Scaling Up and Modeling for Transport and Flow in Porous Media Dubrovnik, Croatia, 13-16 October 2008

Analysis and simulation of a two phase flow model with phase apparition/disappearance Application to gas migration in underground nuclear waste repository

F. Smaï¹, A. Bourgeat¹, M. Jurak²

¹ Institut Camille Jordan, UMR 5208 du CNRS

² Department of mathematics, University of Zagreb, Croatia

14 October 2008

Analysis and simulation of a two phase flow model with phase apparition/disappearance

F. Smaï, A. Bourgeat, M. Jurak

Unsaturated two phase flow

Saturated flow

Construction of a saturated/unsaturated model

Analysis and simulation of a two phase flow model with phase apparition/disappearance

F. Smaï, A. Bourgeat, M. Jurak

Unsaturated two phase flow

Saturated flow

Construction of a saturated/unsaturated model

Analysis and simulation

Production of hydrogen in the storage

Analysis and simulation of a two phase flow model with phase apparition/disappearance

F. Smaï, A. Bourgeat, M. Jurak

Unsaturated two phase flow

Saturated flow

Construction of a saturated/unsaturated model

- Production of hydrogen in the storage
- Problem of the gas phase apparition/disappearance

Analysis and simulation of a two phase flow model with phase apparition/disappearance

F. Smaï, A. Bourgeat, M. Jurak

Unsaturated two phase flow

Saturated flow

Construction of a saturated/unsaturated model

- Production of hydrogen in the storage
- Problem of the gas phase apparition/disappearance
 - > 2 kinds of flow : saturated (liquid) et unsaturated (liquid/gas)

Analysis and simulation of a two phase flow model with phase apparition/disappearance

F. Smaï, A. Bourgeat, M. Jurak

Unsaturated two phase flow

Saturated flow

Construction of a saturated/unsaturated model

- Production of hydrogen in the storage
- Problem of the gas phase apparition/disappearance
 - > 2 kinds of flow : saturated (liquid) et unsaturated (liquid/gas)
- Saturated/unsaturated global formulation ?

Outline

Unsaturated two phase flow

Physical assumptions of the model Unsaturated flow equations

Saturated flow

Construction of a saturated/unsaturated model Choice of suitable variables Formulation in (p_l, X)

Analysis and simulation

Existence of solutions Numerical test description implementation results Analysis and simulation of a two phase flow model with phase apparition/disappearance

F. Smaï, A. Bourgeat, M. Jurak

Unsaturated two phase flow

Saturated flow

Construction of a saturated/unsaturated model

Physical assumptions of the model

> 2 phases : liquid (incompressible) and gas (compressible)

Analysis and simulation of a two phase flow model with phase apparition/disappearance

F. Smaï, A. Bourgeat, M. Jurak

Unsaturated two phase flow

Physical assumptions of the model

Unsaturated flow equations

Saturated flow

Construction of a saturated/unsaturated model

Physical assumptions of the model

- > 2 phases : liquid (incompressible) and gas (compressible)
- 2 components : water and hydrogen

Analysis and simulation of a two phase flow model with phase apparition/disappearance

F. Smaï, A. Bourgeat, M. Jurak

Unsaturated two phase flow

Physical assumptions of the model

Unsaturated flow equations

Saturated flow

Construction of a saturated/unsaturated model

Physical assumptions of the model

- > 2 phases : liquid (incompressible) and gas (compressible)
- 2 components : water and hydrogen
- Mass conservation for each component

Analysis and simulation of a two phase flow model with phase apparition/disappearance

F. Smaï, A. Bourgeat, M. Jurak

Unsaturated two phase flow

Physical assumptions of the model

Unsaturated flow equations

Saturated flow

Construction of a saturated/unsaturated model

Physical assumptions of the model

- > 2 phases : liquid (incompressible) and gas (compressible)
- 2 components : water and hydrogen
- Mass conservation for each component
- Generalized Darcy law for each phase

Analysis and simulation of a two phase flow model with phase apparition/disappearance

F. Smaï, A. Bourgeat, M. Jurak

Unsaturated two phase flow

Physical assumptions of the model

Unsaturated flow equations

Saturated flow

Construction of a saturated/unsaturated model

Physical assumptions of the model

- > 2 phases : liquid (incompressible) and gas (compressible)
- 2 components : water and hydrogen
- Mass conservation for each component
- Generalized Darcy law for each phase
- Diffusion of dissolved hydrogen in the liquid phase

Analysis and simulation of a two phase flow model with phase apparition/disappearance

F. Smaï, A. Bourgeat, M. Jurak

Unsaturated two phase flow

Physical assumptions of the model

Unsaturated flow equations

Saturated flow

Construction of a saturated/unsaturated model

Physical assumptions of the model

- > 2 phases : liquid (incompressible) and gas (compressible)
- 2 components : water and hydrogen
- Mass conservation for each component
- Generalized Darcy law for each phase
- Diffusion of dissolved hydrogen in the liquid phase
- Capillary pressure law : $p_g p_l = p_c(S_g)$

Analysis and simulation of a two phase flow model with phase apparition/disappearance

F. Smaï, A. Bourgeat, M. Jurak

Unsaturated two phase flow

Physical assumptions of the model

Unsaturated flow equations

Saturated flow

Construction of a saturated/unsaturated model

Physical assumptions of the model

- > 2 phases : liquid (incompressible) and gas (compressible)
- 2 components : water and hydrogen
- Mass conservation for each component
- Generalized Darcy law for each phase
- Diffusion of dissolved hydrogen in the liquid phase
- Capillary pressure law : $p_g p_l = p_c(S_g)$
- Thermodynamical equilibrium between liquid solution and gaseous mixture (Henry and Raoult laws)

