Crystal dissolution and precipitation

 in porous media: formal homogenization and numerical experiments
T.L. van Noorden, I.S. Pop

Centre for Analysis, Scientific Computing and Applications Department of Mathematics, Technische Universiteit Eindhoven

Part of this research has been funded by the Dutch BSIK/BRICKS project

Dubrovnik, 15-10-2008

Outline

- Introduction: crystals in porous media
- Model: free boundary problem
- Thin strip

- Perforated domain

- Open Problems / Future Directions

Flow through porous medium

porous medium, fully saturated
dissolved ions transported by the flow, e.g. sodium ($\mathrm{Na}{ }^{+}$) and chlorine (Cl^{-}) ions
crystals attached to the grain surface (porous matrix), e.g. sodium chloride (NaCl)
precipitation/dissolution reaction on the grain surface

$$
M_{12} \leftrightarrows n_{1} M_{1}+n_{2} M_{2}
$$

Model equations

Flow:
q - fluid velocity (m / s)
p - pressure inside fluid (Pa)
μ - dynamic viscosity (kg/(ms))
Stokes flow: $\left.\begin{array}{rl}\mu \Delta q & =\nabla p, \\ \nabla \cdot q & =0 .\end{array}\right\}$ in Ω_{t} and $q=K v_{n} \nu$, on Γ_{t},
with $K=\frac{\rho_{f}-\left(n_{1}+n_{2}\right) \rho_{c}}{\rho_{f}}$. (Using the assumption $c_{f}+c_{1}+c_{2} \equiv \rho_{f}$)

Model equations

Ion concentration:
Precipitation, dissolution reaction:

$$
M_{12} \leftrightarrows n_{1} M_{1}+n_{2} M_{2},
$$

Mass conservation for ion concentrations $c_{i}\left(\mathrm{~mol} / \mathrm{m}^{3}\right)(i=1,2)$: in fluid

$$
\begin{array}{rll}
\partial_{t} c_{i}+\nabla \cdot\left(q c_{i}-D \nabla c_{i}\right)=0 & \text { for } & x \in \Omega_{t} \\
\left(n_{i} \rho-c_{i}\right) v_{n}=D \nu \cdot \nabla c_{i} & \text { for } & x \in \Gamma_{t}
\end{array}
$$

Dissolution and precipitation rate

Thickness of crystalline layer:
normal velocity of interface between cristals and fluid

$$
v_{n}=r_{p}-r_{d}
$$

1) Precipitation rate $r_{p}\left(\mathrm{~mol} / \mathrm{m}^{2} \mathrm{~s}\right)$:

$$
r_{p}=k_{p} r\left(c_{1}, c_{2}\right)=k_{p}\left[c_{1}\right]_{+}^{n_{1}}\left[c_{2}\right]_{+}^{n_{2}}
$$

2) Dissolution rate $r_{d}\left(\mathrm{~mol} / \mathrm{m}^{2} \mathrm{~s}\right)$

$$
r_{d} \in k_{d} H\left(d\left(x, \Gamma_{w}\right)\right)
$$

where H denotes the set-valued Heaviside graph

$$
H(u)= \begin{cases}\{0\}, & \text { if } u<0 \\ {[0,1],} & \text { if } u=0 \\ \{1\}, & \text { if } u>0\end{cases}
$$

2D Model: dimensionless equations

Denote $\epsilon:=\frac{l}{L}, \ldots$
Assumptions: symmetry w.r.t. y-axis, $c_{1}=c_{2}=c_{r e f} u^{\epsilon}$

$$
\begin{align*}
& \left\{\begin{array}{l}
u_{t}^{\epsilon}=\nabla \cdot\left(D \nabla u^{\epsilon}-q^{\epsilon} u^{\epsilon}\right), \\
\epsilon^{2} \mu \Delta q^{\epsilon}=\nabla p^{\epsilon}, \\
\nabla \cdot q^{\epsilon}=0, \\
u^{\epsilon}, q^{\epsilon} \text { and } p^{\epsilon} \text { symmetric around } y=0, \\
\left\{\begin{array}{l}
d_{t}^{\epsilon}=k\left(r\left(u^{\epsilon}\right)-w\right) \sqrt{1+\left(\epsilon d_{x}^{\epsilon}\right)^{2}}, \\
w \in H\left(d^{\epsilon}\right), \\
\nu^{\epsilon} \cdot\left(D \nabla u^{\epsilon}-q^{\epsilon} u^{\epsilon}\right)=-\epsilon k\left(r\left(u^{\epsilon}\right),\right. \\
q^{\epsilon}=-\epsilon K k\left(r\left(u^{\epsilon}\right)-w\right) \nu^{\epsilon},
\end{array}\right.
\end{array} \text { on } \Gamma^{\epsilon}(t)\right. \tag{t}
\end{align*}
$$

