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• Open Problems / Future Directions
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Flow through porous medium

porous medium, fully saturated

dissolved ions transported by the flow, e.g. sodium (Na+)
and chlorine (Cl−) ions

crystals attached to the grain surface (porous matrix), e.g.
sodium chloride (NaCl)

precipitation/dissolution reaction on the grain surface

M12 � n1M1 + n2M2
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Model equations
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Flow:

q – fluid velocity (m/s)
p – pressure inside fluid (Pa)
µ – dynamic viscosity (kg/(ms))

Stokes flow:
µ ∆q = ∇p,

∇ · q = 0.

 in Ωt and q = Kvnν, on Γt,

with K = ρf−(n1+n2)ρc

ρf
. (Using the assumption cf + c1 + c2 ≡ ρf)
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Model equations
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Ion concentration:

Precipitation, dissolution reaction:

M12 � n1M1 + n2M2,

Mass conservation for ion concentrations ci (mol/m3) (i = 1,2):
in fluid

∂tci +∇ · (qci −D∇ci) = 0 for x ∈ Ωt

(niρ− ci)vn = Dν · ∇ci for x ∈ Γt
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Dissolution and precipitation rate

Thickness of crystalline layer:

normal velocity of interface between cristals and fluid

vn = rp − rd,

1) Precipitation rate rp (mol/m2s):

rp = kpr(c1, c2) = kp[c1]
n1
+ [c2]

n2
+

2) Dissolution rate rd (mol/m2s)

rd ∈ kdH(d(x,Γw))

where H denotes the set-valued Heaviside graph

H(u) =


{0}, if u < 0,
[0,1], if u = 0,
{1}, if u > 0.
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2D Model: dimensionless equations
Denote ε := l

L
, ...

Assumptions: symmetry w.r.t. y-axis, c1 = c2 = crefuε
uε

t = ∇ · (D∇uε − qεuε),

ε2µ∆qε = ∇pε,

∇ · qε = 0,

uε, qε and pε symmetric around y = 0,

in Ωε(t),


dε

t = k(r(uε)− w)
√

1 + (εdε
x)

2,

w ∈ H(dε),

νε · (D∇uε − qεuε) = −εk(r(uε)− w)(ρ− uε),

qε = −εKk(r(uε)− w)νε,

on Γε(t)

where

Ωε(t) := {(x, y) |0 ≤ x ≤ 1, −ε(1/2− dε(x, t)) ≤ y ≤ ε(1/2− dε(x, t))},
and where

νε = (ε∂xd
ε,−1)T/

√
1 + (ε∂xd

ε)2,
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1D model
Assumptions:

• no flow: q = 0

• 1D

x=h(t)

x=0

wall wall
Fluid

salt

x=1

v(x,t)



∂tv = ∂2
xv, for x ∈ (0, h(t)),

∂xv = 0, for x = 0,

∂xv = (ρ− v)h′(t), for x = h(t),

h′(t) = Da(w(t)− r(v)), for x = h(t),

w(t) ∈ H(1− h(t)).

Theorem: There exists a unique, positive and bounded solution.
(Pop, v.N. IMA J. Appl. Math. 2008) ,

2D/3D: existence and uniqueness are open
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2D Simulation: dissolution in strip

(Movie)

8



Thin strip: upscaling

Formal assymptotics for ε → 0

Assume

uε(x, y, t) = u0(x,
y

ε
, t) + εu1(x,

y

ε
, t) + ε2(...),

qε(x, y, t) = q0(x,
y

ε
, t) + εq1(x,

y

ε
, t) + ε2(...),

pε(x, y, t) = p0(x,
y

ε
, t) + εp1(x,

y

ε
, t) + ε2(...),

dε(x, t) = d0(x, t) + εd1(x, t) + ε2(...).

The vertical coordinate of the variables ui(x, z, t), qi(x, z, t) and
pε(x, z, t) are rescaled. They are defined on

Ω(t) := {(x, z)|0 ≤ x ≤ 1, −1/2 + dε ≤ z ≤ 1/2− dε}.
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Formal asymptotics

Substituting the asymptotic expansions, integrating

along the z-coordinate, and retaining only terms in-

dependent of ε, yields
∂t((1− 2d0)u0 + 2ρd0) = ∂x(D(1− 2d0)∂xu0 − q̄u0),

∂xq̄ − 2K∂td0 = 0,

∂td0 ∈ k(r(u0)−H(d0)),

where

q̄(x, t) =
∫ 1/2−d0(x,t)

−1/2+d0(x,t)
q
(1)
0 (x, z, t) dz.
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Thin strip: upscaled vs. original equations
u

x

d

x

Profiles of both 2-D and effective model, for t = 20 and t = 40.