Analysis and simulation of a two phase flow model with phase apparition/disappearance

F. Smaï, A. Bourgeat, M. Jurak

Unsaturated two phase flow

Physical assumptions of the model

Unsaturated flow equations

Saturated flow

Construction of a saturated/unsaturated model

Physical assumptions of the model

- > 2 phases : liquid (incompressible) and gas (compressible)
- 2 components : water and hydrogen
- Mass conservation for each component
- Generalized Darcy law for each phase
- Diffusion of dissolved hydrogen in the liquid phase
- Capillary pressure law : $p_g p_l = p_c(S_g)$
- Thermodynamical equilibrium between liquid solution and gaseous mixture (Henry and Raoult laws)
- Ideal gas law

Analysis and simulation of a two phase flow model with phase apparition/disappearance

F. Smaï, A. Bourgeat, M. Jurak

Unsaturated two phase flow

Physical assumptions of the model

Unsaturated flow equations

Saturated flow

Construction of a saturated/unsaturated model

Physical assumptions of the model

- > 2 phases : liquid (incompressible) and gas (compressible)
- 2 components : water and hydrogen
- Mass conservation for each component
- Generalized Darcy law for each phase
- Diffusion of dissolved hydrogen in the liquid phase
- Capillary pressure law : $p_g p_l = p_c(S_g)$
- Thermodynamical equilibrium between liquid solution and gaseous mixture (Henry and Raoult laws)
- Ideal gas law
- Isothermal flow

Analysis and simulation of a two phase flow model with phase apparition/disappearance

F. Smaï, A. Bourgeat, M. Jurak

Unsaturated two phase flow

Physical assumptions of the model

Unsaturated flow equations

Saturated flow

Construction of a saturated/unsaturated model

Physical assumptions of the model

- > 2 phases : liquid (incompressible) and gas (compressible)
- 2 components : water and hydrogen
- Mass conservation for each component
- Generalized Darcy law for each phase
- Diffusion of dissolved hydrogen in the liquid phase
- Capillary pressure law : $p_g p_l = p_c(S_g)$
- Thermodynamical equilibrium between liquid solution and gaseous mixture (Henry and Raoult laws)
- Ideal gas law
- Isothermal flow
- Additional assumption : no water vapor

Analysis and simulation of a two phase flow model with phase apparition/disappearance

F. Smaï, A. Bourgeat, M. Jurak

Unsaturated two phase flow

Physical assumptions of the model

Unsaturated flow equations

Saturated flow

Construction of a saturated/unsaturated model

Unsaturated flow equations

The unsaturated flow is described by :

$$\begin{split} \Phi \frac{\partial S_l}{\partial t} + \operatorname{div}\left(\mathbf{q}_l - \frac{1}{G}\mathbf{J}\right) &= \mathcal{F}^w / \rho_l^{std} \\ \Phi \frac{\partial}{\partial t} (C_h S_l p_g + C_v p_g S_g) + \operatorname{div}\left(C_h p_g \mathbf{q}_l + C_v p_g \mathbf{q}_g + \mathbf{J}\right) &= \mathcal{F}^h / \rho_g^{std} \end{split}$$

with usual primary variables : (p_l, S_l) ou (p_l, p_g) .

Analysis and simulation of a two phase flow model with phase apparition/disappearance

F. Smaï, A. Bourgeat, M. Jurak

Unsaturated two phase flow

Physical assumptions of the model

Unsaturated flow equations

Saturated flow

Construction of a saturated/unsaturated model

Unsaturated flow equations

The unsaturated flow is described by :

$$\Phi \frac{\partial S_l}{\partial t} + \operatorname{div}\left(\mathbf{q}_l - \frac{1}{G}\mathbf{J}\right) = \mathcal{F}^w / \rho_l^{std}$$
$$\Phi \frac{\partial}{\partial t} (C_h S_l p_g + C_v p_g S_g) + \operatorname{div}\left(C_h p_g \mathbf{q}_l + C_v p_g \mathbf{q}_g + \mathbf{J}\right) = \mathcal{F}^h / \rho_g^{st}$$

with usual primary variables : (p_l, S_l) ou (p_l, p_g) .

Where we denote fluxes :
$$\begin{split} \mathbf{q}_l &= -\mathbb{K}\frac{kr_l}{\mu_l}\left(\nabla p_l - (\rho_l^{std} + C_h\rho_g^{std}p_g)\mathbf{g}\right), \\ \mathbf{q}_g &= -\mathbb{K}\frac{kr_g}{\mu_g}\left(\nabla p_g - C_v\rho_g^{std}p_g\mathbf{g}\right), \\ \mathbf{J} &= -\frac{\Phi S_l F}{C_h p_g + F}D_l^h C_h \nabla p_g, \end{split}$$

Analysis and simulation of a two phase flow model with phase apparition/disappearance

F. Smaï, A. Bourgeat, M. Jurak

Unsaturated two phase flow

Physical assumptions of the model Unsaturated flow equations

Saturated flow

Construction of a saturated/unsaturated model

Unsaturated flow equations

The unsaturated flow is described by :

$$\Phi \frac{\partial S_l}{\partial t} + \operatorname{div}\left(\mathbf{q}_l - \frac{1}{G}\mathbf{J}\right) = \mathcal{F}^w / \rho_l^{std}$$
$$\Phi \frac{\partial}{\partial t} (C_h S_l p_g + C_v p_g S_g) + \operatorname{div}\left(C_h p_g \mathbf{q}_l + C_v p_g \mathbf{q}_g + \mathbf{J}\right) = \mathcal{F}^h / \rho_g^{st}$$

with usual primary variables : (p_l, S_l) ou (p_l, p_g) .

