Domain Decomposition for Multiscale PDEs

Robert Scheichl

Bath Institute for Complex Systems Department of Mathematical Sciences University of Bath

in collaboration with

Clemens Pechstein (Linz, AUT),

Ivan Graham & Jan Van lent (Bath), Eero Vainikko (Tartu, EST)

Scaling Up & Modelling for Transport and Flow in Porous Media Dubrovnik, Wednesday, October 15th 2008

R. Scheichl (Bath)

DD for Multiscale PDEs

Motivation: Groundwater Flow

Safety assessment for radioactive waste disposal at Sellafield ©NIREX UK Ltd.

Darcy's Law:
$$q + \mathcal{A}(x) \nabla p = f$$

Incompressibility: $\nabla \cdot q = 0$

+ Boundary Conditions

(More generally: Multiphase Flow in Porous Media, e.g. Oil Reservoir Modelling or CO₂ Sequestration)

CROWN SPACE WASTE VAULTS FAULTED GRANITE GRANITE DEEP SKIDDAW N-S SKIDDAW DEEP LATTERBARROW N-S LATTERBARROW FAULTED TOP M-F BVG TOP M-F BVG FAULTED BLEAWATH BVG BI FAWATH BVG EALILITED E HIBUO FAULTED UNDIFF BVG UNDIFF BVG FAULTED N-S BVG N-S RVG FAULTED CARB LST CARB LST FAULTED COLLYHURS1 COLLYHURST FALLI TED BROCKRAM BROCKRAM SHALES + EVAP FAULTED BNHM BOTTOM NHM FAULTED DEEP ST BEES DEEP ST BEES FAULTED N-S ST BEES N-S ST BEFR FALLI TED VIN-S ST REES VALO OT DEEO EALIN TED DEED CAL DEE DEEP CALDER FAULTED N-S CALDER N-S CALDER FALLI TED VIN-S CALIDER VN-S CALDER MERCIA MUDSTONE QUATERNARY

 \bullet Elliptic PDE in 2D or 3D bounded domain Ω

$$-
abla \cdot (\alpha
abla u) = f + u = 0 \text{ on } \partial \Omega$$

 \bullet Elliptic PDE in 2D or 3D bounded domain Ω

$$-
abla \cdot (\alpha
abla u) = f + u = 0 \text{ on } \partial \Omega$$

• Highly variable (discontinuous) coefficients $\alpha(x)$

 \bullet Elliptic PDE in 2D or 3D bounded domain Ω

$$-
abla \cdot (\alpha
abla u) = f + u = 0 ext{ on } \partial \Omega$$

- Highly variable (discontinuous) coefficients $\alpha(x)$
- FE discretisation (p.w. linears V^h) on mesh \mathcal{T}^h :

$$A \mathbf{u} = \mathbf{b}$$
 ($n \times n$ linear system)

 \bullet Elliptic PDE in 2D or 3D bounded domain Ω

$$-
abla \cdot ({\color{black} lpha}
abla u) = f + u = 0 ext{ on } \partial \Omega$$

- Highly variable (discontinuous) coefficients $\alpha(x)$
- FE discretisation (p.w. linears V^h) on mesh \mathcal{T}^h :

$$A \mathbf{u} = \mathbf{b}$$
 ($n \times n$ linear system)

<u>Aim</u>: Find efficient & robust preconditioner for A (i.e. independent of variations in h <u>and</u> in α(x))

Heterogeneous multiscale deterministic media

Society of Petroleum Engineers (SPE) Benchmark SPE10

Multiscale stochastic media ($\lambda = 5h, 10h, 20h$)

- Requires very fine mesh resolution: $h \ll \operatorname{diam}(\Omega)$
- A very large and very ill-conditioned, i.e.

$$\kappa(A) \lesssim \max_{ au, au'\in \mathcal{T}^h} \left(rac{lpha_ au}{lpha_{ au'}}
ight) h^{-2}$$

• Variation of $\alpha(x)$ on many scales (often anisotropic)

- Requires very fine mesh resolution: $h \ll \operatorname{diam}(\Omega)$
- A very large and very ill-conditioned, i.e.

$$\kappa(A) \lesssim \max_{ au, au'\in \mathcal{T}^h} \left(rac{lpha_ au}{lpha_{ au'}}
ight) \, h^{-2}$$

- Variation of $\alpha(x)$ on many scales (often anisotropic)
- Homogenisation or Scaling Up \longrightarrow "cell problem" in each cell: Cost $\geq O(n)$ (n = #DOFs on fine grid)

- Requires very fine mesh resolution: $h \ll \operatorname{diam}(\Omega)$
- A very large and very ill-conditioned, i.e.

$$\kappa(A) \lesssim \max_{ au, au'\in \mathcal{T}^h} \left(rac{lpha_ au}{lpha_{ au'}}
ight) \, h^{-2}$$

- Variation of $\alpha(x)$ on many scales (often anisotropic)
- Homogenisation or Scaling Up \longrightarrow "cell problem" in each cell: Cost $\geq O(n)$ (n = #DOFs on fine grid)
- Alternative: Multilevel Iterative Solution on fine grid (directly!) → Cost ≈ O(n) as well!!