where
$\Omega^{\epsilon}(t):=\left\{(x, y) \mid 0 \leq x \leq 1,-\epsilon\left(1 / 2-d^{\epsilon}(x, t)\right) \leq y \leq \epsilon\left(1 / 2-d^{\epsilon}(x, t)\right)\right\}$, and where

$$
\nu^{\epsilon}=\left(\epsilon \partial_{x} d^{\epsilon},-1\right)^{T} / \sqrt{1+\left(\epsilon \partial_{x} d^{\epsilon}\right)^{2}}
$$

1D model

Assumptions:

- no flow: $q=0$
- 1D

		${ }_{x=1}$	$\left\{\begin{array}{l} \partial_{t} v=\partial_{x}^{2} v, \\ \partial_{x} v=0, \\ \partial_{x} v=(\rho-v) h^{\prime}(t), \\ h^{\prime}(t)=D_{a}(w(t)-r(v)), \\ w(t) \in H(1-h(t)) . \end{array}\right.$	$\begin{aligned} & \text { for } x \in(0, h(t)), \\ & \text { for } x=0, \\ & \text { for } x=h(t), \\ & \text { for } x=h(t), \end{aligned}$

Theorem: There exists a unique, positive and bounded solution. (Pop, v.N. IMA J. Appl. Math. 2008),

2D/3D: existence and uniqueness are open

2D Simulation: dissolution in strip

(Movie)

TU/e

Thin strip: upscaling

Formal assymptotics for $\epsilon \rightarrow 0$
Assume

$$
\begin{aligned}
u^{\epsilon}(x, y, t) & =u_{0}\left(x, \frac{y}{\epsilon}, t\right)+\epsilon u_{1}\left(x, \frac{y}{\epsilon}, t\right)+\epsilon^{2}(\ldots) \\
q^{\epsilon}(x, y, t) & =q_{0}\left(x, \frac{y}{\epsilon}, t\right)+\epsilon q_{1}\left(x, \frac{y}{\epsilon}, t\right)+\epsilon^{2}(\ldots) \\
p^{\epsilon}(x, y, t) & =p_{0}\left(x, \frac{y}{\epsilon}, t\right)+\epsilon p_{1}\left(x, \frac{y}{\epsilon}, t\right)+\epsilon^{2}(\ldots), \\
d^{\epsilon}(x, t) & =d_{0}(x, t)+\epsilon d_{1}(x, t)+\epsilon^{2}(\ldots)
\end{aligned}
$$

The vertical coordinate of the variables $u_{i}(x, z, t), q_{i}(x, z, t)$ and $p^{\epsilon}(x, z, t)$ are rescaled. They are defined on

$$
\Omega(t):=\left\{(x, z) \mid 0 \leq x \leq 1,-1 / 2+d^{\epsilon} \leq z \leq 1 / 2-d^{\epsilon}\right\} .
$$

Formal asymptotics

Substituting the asymptotic expansions, integrating along the z-coordinate, and retaining only terms independent of ϵ, yields
$\left\{\begin{array}{l}\partial_{t}\left(\left(1-2 d_{0}\right) u_{0}+2 \rho d_{0}\right)=\partial_{x}\left(D\left(1-2 d_{0}\right) \partial_{x} u_{0}-\bar{q} u_{0}\right), \\ \partial_{x} \bar{q}-2 K \partial_{t} d_{0}=0, \\ \partial_{t} d_{0} \in k\left(r\left(u_{0}\right)-H\left(d_{0}\right)\right),\end{array}\right.$
where

$$
\bar{q}(x, t)=\int_{-1 / 2+d_{0}(x, t)}^{1 / 2-d^{0}(x, t)} q_{0}^{(1)}(x, z, t) d z .
$$