Where we denote fluxes :
$$\mathbf{q}_l = -\mathbb{K} \frac{kr_l}{\mu_l} \left(\nabla p_l - (\rho_l^{std} + C_h \rho_g^{std} p_g) \mathbf{g} \right),$$

 $\mathbf{q}_g = -\mathbb{K} \frac{kr_g}{\mu_g} \left(\nabla p_g - C_v \rho_g^{std} p_g \mathbf{g} \right),$
 $\mathbf{J} = -\frac{\Phi S_l F}{C_h p_g + F} D_l^h C_h \nabla p_g,$

and constants :

$$C_h = \frac{H(T)M^h}{\rho_g^{std}} , \ C_v = \frac{M^h}{RT\rho_g^{std}} , \ G = \frac{\rho_l^{std}}{\rho_g^{std}}, \ F = \frac{M^h \rho_l^{std}}{M^w \rho_g^{std}} .$$

Analysis and simulation of a two phase flow model with phase apparition/disappearance

F. Smaï, A. Bourgeat, M. Jurak

Unsaturated two phase flow

Physical assumptions of the model Unsaturated flow equations

Saturated flow

Construction of a saturated/unsaturated model

• Liquid saturated flow : $S_l \equiv 1$ and p_g non definite

Analysis and simulation of a two phase flow model with phase apparition/disappearance

F. Smaï, A. Bourgeat, M. Jurak

Unsaturated two phase flow

Saturated flow

Construction of a saturated/unsaturated model

- \blacktriangleright Liquid saturated flow : $S_l \equiv 1$ and p_g non definite
 - Classical Darcy law for liquid flow (water + dissolved hydrogen)

Analysis and simulation of a two phase flow model with phase apparition/disappearance

F. Smaï, A. Bourgeat, M. Jurak

Unsaturated two phase flow

Saturated flow

Construction of a saturated/unsaturated model

- \blacktriangleright Liquid saturated flow : $S_l \equiv 1$ and p_g non definite
 - Classical Darcy law for liquid flow (water + dissolved hydrogen)
 - Dissolved hydrogen transported by diffusion and convection

Analysis and simulation of a two phase flow model with phase apparition/disappearance

F. Smaï, A. Bourgeat, M. Jurak

Unsaturated two phase flow

Saturated flow

Construction of a saturated/unsaturated model

- \blacktriangleright Liquid saturated flow : $S_l \equiv 1$ and p_g non definite
 - Classical Darcy law for liquid flow (water + dissolved hydrogen)
 - Dissolved hydrogen transported by diffusion and convection

• We denote $R_s = \frac{\rho_l^h}{\rho_g^{std}}$, The (saturated) flow of the solution (water + dissolved hydrogen) is described by :

$$\begin{aligned} \mathsf{div}\left(\mathbf{q}_{l} - \frac{1}{G}\mathbf{J}\right) &= \mathcal{F}^{w}/\rho_{l}^{std}\\ \Phi \frac{\partial R_{s}}{\partial t} + \mathsf{div}\Big(R_{s}\mathbf{q}_{l} + \mathbf{J}\Big) &= \mathcal{F}^{h}/\rho_{g}^{std} \end{aligned}$$

Analysis and simulation of a two phase flow model with phase apparition/disappearance

F. Smaï, A. Bourgeat, M. Jurak

Unsaturated two phase flow

Saturated flow

Construction of a saturated/unsaturated model

- \blacktriangleright Liquid saturated flow : $S_l \equiv 1$ and p_g non definite
 - Classical Darcy law for liquid flow (water + dissolved hydrogen)
 - Dissolved hydrogen transported by diffusion and convection

• We denote $R_s = \frac{\rho_l^h}{\rho_g^{std}}$, The (saturated) flow of the solution (water + dissolved hydrogen) is described by :

$$\begin{split} \operatorname{div}\left(\mathbf{q}_{l} - \frac{1}{G}\mathbf{J}\right) &= \mathcal{F}^{w}/\rho_{l}^{std}\\ \Phi \frac{\partial R_{s}}{\partial t} + \operatorname{div}\left(R_{s}\mathbf{q}_{l} + \mathbf{J}\right) &= \mathcal{F}^{h}/\rho_{g}^{std} \end{split}$$

• Usual primary variables : (p_l, R_s)

Analysis and simulation of a two phase flow model with phase apparition/disappearance

F. Smaï, A. Bourgeat, M. Jurak

Unsaturated two phase flow

Saturated flow

Construction of a saturated/unsaturated model

- Liquid saturated flow : $S_l \equiv 1$ and p_g non definite
 - Classical Darcy law for liquid flow (water + dissolved hydrogen)
 - Dissolved hydrogen transported by diffusion and convection

• We denote $R_s = \frac{\rho_l^h}{\rho_g^{std}}$, The (saturated) flow of the solution (water + dissolved hydrogen) is described by :

$$\begin{split} \operatorname{div}\left(\mathbf{q}_{l}-\frac{1}{G}\mathbf{J}\right) &= \mathcal{F}^{w}/\rho_{l}^{std}\\ \Phi\frac{\partial R_{s}}{\partial t} + \operatorname{div}\!\left(R_{s}\mathbf{q}_{l}+\mathbf{J}\right) &= \mathcal{F}^{h}/\rho_{g}^{std} \end{split}$$

• Usual primary variables : (p_l, R_s)

How to globally describe saturated and unsaturated flows ?

