\{\begin{array}{l}
\frac{d X}{d t}=F X+K\left(X_{o b s}-C X\right) \\
\frac{d \hat{X}}{d t}=F \hat{X}, \quad X_{o b s}=C \hat{X}
\end{array}\right. \\
& \frac{d}{d t}(X-\hat{X})=(F-K C)(X-\hat{X})
\end{aligned}
$$

If $F-K C$ is a Hurwitz matrix, i.e. its spectrum is strictly included in the half-plane $\{\lambda \in \mathbb{C} ; \operatorname{Re}(\lambda)<0\}$, then $X \rightarrow \hat{X}$ when $t \rightarrow+\infty$.

Backward nudging

Backward model :
(Auroux, 2003)

$$
\left\{\begin{array}{l}
\frac{d \tilde{X}}{d t}=F(\tilde{X}), \quad T>t>0 \\
\tilde{X}(T)=\tilde{x}_{T}
\end{array}\right.
$$

If we apply nudging to this backward model :

$$
\left\{\begin{array}{l}
\frac{d \tilde{X}}{d t}=F(\tilde{X})-K^{\prime}\left(X_{o b s}-C(\tilde{X})\right), \quad T>t>0 \\
\tilde{X}(T)=\tilde{x}_{T}
\end{array}\right.
$$

$t^{\prime}=T-t:$

$$
\left\{\begin{array}{l}
\frac{d \tilde{X}}{d t^{\prime}}=-F(\tilde{X})+K^{\prime}\left(X_{o b s}-C(\tilde{X})\right), \quad 0<t^{\prime}<T \\
\tilde{X}(0)=\tilde{x}_{T}
\end{array}\right.
$$

In the linear case, $-F-K^{\prime} C$ must be a Hurwitz matrix.

BFN : Back and Forth Nudging algorithm

Iterative algorithm (forward and backward resolutions) :

$$
\begin{gathered}
\tilde{X}_{0}(0)=\tilde{x}_{0} \text { (first guess) } \\
\left\{\begin{array}{l}
\frac{d X_{k}}{d t}=F\left(X_{k}\right)+K\left(X_{o b s}-C\left(X_{k}\right)\right) \\
X_{k}(0)=\tilde{X}_{k-1}(0)
\end{array}\right. \\
\left\{\begin{array}{l}
\frac{d \tilde{X}_{k}}{d t}=F\left(\tilde{X}_{k}\right)-K^{\prime}\left(X_{o b s}-C\left(\tilde{X}_{k}\right)\right) \\
\tilde{X}_{k}(T)=X_{k}(T)
\end{array}\right.
\end{gathered}
$$

Cas simplifié $\left(C=I d, K=K^{\prime}\right)$

Convergence in a linear case, with full observations :
D. Auroux, J. Blum, Back and forth nudging algorithm for data assimilation problems, C. R. Acad. Sci. Ser. I, 340, pp. 873-878, 2005.

$$
\begin{gathered}
\lim _{k \rightarrow+\infty} X_{k}(0)=X_{\infty}(0) \\
=\left(I-e^{-2 K T}\right)^{-1} \int_{0}^{T}\left(e^{-(K+F) s}+e^{-2 K T} e^{(K-F) s}\right) K X_{o b s}(s) d s \\
\lim _{k \rightarrow+\infty} X_{k}(t)=X_{\infty}(t)=e^{-(K-F) t} \int_{0}^{t} e^{(K-F) s} K X_{o b s}(s) d s+e^{-(K-F) t} X_{\infty}(0) .
\end{gathered}
$$

If $X_{o b s}(t)=e^{F t} x_{0}$, then, if K and F commute,

$$
X_{\infty}(t)=X_{o b s}(t), \quad \forall t \in[0 ; T] .
$$

Choice of the direct nudging matrix K

Implicit discretization of the direct model equation with nudging :

$$
\frac{X^{n+1}-X^{n}}{\Delta t}=F X^{n+1}+K\left(X_{o b s}-C X^{n+1}\right)
$$

Variational interpretation : direct nudging is a compromise between the minimization of the energy of the system and the quadratic distance to the observations :
$\min _{X}\left[\frac{1}{2}\left\langle X-X^{n}, X-X^{n}\right\rangle-\frac{\Delta t}{2}\langle F X, X\rangle+\frac{\Delta t}{2}\left\langle R^{-1}\left(X_{o b s}-C X\right), X_{o b s}-C X\right\rangle\right]$,
by choosing

$$
K=C^{T} R^{-1}
$$

where R is the covariance matrix of the errors of observation.

Choice of the backward nudging matrix K^{\prime}

The feedback term has a double role :

- stabilization of the backward resolution of the model (irreversible system)
- feedback to the observations

If the system is observable, i.e. $\operatorname{rank}\left[C, C F, \ldots, C F^{N-1}\right]=N$, then there exists a matrix K^{\prime} such that $-F-K^{\prime} C$ is a Hurwitz matrix (pole assignment method).