Thin strip: upscaled vs. original equations

Profiles of both 2-D and effective model, for $t=20$ and $t=40$.
Thin line: solution of the effective model
Dashed line: 2-D model with $\epsilon=0.1$
Dots: 2-D model with $\epsilon=0.01$

Thin strip: traveling wave

Non-negative traveling wave solutions:
$u=u(\eta), d=d(\eta)$ and $q=q(\eta)$ with $\eta=x-a t$, and
$d<1 / 2$, satisfying

$$
\left.\begin{array}{l}
-a((1-2 d) u+2 \rho d)^{\prime}-\left((1-2 d) D u^{\prime}-q u\right)^{\prime}=0, \\
-a d^{\prime} \in k(r(u)-H(d)), \\
q^{\prime}+2 a K d^{\prime}=0,
\end{array}\right\} \quad \text { in } \mathbb{R} .
$$

and boundary conditions

$$
\begin{aligned}
& u(-\infty)=u^{*}, u(\infty)=u_{*}, \\
& d(-\infty)=d^{*}, d(\infty)=d_{*}, \\
& q(-\infty)=q^{*},
\end{aligned}
$$

where $0 \leq u^{*}, u_{*}, q^{*}$ and $0 \leq d^{*}, d_{*}<1 / 2$.

Thin strip: traveling wave (2)

$$
\left.\begin{array}{l}
I \begin{cases}d_{*}>0, & d^{*}=0 \\
u_{*}=u_{s}, & 0 \leq u^{*}<u_{s}\end{cases} \\
I I \begin{cases}d^{*}>0, & d_{*}=0 \\
u^{*}=u_{s}, & 0 \leq u_{*}<u_{s}\end{cases}
\end{array} \text { (dissolution wave) }\right) \text { (precipitation wave) }
$$

Theorem. No traveling wave exists with boundary conditions from class II.

Theorem. For any set of boundary conditions from class I, there exists a traveling wave (unique up to a shift).
(V.N. EJAM 2008)
(Compare to results in Knabner, Van Duijn, EJAM 1997: crystal layer has infinitesimal thickness, can be obtained as formal limit $\rho \rightarrow \infty$)

Perforated Domain

Level set function S such that $\Gamma=\{S=0\}$. Evolution of Γ given by

$$
S_{t}+|\nabla S| v_{n}=S_{t}-\frac{1}{\rho_{c}}\left(k_{p} r\left(c_{1}, c_{2}\right)-k_{d} w(x)\right)|\nabla S|=0
$$

Expand S^{ϵ}

Perforated Domain: homogenization

Formal assymptotics for $\epsilon \rightarrow 0$
Assume

$$
\begin{aligned}
u^{\epsilon}(x, t) & =u_{0}\left(x, \frac{x}{\epsilon}, t\right)+\epsilon u_{1}\left(x, \frac{x}{\epsilon}, t\right)+\epsilon^{2}(\ldots) \\
q^{\epsilon}(x, t) & =q_{0}\left(x, \frac{x}{\epsilon}, t\right)+\epsilon q_{1}\left(x, \frac{x}{\epsilon}, t\right)+\epsilon^{2}(\ldots) \\
p^{\epsilon}(x, t) & =p_{0}\left(x, \frac{x}{\epsilon}, t\right)+\epsilon p_{1}\left(x, \frac{x}{\epsilon}, t\right)+\epsilon^{2}(\ldots), \\
S^{\epsilon}(x, t) & =S_{0}\left(x, \frac{x}{\epsilon}, t\right)+\epsilon S_{1}\left(x, \frac{x}{\epsilon}, t\right)+\epsilon^{2}(\ldots) .
\end{aligned}
$$

Where $u_{k}(\cdot, y, \cdot), q_{k}(\cdot, y, \cdot), p_{k}(\cdot, y, \cdot)$ and $S_{k}(\cdot, y, \cdot)$ are 1-periodic in y.