Analysis and simulation of a two phase flow model with phase apparition/disappearance

F. Smaï, A. Bourgeat, M. Jurak

Unsaturated two phase flow

Saturated flow

Construction of a saturated/unsaturated model

Choice of suitable variables

Usual primary variables

Analysis and simulation of a two phase flow model with phase apparition/disappearance

F. Smaï, A. Bourgeat, M. Jurak

Unsaturated two phase flow

Saturated flow

Construction of a saturated/unsaturated model

Choice of suitable variables

 $\begin{array}{c} \text{Formulation in} \\ (p_l, X) \end{array}$

Choice of suitable variables

- Usual primary variables
 - unsaturated : pressure/pressure or pressure/saturation

Analysis and simulation of a two phase flow model with phase apparition/disappearance

F. Smaï, A. Bourgeat, M. Jurak

Unsaturated two phase flow

Saturated flow

Construction of a saturated/unsaturated model

Choice of suitable variables

 $\begin{array}{c} \text{Formulation in} \\ (p_l, X) \end{array}$

Choice of suitable variables

- Usual primary variables
 - unsaturated : pressure/pressure or pressure/saturation
 - saturated : pressure/concentration

Analysis and simulation of a two phase flow model with phase apparition/disappearance

F. Smaï, A. Bourgeat, M. Jurak

Unsaturated two phase flow

Saturated flow

Construction of a saturated/unsaturated model

Choice of suitable variables

 $\begin{array}{c} \text{Formulation in} \\ (p_l, X) \end{array}$

Choice of suitable variables

- Usual primary variables
 - unsaturated : pressure/pressure or pressure/saturation
 - saturated : pressure/concentration
- Introduction of a new variable

$$X = R_s S_l + C_v p_g S_g$$

Analysis and simulation of a two phase flow model with phase apparition/disappearance

F. Smaï, A. Bourgeat, M. Jurak

Unsaturated two phase flow

Saturated flow

Construction of a saturated/unsaturated model

Choice of suitable variables

 $\begin{array}{c} \text{Formulation in} \\ (p_l, X) \end{array}$

Choice of suitable variables

- Usual primary variables
 - unsaturated : pressure/pressure or pressure/saturation
 - saturated : pressure/concentration
- Introduction of a new variable

 $X = R_s S_l + C_v p_g S_g$

► (p_l, X) is well definite in the 2 states of flow (saturated/unsaturated) Analysis and simulation of a two phase flow model with phase apparition/disappearance

F. Smaï, A. Bourgeat, M. Jurak

Unsaturated two phase flow

Saturated flow

Construction of a saturated/unsaturated model

Choice of suitable variables

 $\begin{array}{c} \text{Formulation in} \\ (p_l, X) \end{array}$

Choice of suitable variables

- Usual primary variables
 - unsaturated : pressure/pressure or pressure/saturation
 - saturated : pressure/concentration
- Introduction of a new variable

 $X = R_s S_l + C_v p_g S_g$

- ► (p_l, X) is well definite in the 2 states of flow (saturated/unsaturated)
- ► State of flow characterization unsaturated : X > C_h(p_l + p_c(0))

saturated : $X \leq C_h(p_l + p_c(0))$

Analysis and simulation of a two phase flow model with phase apparition/disappearance

F. Smaï, A. Bourgeat, M. Jurak

Unsaturated two phase flow

Saturated flow

Construction of a saturated/unsaturated model

Choice of suitable variables

 $\begin{array}{c} \text{Formulation in} \\ (p_l, X) \end{array}$

Choice of suitable variables

- Usual primary variables
 - unsaturated : pressure/pressure or pressure/saturation
 - saturated : pressure/concentration
- Introduction of a new variable

$$X = R_s S_l + C_v p_g S_g$$

- ► (p_l, X) is well definite in the 2 states of flow (saturated/unsaturated)
- ► State of flow characterization unsaturated : X > C_h(p_l + p_c(0))

saturated :
$$X \leq C_h(p_l + p_c(0))$$

 $X \equiv R_s$

Analysis and simulation of a two phase flow model with phase apparition/disappearance

F. Smaï, A. Bourgeat, M. Jurak

Unsaturated two phase flow

Saturated flow

Construction of a saturated/unsaturated model

Choice of suitable variables

 $\begin{array}{c} \text{Formulation in} \\ (p_l, X) \end{array}$

Choice of suitable variables

Unsaturated :

usual primary variables (p_l, S_l) and (p_l, p_g)

$$\begin{split} &\Phi \frac{\partial S_l}{\partial t} + \mathsf{div} \left(\mathbf{q}_l - \frac{1}{G} \mathbf{J} \right) = \mathcal{F}^w / \rho_l^{std} \\ &\Phi \frac{\partial X}{\partial t} + \mathsf{div} \left(R_s \mathbf{q}_l + C_v p_g \mathbf{q}_g + \mathbf{J} \right) = \mathcal{F}^h / \rho_g^{std} \end{split}$$

Analysis and simulation of a two phase flow model with phase apparition/disappearance

F. Smaï, A. Bourgeat, M. Jurak

Unsaturated two phase flow

Saturated flow

Construction of a saturated/unsaturated model

Choice of suitable variables

Formulation in (p_l, X)

Analysis and simulation

Saturated :

usual primary variables (p_l, R_s)

$$\begin{split} \operatorname{div}\left(\mathbf{q}_{l}-\frac{1}{G}\mathbf{J}\right) &= \mathcal{F}^{w}/\rho_{l}^{std}\\ \frac{\partial R_{s}}{\partial t} + \operatorname{div}\left(R_{s}\mathbf{q}_{l}+\mathbf{J}\right) &= \mathcal{F}^{h}/\rho_{g}^{std} \end{split}$$