In practice, $K^{\prime}=k^{\prime} C^{T}$ and k^{\prime} can be chosen as being the smallest value making the backward numerical resolution stable.

4D-VAR

$x_{o b s}(t)$: observations of the system, C : observation operator,
B and R : covariance matrices of background and observation errors respectively.

$$
\begin{aligned}
J\left(x_{0}\right) & =\frac{1}{2}\left(x_{0}-x_{b}\right)^{T} B^{-1}\left(x_{0}-x_{b}\right) \\
& +\frac{1}{2} \int_{0}^{T}\left[x_{o b s}(t)-C(x(t))\right]^{T} R^{-1}\left[x_{o b s}(t)-C(x(t))\right] d t
\end{aligned}
$$

Optimality System

Optimization under constraints :

$$
\mathcal{L}\left(x_{0}, x, p\right)=J\left(x_{0}\right)+\int_{0}^{T}\left\langle p, \frac{d x}{d t}-F(x)\right\rangle d t
$$

Direct model : $\left\{\begin{array}{l}\frac{d x}{d t}=F(x) \\ x(0)=x_{0}\end{array}\right.$

Adjoint model : $\left\{\begin{aligned}-\frac{d p}{d t} & =\left[\frac{\partial F}{\partial x}\right]^{T} p+C^{T} R^{-1}\left[x_{o b s}(t)-C(x(t))\right] \\ p(T) & =0\end{aligned}\right.$

Gradient of the cost-function : $\frac{\partial J}{\partial x_{0}}=B^{-1}\left(x_{0}-x_{b}\right)-p(0)=0$

Numerical Results Lorenz Equation

Lorenz' equations

$$
\left\{\begin{aligned}
\frac{d x}{d t} & =10(y-x) \\
\frac{d y}{d t} & =28 x-y-x z \\
\frac{d z}{d t} & =-\frac{8}{3} z+x y
\end{aligned}\right.
$$

- Assimilation period : $[0 ; 3]$, forecast : $[3 ; 6]$.
- Time step : 0.001.
- 31 observations (every 100 time steps).

Convergence

FIG. 1 - Difference between the $\mathrm{k}^{\text {th }}$ iterate $X_{k}(0)$ and the exact initial condition $x_{\text {true }}$ for the 3 variables versus the number of BFN iterations.

Convergence

FIG. 2 - Difference between two consecutive BFN iterates for the 3 variables versus the number of BFN iterations.

Convergence

FIG. $3-$ RMS difference between the observations and the BFN identified trajectory versus the BFN iterations.

Comparison with 4D-VAR

FIG. 4 - Evolution in time of the reference trajectory (plain line), and of the trajectories identified by the 4D-VAR (dashed line) and the BFN (dash-dotted line) algorithms, in the case of perfect observations and for the first Lorenz variable x.

Comparison with 4D-VAR

FIG. 5 - Evolution in time of the reference trajectories (plain line), and of the trajectories identified by the 4D-VAR (dashed line) and the BFN (dash-dotted line) algorithms, in the case of noised observations (with a 10% gaussian blank noise) and for the first Lorenz variable x.

Numerical Results Burgers Equation

1D viscous Burgers' equation

$$
\frac{\partial X}{\partial t}+\frac{1}{2} \frac{\partial X^{2}}{\partial s}-\nu \frac{\partial^{2} X}{\partial s^{2}}=0
$$

where X is the state variable, s represents the distance in meters around the $45^{\circ} \mathrm{N}$ constant-latitude circle and t is the time.

The period of the domain is roughly $28.3 \times 10^{6} \mathrm{~m}$. The diffusion coefficient ν is set to $10^{5} \mathrm{~m}^{2} . \mathrm{s}^{-1}$. The time step is one hour, and the assimilation period is roughly one month (700 time steps).
Data : every 10 time steps (10 hours), every 5 gridpoints, 5% RMS blank gaussian error.

Convergence

FIG. $6-$ RMS relative difference between two consecutive iterates of the BFN algorithm versus the number of iterations.

Convergence

FIG. $7-$ RMS relative difference between the BFN iterates and the exact solution versus the number of iterations, at time $t=0$ (a) and at time $t=T$ (b).

Comparison with 4D-VAR

FIG. 8 - Evolution in time of the RMS difference between the reference trajectory and the identified trajectories for the BFN (dotted line) and the 4D-VAR (dash-dotted line) algorithms, in the case of perfect observations.

FIG. 9 - Evolution in time of the RMS difference between the reference trajectory and the identified trajectories for the BFN (dotted line), the 4D-VAR (dash-dotted line) and the BFNpreprocessed 4D-VAR (dashed line) algorithms, in the case of noised observations (with a 5% RMS error).

Conclusions

- Easy implementation (no linearization, no adjoint state, no minimization process)
- Very efficient in the first iterations
- Converges more rapidly than 4D-VAR
- Lower computational and memory costs than 4D-VAR
- Could be an excellent preconditioner for 4D-VAR

Perspective :

Test the algorithm on a primitive equation model, with realistic observations.

Happy Birthday Alain