Upscaled equations

$$
\left\{\begin{array}{lr}
\partial_{t} S_{0}(x, y, t)-f\left(u_{0}(x, t), y\right)\left|\nabla_{y} S_{0}(x, y, t)\right|=0 & y \in[0,1]^{2} \\
\partial_{t}\left(\left|Y_{0}(x, t)\right| u_{0}\right)=\nabla_{x} \cdot\left(D \mathcal{A}(x, t) \nabla_{x} u_{0}-\bar{q} u_{0}\right)+\left|\Gamma_{0}(x, t)\right| f\left(u_{0}\right) \rho & x \in \Omega \\
\bar{q}=-\frac{1}{\mu} \mathcal{K}(x, t) \nabla_{x} p_{0} & x \in \Omega \\
\nabla_{x} \cdot \bar{q}=\left|\Gamma_{0}(x, t)\right| K f\left(u_{0}\right) & x \in \Omega
\end{array}\right.
$$

where

$$
\begin{aligned}
& f\left(u_{0}(x, t), y\right)=k\left(u_{0}^{2}-H_{\delta}(\operatorname{dist}(y, \Gamma))\right) \\
& Y_{0}(x, t)=\left\{S_{0}<0\right\} \\
& \Gamma_{0}=\left\{S_{0}=0\right\}
\end{aligned}
$$

(Hard step: interchange ∇_{x} and integration

$$
\begin{aligned}
\left|Y_{0}(x, t)\right| \partial_{t} u_{0}= & \int_{Y_{0}(x, t)} \nabla_{y} \cdot\left(\nabla_{y} u_{2}+\nabla_{x} u_{1}-q_{1} u_{0}-q_{0} u_{1}\right) d y \\
& +\int_{Y_{0}(x, t)} \nabla_{x} \cdot\left(\nabla_{y} u_{1}+\nabla_{x} u_{0}-q_{0} u_{0}\right) d y
\end{aligned}
$$

(v.N. MSS 2008))
where the tensors $\mathcal{A}=\left(a_{i j}\right)_{i, j}$ and $\mathcal{K}=\left(k_{i j}\right)_{i, j}$ are given by

$$
a_{i j}=\int_{Y_{0}(x, t)} \delta_{i j}+\partial_{y_{i}} v_{j} d y
$$

where v_{j} solves the cell-problem

$$
\begin{cases}\Delta_{y} v_{j}=0 & y \in Y_{0}(x, t) \\ \nu_{0} \nabla_{y} v_{j}=-e_{j} & y \in \Gamma_{0}(x, t) \\ \text { periodicity in } y, & \end{cases}
$$

and

$$
k_{i j}=\int_{Y_{0}(x, t)} w_{j i} d y
$$

where the vector w_{j} with components $w_{j i}$ solves the cell-problem

$$
\begin{cases}\Delta_{y} w_{j}=\nabla_{y} \pi_{j}+e_{j} & y \in Y_{0}(x, t) \\ \nabla_{y} \cdot w_{j}=0 & y \in Y_{0}(x, t) \\ w_{j}=0 & y \in \Gamma_{0}(x, t) \\ \text { periodicity in } y, & \end{cases}
$$

with π_{j} the corresponding pressure.

Simplification: circular grains

$\begin{cases}\partial_{t} R(x, t)=f\left(u_{0}, R(x, t)\right):=k\left(u_{0}^{2}-H_{\delta}\left(R-R_{\min }\right)\right) & x \in \Omega \\ \partial_{t}\left(\left(1-\pi R^{2}\right) u_{0}\right)=\nabla_{x} \cdot\left(D \mathcal{A}(R) \nabla_{x} u_{0}-\bar{q} u_{0}\right)+2 \pi R f\left(u_{0}, R\right) \rho & x \in \Omega \\ \bar{q}=-\frac{1}{\mu} \mathcal{K}(R) \nabla_{x} p_{0} & x \in \Omega \\ \nabla_{x} \cdot \bar{q}=2 \pi R K f\left(u_{0}\right) & x \in \Omega\end{cases}$

Periodicity in x_{2} direction
(Similar simplification is possible for ellipses, not for squares!)

Perforated domain upscaled vs. original equations

Profiles of both 2-D and effective model, for $t=10$ and $t=40$.
Dots: 2-D model with $\epsilon=0.01$
Line: effective model

Open problems / Future directions

* Existence, uniqueness, estimates for microscale free boundary model in 2D/3D?
* Rigorous upscaling (phase-field formulation, with Ch. Eck)
* Blocking of strip $(d=1 / 2)$?
* Application to biofilm growth models (with R. Helmig)