Construction of a saturated/unsaturated model Formulation in (p_l, X)

► The saturated/unsaturated flow may be described with primary variables (p_l, X) by only one couple of equations :

$$\begin{split} \Phi \frac{\partial}{\partial t} (X - GS_g) + \mathsf{div} \Big((G + R_s) \mathbf{q}_l + C_v p_g \mathbf{q}_g \Big) &= G \frac{\mathcal{F}^w}{\rho_l^{std}} + \frac{\mathcal{F}^h}{\rho_g^{std}} \\ \Phi \frac{\partial X}{\partial t} + \mathsf{div} \Big(R_s \mathbf{q}_l + C_v p_g \mathbf{q}_g + \mathbf{J} \Big) &= \frac{\mathcal{F}^h}{\rho_g^{std}} \end{split}$$

Analysis and simulation of a two phase flow model with phase apparition/disappearance

F. Smaï, A. Bourgeat, M. Jurak

Unsaturated two phase flow

Saturated flow

Construction of a saturated/unsaturated model

Choice of suitable variables Formulation in (p_1, X)

Construction of a saturated/unsaturated model Formulation in (p_l, X)

► The saturated/unsaturated flow may be described with primary variables (p_l, X) by only one couple of equations :

$$\begin{split} \Phi \frac{\partial}{\partial t} (X - GS_g) + \mathsf{div} \Big((G + R_s) \mathbf{q}_l + C_v p_g \mathbf{q}_g \Big) &= G \frac{\mathcal{F}^w}{\rho_l^{std}} + \frac{\mathcal{F}^h}{\rho_g^{std}} \\ \Phi \frac{\partial X}{\partial t} + \mathsf{div} \Big(R_s \mathbf{q}_l + C_v p_g \mathbf{q}_g + \mathbf{J} \Big) &= \frac{\mathcal{F}^h}{\rho_g^{std}} \end{split}$$

▶ 1st equation is parabolic/elliptic in p_l , 2^{nde} equation is parabolic in X.

Analysis and simulation of a two phase flow model with phase apparition/disappearance

F. Smaï, A. Bourgeat, M. Jurak

Unsaturated two phase flow

Saturated flow

Construction of a saturated/unsaturated model

Choice of suitable variables Formulation in (p_1, X)

Analysis and simulation

Existence of solutions

► We consider the simplified formulation :

$$\begin{cases} \Phi \frac{\partial S_l}{\partial t} + \operatorname{div}(\mathbf{q}_l + \mathbf{0}) = \mathcal{F}^w / \rho_l^{std} \\ \Phi \frac{\partial X}{\partial t} + \operatorname{div}(R_s \mathbf{q}_l + C_v p_g \mathbf{q}_g + \mathbf{J}) = \mathcal{F}^h / \rho_g^{std} \end{cases}$$

Analysis and simulation of a two phase flow model with phase apparition/disappearance

F. Smaï, A. Bourgeat, M. Jurak

Unsaturated two phase flow

Saturated flow

Construction of a saturated/unsaturated model

Analysis and simulation

Existence of solutions Numerical test description implementation results
Existence of solutions

► We consider the simplified formulation :

$$\begin{cases} \Phi \frac{\partial S_l}{\partial t} + \operatorname{div}(\mathbf{q}_l + \mathbf{0}) = \mathcal{F}^w / \rho_l^{std} \\ \Phi \frac{\partial X}{\partial t} + \operatorname{div}(R_s \mathbf{q}_l + C_v p_g \mathbf{q}_g + \mathbf{J}) = \mathcal{F}^h / \rho_g^{std} \end{cases}$$

We can show the following existence result :

Analysis and simulation of a two phase flow model with phase apparition/disappearance

F. Smaï, A. Bourgeat, M. Jurak

Unsaturated two phase flow

Saturated flow

Construction of a saturated/unsaturated model

Analysis and simulation

Existence of solutions

► We consider the simplified formulation :

$$\begin{cases} \Phi \frac{\partial S_l}{\partial t} + \operatorname{div} (\mathbf{q}_l + \mathbf{0}) = \mathcal{F}^w / \rho_l^{std} \\ \Phi \frac{\partial X}{\partial t} + \operatorname{div} (R_s \mathbf{q}_l + C_v p_g \mathbf{q}_g + \mathbf{J}) = \mathcal{F}^h / \rho_g^{std} \end{cases}$$

We can show the following existence result :

Suppose $r_{min} \leq R_s \leq r_{max}$ and $p_l \geq 0$ and assume that initial and Dirichlet conditions are enough regular. Then there is a weak solution to the simplified formulation. Analysis and simulation of a two phase flow model with phase apparition/disappearance

F. Smaï, A. Bourgeat, M. Jurak

Unsaturated two phase flow

Saturated flow

Construction of a saturated/unsaturated model

Analysis and simulation

Existence of solutions

Numerical test description implementation results

Existence of solutions

► We consider the simplified formulation :

$$\begin{cases} \Phi \frac{\partial S_l}{\partial t} + \operatorname{div} (\mathbf{q}_l + \mathbf{0}) = \mathcal{F}^w / \rho_l^{std} \\ \Phi \frac{\partial X}{\partial t} + \operatorname{div} (R_s \mathbf{q}_l + C_v p_g \mathbf{q}_g + \mathbf{J}) = \mathcal{F}^h / \rho_g^{std} \end{cases}$$

We can show the following existence result :

Suppose $r_{min} \leq R_s \leq r_{max}$ and $p_l \geq 0$ and assume that initial and Dirichlet conditions are enough regular. Then there is a weak solution to the simplified formulation.