Thin line: solution of the effective model

Dashed line: 2-D model with ε = 0.1

Dots: 2-D model with ε = 0.01
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Thin strip: traveling wave

Non-negative traveling wave solutions:

u = u(η), d = d(η) and q = q(η) with η = x − at, and

d < 1/2, satisfying

−a((1− 2d)u + 2ρd)′ − ((1− 2d)Du′ − qu)′ = 0,
−ad′ ∈ k(r(u)−H(d)),
q′ + 2aKd′ = 0,

 in R.

and boundary conditions

u(−∞) = u∗, u(∞) = u∗,

d(−∞) = d∗, d(∞) = d∗,

q(−∞) = q∗,

where 0 ≤ u∗, u∗, q∗ and 0 ≤ d∗, d∗ < 1/2.
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Thin strip: traveling wave (2)

I

{
d∗ > 0, d∗ = 0

u∗ = us, 0 ≤ u∗ < us
(dissolution wave)

II

{
d∗ > 0, d∗ = 0

u∗ = us, 0 ≤ u∗ < us
(precipitation wave)

Theorem. No traveling wave exists with boundary conditions
from class II.

Theorem. For any set of boundary conditions from class I, there
exists a traveling wave (unique up to a shift).

(v.N. EJAM 2008)

(Compare to results in Knabner, Van Duijn, EJAM 1997:
crystal layer has infinitesimal thickness, can be obtained as for-
mal limit ρ →∞)
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Perforated Domain
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Level set function S such that Γ = {S = 0}.
Evolution of Γ given by

St + |∇S|vn = St −
1

ρc
(kpr(c1, c2)− kdw(x))|∇S| = 0

Expand Sε
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Perforated Domain: homogenization

Formal assymptotics for ε → 0

Assume

uε(x, t) = u0(x,
x

ε
, t) + εu1(x,

x

ε
, t) + ε2(...),

qε(x, t) = q0(x,
x

ε
, t) + εq1(x,

x

ε
, t) + ε2(...),

pε(x, t) = p0(x,
x

ε
, t) + εp1(x,

x

ε
, t) + ε2(...),

Sε(x, t) = S0(x,
x

ε
, t) + εS1(x,

x

ε
, t) + ε2(...).

Where uk(·, y, ·), qk(·, y, ·), pk(·, y, ·) and Sk(·, y, ·) are 1-periodic in
y.
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Upscaled equations


∂tS0(x, y, t)− f(u0(x, t), y)|∇yS0(x, y, t)| = 0 y ∈ [0,1]2

∂t(|Y0(x, t)|u0) = ∇x · (DA(x, t)∇xu0 − q̄u0) + |Γ0(x, t)|f(u0)ρ x ∈ Ω

q̄ = −1
µ
K(x, t)∇xp0 x ∈ Ω

∇x · q̄ = |Γ0(x, t)|Kf(u0) x ∈ Ω

where

f(u0(x, t), y) = k(u2
0 −Hδ(dist(y,Γ)))

Y0(x, t) = {S0 < 0}
Γ0 = {S0 = 0}

(Hard step: interchange ∇x and integration

|Y0(x, t)|∂tu0 =

∫
Y0(x,t)

∇y · (∇yu2 +∇xu1 − q1u0 − q0u1) dy

+

∫
Y0(x,t)

∇x · (∇yu1 +∇xu0 − q0u0) dy

(v.N. MSS 2008))
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where the tensors A = (aij)i,j and K = (kij)i,j are given by

aij =

∫
Y0(x,t)

δij + ∂yi
vj dy,

where vj solves the cell-problem
∆yvj = 0 y ∈ Y0(x, t)

ν0∇yvj = −ej y ∈ Γ0(x, t)

periodicity in y,

and

kij =

∫
Y0(x,t)

wji dy,

where the vector wj with components wji solves the cell-problem


∆ywj = ∇yπj + ej y ∈ Y0(x, t)

∇y · wj = 0 y ∈ Y0(x, t)

wj = 0 y ∈ Γ0(x, t)

periodicity in y,

with πj the corresponding pressure.
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Simplification: circular grains


∂tR(x, t) = f(u0, R(x, t)) := k(u2

0 −Hδ(R−Rmin)) x ∈ Ω

∂t((1− πR2)u0) = ∇x · (DA(R)∇xu0 − q̄u0) + 2πRf(u0, R)ρ x ∈ Ω

q̄ = −1
µ
K(R)∇xp0 x ∈ Ω

∇x · q̄ = 2πRKf(u0) x ∈ Ω

Periodicity in x2 direction

(Similar simplification is possible for ellipses, not for squares!)
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Perforated domain
upscaled vs. original equations

Profiles of both 2-D and effective model, for t = 10 and t = 40.

Dots: 2-D model with ε = 0.01

Line: effective model
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Open problems / Future directions

* Existence, uniqueness, estimates for microscale free

* boundary model in 2D/3D?

* Rigorous upscaling (phase-field formulation, with

* Ch. Eck)

* Blocking of strip (d = 1/2)?

* Application to biofilm growth models (with R. Helmig)
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