 A well chosen variable change allows to apply the Alt-Luckhaus theorem in order to prove existence of a solution. Analysis and simulation of a two phase flow model with phase apparition/disappearance

F. Smaï, A. Bourgeat, M. Jurak

Unsaturated two phase flow

Saturated flow

Construction of a saturated/unsaturated model

Analysis and simulation

Existence of solutions

Numerical test description implementation results

Numerical test : a simple configuration

Analysis and simulation of a two phase flow model with phase apparition/disappearance

F. Smaï, A. Bourgeat, M. Jurak

Unsaturated two phase flow

Saturated flow

Construction of a saturated/unsaturated model

Analysis and simulation

Numerical test : a simple configuration

$$\phi^{\mathsf{w}} \cdot \boldsymbol{n} = 0$$
$$\phi^{\mathsf{h}} \cdot \boldsymbol{n} = 0$$

 $\phi^{\mathsf{w}} \cdot \boldsymbol{n} = 0$ $\phi^{\mathsf{h}} \cdot \boldsymbol{n} = 0$

 $\phi^{\mathsf{W}} \cdot \boldsymbol{n} = 0$ $\phi^{\mathsf{h}} \cdot \boldsymbol{n} = Q^{\mathsf{h}}_{in}$

$$X = X_{out}$$
$$p_l = p_{l,out}$$

F. Smaï, A. Bourgeat, M. Jurak Unsaturated two phase

Analysis and

simulation of a two phase flow model with phase appari-

tion/disappearance

Saturated flow

flow

Construction of a saturated/unsaturated model

Analysis and simulation

Existence of solutions Numerical test description implementation results

Boundary conditions :

- Injection of pure gas on left side
- Impervious condition on top and bottom side
- Pure water $(X_{out} = 0)$ at fixed pressure on right side

Numerical test : a simple configuration

$$\phi^{\mathsf{w}} \cdot \boldsymbol{n} = 0$$
$$\phi^{\mathsf{h}} \cdot \boldsymbol{n} = 0$$

 $\phi^{\mathsf{w}} \cdot \boldsymbol{n} = 0$ $\phi^{\mathsf{h}} \cdot \boldsymbol{n} = 0$

 $\phi^{\mathsf{w}} \cdot \boldsymbol{n} = 0$ $\phi^{\mathsf{h}} \cdot \boldsymbol{n} = Q^{\mathsf{h}}_{in}$

Boundary conditions :

- Injection of pure gas on left side
- Impervious condition on top and bottom side
- Pure water $(X_{out} = 0)$ at fixed pressure on right side
- Initial conditions :

stationary state without injection $(Q_{in}^{h} = 0)$

Analysis and simulation of a two phase flow model with phase apparition/disappearance

F. Smaï, A. Bourgeat, M. Jurak

Unsaturated two phase flow

Saturated flow

Construction of a saturated/unsaturated model

Analysis and simulation

Numerical test : a simple configuration

 Van Genuchten-Mualem model for capillary pressure and relative permeabilities

• Fixed temperature,
$$T = 303 \ K$$

Porous medium parameters			Fluid characteristics		
Parameter	Value		Parameter	Value	
k	$5 \ 10^{-20}$	m^2	D_l^h	$3 10^{-9}$	m^2/s
Φ	0.15	(-)	μ_l	$1 10^{-3}$	Pa.s
P_r	$2 \ 10^{6}$	Pa	μ_g	$9 10^{-6}$	Pa.s
n	1.49	(-)	H(T = 303K)	$7.65 \ 10^{-6}$	$mol/Pa/m^3$
S_{lr}	0.4	(-)	M_l	10^{-2}	kg/mol
S_{gr}	0	(-)	M_g	$2 10^{-3}$	kg/mol
			ρ_l^{std}	10^{3}	kg/m^3
			ρ_q^{std}	$8 \ 10^{-2}$	kg/m^3

Parameter	Value		
L_x	200	m	
L_y	20	m	
Q^h	$1.5 \ 10^{-5}$	m/year	
$p_{l,out}$	10^{6}	Pa	
T_{simul}	$5 \ 10^5$	y ears	

Analysis and simulation of a two phase flow model with phase apparition/disappearance

F. Smaï, A. Bourgeat, M. Jurak

Unsaturated two phase flow

Saturated flow

Construction of a saturated/unsaturated model

Analysis and simulation

Numerical test : implementation

Fully implicit time discretization of the space/time pde system

Analysis and simulation of a two phase flow model with phase apparition/disappearance

F. Smaï, A. Bourgeat, M. Jurak

Unsaturated two phase flow

Saturated flow

Construction of a saturated/unsaturated model

Analysis and simulation

Numerical test : implementation

- Fully implicit time discretization of the space/time pde system
- Fixed point iteration to solve nonlinearities of the space pde system

Analysis and simulation of a two phase flow model with phase apparition/disappearance

F. Smaï, A. Bourgeat, M. Jurak

Unsaturated two phase flow

Saturated flow

Construction of a saturated/unsaturated model

Analysis and simulation

Numerical test : implementation

- Fully implicit time discretization of the space/time pde system
- Fixed point iteration to solve nonlinearities of the space pde system
- Spatial discretization of the linear pde with a MHFE method

Analysis and simulation of a two phase flow model with phase apparition/disappearance

F. Smaï, A. Bourgeat, M. Jurak

Unsaturated two phase flow

Saturated flow

Construction of a saturated/unsaturated model

Analysis and simulation

Numerical test : implementation

- Fully implicit time discretization of the space/time pde system
- Fixed point iteration to solve nonlinearities of the space pde system
- Spatial discretization of the linear pde with a MHFE method
- Blockwise Gauss-Seidel method to solve the 2 coupled linear systems

Analysis and simulation of a two phase flow model with phase apparition/disappearance

F. Smaï, A. Bourgeat, M. Jurak

Unsaturated two phase flow

Saturated flow

Construction of a saturated/unsaturated model

Analysis and simulation

Numerical test : implementation

- Fully implicit time discretization of the space/time pde system
- Fixed point iteration to solve nonlinearities of the space pde system
- Spatial discretization of the linear pde with a MHFE method
- Blockwise Gauss-Seidel method to solve the 2 coupled linear systems
- Bi-conjugate gradient stabilized method to inverse each block

Analysis and simulation of a two phase flow model with phase apparition/disappearance

F. Smaï, A. Bourgeat, M. Jurak

Unsaturated two phase flow

Saturated flow

Construction of a saturated/unsaturated model

Analysis and simulation

Numerical test : implementation

- Fully implicit time discretization of the space/time pde system
- Fixed point iteration to solve nonlinearities of the space pde system
- Spatial discretization of the linear pde with a MHFE method
- Blockwise Gauss-Seidel method to solve the 2 coupled linear systems
- Bi-conjugate gradient stabilized method to inverse each block
- Implementation with the modular code Cast3m

Analysis and simulation of a two phase flow model with phase apparition/disappearance

F. Smaï, A. Bourgeat, M. Jurak

Unsaturated two phase flow

Saturated flow

Construction of a saturated/unsaturated model

Analysis and simulation

Numerical test : results

phase flow model with phase apparition/disappearance F. Smaï, A. Bourgeat,

Analysis and

simulation of a two

Numerical test : results

phase flow model with phase apparition/disappearance F. Smaï, A. Bourgeat,

Analysis and

simulation of a two

Numerical test : results

Analysis and simulation of a two phase flow model with phase apparition/disappearance

F. Smaï, A. Bourgeat, M. Jurak

Numerical test : results

Analysis and simulation of a two phase flow model with phase apparition/disappearance

F. Smaï, A. Bourgeat,

Numerical test : results

Analysis and simulation of a two phase flow model with phase apparition/disappearance

Numerical test : results

Analysis and simulation of a two phase flow model with phase apparition/disappearance

F. Smaï, A. Bourgeat,

Numerical test : results

Analysis and

simulation of a two phase flow model with phase appari-

tion/disappearance

Numerical test : results

Analysis and simulation of a two phase flow model with phase apparition/disappearance

Numerical test : results

Analysis and simulation of a two phase flow model with phase apparition/disappearance

F. Smaï, A. Bourgeat,

saturated/unsaturated

Existence of solutions

Numerical test : results

Analysis and simulation of a two phase flow model with phase apparition/disappearance

Numerical test : results

Analysis and simulation of a two phase flow model with phase apparition/disappearance

Numerical test : results

Analysis and simulation of a two phase flow model with phase apparition/disappearance

F. Smaï, A. Bourgeat, M. Jurak

Unsaturated two phase

saturated/unsaturated

Existence of solutions implementation

Numerical test : results

Analysis and simulation of a two phase flow model with phase apparition/disappearance

F. Smaï, A. Bourgeat, M. Jurak

Unsaturated two phase

saturated/unsaturated

Numerical test : results

tion/disappearance F. Smaï, A. Bourgeat, M. Jurak

Analysis and

simulation of a two phase flow model with phase appari-

saturated/unsaturated

Numerical test : results

Analysis and simulation of a two phase flow model with phase apparition/disappearance

F. Smaï, A. Bourgeat, M. Jurak

Unsaturated two phase

Construction of a saturated/unsaturated

Numerical test : results

Analysis and simulation of a two phase flow model with phase apparition/disappearance

F. Smaï, A. Bourgeat, M. Jurak

Unsaturated two phase

saturated/unsaturated

Numerical test : results

Analysis and simulation of a two phase flow model with phase apparition/disappearance

F. Smaï, A. Bourgeat, M. Jurak

Unsaturated two phase

saturated/unsaturated

Numerical test : results

Analysis and simulation of a two phase flow model with phase apparition/disappearance

F. Smaï, A. Bourgeat, M. Jurak

Unsaturated two phase

saturated/unsaturated

Numerical test : results

Analysis and simulation of a two phase flow model with phase apparition/disappearance

F. Smaï, A. Bourgeat,

Numerical test : results

Analysis and simulation of a two phase flow model with phase apparition/disappearance

F. Smaï, A. Bourgeat,

saturated/unsaturated

Existence of solutions implementation

Numerical test : results

Analysis and simulation of a two phase flow model with phase apparition/disappearance

F. Smaï, A. Bourgeat,

Numerical test : results

Analysis and simulation of a two phase flow model with phase apparition/disappearance

F. Smaï, A. Bourgeat, M. Jurak

Unsaturated two phase

saturated/unsaturated

Numerical test : results

Analysis and simulation of a two phase flow model with phase apparition/disappearance

F. Smaï, A. Bourgeat, M. Jurak

Unsaturated two phase flow

Saturated flow

Construction of a saturated/unsaturated model

Analysis and simulation
Numerical test : results

Analysis and simulation of a two phase flow model with phase apparition/disappearance

F. Smaï, A. Bourgeat, M. Jurak

Unsaturated two phase flow

Saturated flow

Construction of a saturated/unsaturated model

Analysis and simulation

Numerical test : results

Analysis and simulation of a two phase flow model with phase apparition/disappearance

F. Smaï, A. Bourgeat, M. Jurak

Unsaturated two phase flow

Saturated flow

Construction of a saturated/unsaturated model

Analysis and simulation

Numerical test : results

Analysis and simulation of a two phase flow model with phase apparition/disappearance

F. Smaï, A. Bourgeat, M. Jurak

Unsaturated two phase flow

Saturated flow

Construction of a saturated/unsaturated model

Analysis and simulation

Numerical test : results

Analysis and simulation of a two phase flow model with phase apparition/disappearance

F. Smaï, A. Bourgeat, M. Jurak

Unsaturated two phase flow

Saturated flow

Construction of a saturated/unsaturated model

Analysis and simulation

Numerical test : results

Analysis and simulation of a two phase flow model with phase apparition/disappearance

F. Smaï, A. Bourgeat, M. Jurak

Unsaturated two phase flow

Saturated flow

Construction of a saturated/unsaturated model

Analysis and simulation

Numerical test : results

Analysis and simulation of a two phase flow model with phase apparition/disappearance

F. Smaï, A. Bourgeat, M. Jurak

Unsaturated two phase flow

Saturated flow

Construction of a saturated/unsaturated model

Analysis and simulation

Numerical test : results

Analysis and simulation of a two phase flow model with phase apparition/disappearance

F. Smaï, A. Bourgeat, M. Jurak

Unsaturated two phase flow

Saturated flow

Construction of a saturated/unsaturated model

Analysis and simulation

Numerical test : results

Analysis and simulation of a two phase flow model with phase apparition/disappearance

F. Smaï, A. Bourgeat, M. Jurak

Unsaturated two phase flow

Saturated flow

Construction of a saturated/unsaturated model

Analysis and simulation

 A good choice of variables allows to write a saturated/unsaturated model Analysis and simulation of a two phase flow model with phase apparition/disappearance

F. Smaï, A. Bourgeat, M. Jurak

Unsaturated two phase flow

Saturated flow

Construction of a saturated/unsaturated model

- A good choice of variables allows to write a saturated/unsaturated model
- We have an existence result for a simplified formulation

Analysis and simulation of a two phase flow model with phase apparition/disappearance

F. Smaï, A. Bourgeat, M. Jurak

Unsaturated two phase flow

Saturated flow

Construction of a saturated/unsaturated model

- A good choice of variables allows to write a saturated/unsaturated model
- ▶ We have an existence result for a simplified formulation
- A simple numerical test shows the ability of the model to simulate the appearance and the evolution of the unsaturated area

Analysis and simulation of a two phase flow model with phase apparition/disappearance

F. Smaï, A. Bourgeat, M. Jurak

Unsaturated two phase flow

Saturated flow

Construction of a saturated/unsaturated model

- A good choice of variables allows to write a saturated/unsaturated model
- ▶ We have an existence result for a simplified formulation
- A simple numerical test shows the ability of the model to simulate the appearance and the evolution of the unsaturated area

Perspectives :

Analysis and simulation of a two phase flow model with phase apparition/disappearance

F. Smaï, A. Bourgeat, M. Jurak

Unsaturated two phase flow

Saturated flow

Construction of a saturated/unsaturated model

- A good choice of variables allows to write a saturated/unsaturated model
- ▶ We have an existence result for a simplified formulation
- A simple numerical test shows the ability of the model to simulate the appearance and the evolution of the unsaturated area

Perspectives :

 Numerical testing of the validity limits (mathematical and physical) Analysis and simulation of a two phase flow model with phase apparition/disappearance

F. Smaï, A. Bourgeat, M. Jurak

Unsaturated two phase flow

Saturated flow

Construction of a saturated/unsaturated model

- A good choice of variables allows to write a saturated/unsaturated model
- ▶ We have an existence result for a simplified formulation
- A simple numerical test shows the ability of the model to simulate the appearance and the evolution of the unsaturated area

Perspectives :

- Numerical testing of the validity limits (mathematical and physical)
- Taking in account the rock change

Analysis and simulation of a two phase flow model with phase apparition/disappearance

F. Smaï, A. Bourgeat, M. Jurak

Unsaturated two phase flow

Saturated flow

Construction of a saturated/unsaturated model

- A good choice of variables allows to write a saturated/unsaturated model
- ▶ We have an existence result for a simplified formulation
- A simple numerical test shows the ability of the model to simulate the appearance and the evolution of the unsaturated area

Perspectives :

- Numerical testing of the validity limits (mathematical and physical)
- Taking in account the rock change
- Homogenization on the storage geometry

Analysis and simulation of a two phase flow model with phase apparition/disappearance

F. Smaï, A. Bourgeat, M. Jurak

Unsaturated two phase flow

Saturated flow

Construction of a saturated/unsaturated model

References

- ALT, H. W. AND LUCKHAUS, S. (1983). Quasilinear elliptic-parabolic differential equations. *Math. Z.*, 183, 311-341.
- BOURGEAT, A. AND JURAK, M. AND SMAÏ, F. (2008) Two partially miscible flow and transport modeling in porous media ; application to gas migration in a nuclear waste repository. *Computational Geosciences*.
- SMAÏ, F. (-) A model of multiphase flow and transport in porous media applied to gas migration in underground nuclear waste repository. *submitted*

Analysis and simulation of a two phase flow model with phase apparition/disappearance

F. Smaï, A. Bourgeat, M. Jurak

Unsaturated two phase flow

Saturated flow

Construction of a saturated/unsaturated model