Requires very fine mesh resolution: h ≪ diam(Ω)
A very large and very ill-conditioned, i.e.

$$\kappa({\it A}) ~\lesssim ~ \max_{ au, au'\in {\cal T}^h} \left(rac{lpha_ au}{lpha_{ au'}}
ight) ~h^{-2}$$

- Variation of $\alpha(x)$ on many scales (often anisotropic)
- Homogenisation or Scaling Up \longrightarrow "cell problem" in each cell: Cost $\geq O(n)$ (n = #DOFs on fine grid)
- <u>Alternative</u>: Multilevel Iterative Solution on fine grid (directly!) \longrightarrow Cost $\approx O(n)$ as well!!

Meaning of $\ \lesssim$

Goals

- Efficient, scalable & parallelisable method,
 - robust w.r.t. problem size n and mesh resolution h
 - robust w.r.t. coefficients $\alpha(x)$!
- <u>with</u> underpinning theory ⇒ "handle" for choice of components

Goals

- Efficient, scalable & parallelisable method,
 - robust w.r.t. problem size n and mesh resolution h
 - robust w.r.t. coefficients $\alpha(x)$!
- <u>with</u> underpinning theory ⇒ "handle" for choice of components

Possible Methods & Existing Theory

- Standard Domain Decomposition and Multigrid robust if coarse grid(s) resolve(s) coefficients
 [Chan, Mathew, Acta Numerica, 94], [J. Xu, Zhu, Preprint, 07]
- Otherwise: **coefficient-dependent** coarse spaces [Alcouffe, Brandt, Dendy et al, SISC, 81], [Sarkis, Num Math, 97]

• Practically most successful: Algebraic Multigrid No theory explaining coefficient robustness for standard AMG!

First attempts in [Aksoylu, Graham, Klie, Sch., Comp.Visual.Sci. 08]

 Practically most successful: Algebraic Multigrid No theory explaining coefficient robustness for standard AMG!
 First attempts in [Aksoylu, Graham, Klie, Sch., Comp.Visual.Sci. 08]

• Two-Level Overlapping Schwarz

- [Sarkis, Num Math, 97]
- ▶ [Graham, Lechner, Sch., Num Math, 07]
- [Sch., Vainikko, Computing, 07]
- [Graham, Sch., Vainikko, NMPDE, 07]
- [Van lent, Sch., Graham, submitted, 08]

Th^m. $\kappa(M^{-1}A) \lesssim \max_j \delta^2 \|\alpha| \nabla \Psi_j |^2 \|_{L_{\infty}(\Omega)} (1 + H/\delta)$

 \longrightarrow low energy coarse spaces!

 Practically most successful: Algebraic Multigrid No theory explaining coefficient robustness for standard AMG!
 First attempts in [Aksoylu, Graham, Klie, Sch., Comp.Visual.Sci. 08]

• Two-Level Overlapping Schwarz

- [Sarkis, Num Math, 97]
- [Graham, Lechner, Sch., Num Math, 07]
- [Sch., Vainikko, Computing, 07]
- [Graham, Sch., Vainikko, NMPDE, 07]
- [Van lent, Sch., Graham, submitted, 08]

Th^m. $\kappa(M^{-1}A) \lesssim \max_j \delta^2 \|\alpha|\nabla \Psi_j\|^2\|_{L_{\infty}(\Omega)} (1+H/\delta)$

 \longrightarrow low energy coarse spaces!

• FETI (Finite Element Tearing & Interconnecting)

▶ [Pechstein, Sch., Num Math, 08] ←

TODAY!

<u>Finite Element Tearing & Interconnecting</u> (non-overlapping dual substructuring techniques)

- FETI methods Idea
- Domain decomposition
- $\overline{\Omega} = \bigcup_{i=1}^{N} \overline{\Omega}_{i}$
- $\Gamma_i := \partial \Omega_i$
- $H_i := \operatorname{diam} \Omega_i$

- FETI methods Idea
- Domain decomposition
- $\overline{\Omega} = \bigcup_{i=1}^N \overline{\Omega}_i$
- $\Gamma_i := \partial \Omega_i$
- $H_i := \operatorname{diam} \Omega_i$
- Conforming FE mesh on Ω (p.w. linear FEs)
- Mesh size on subdomain Ω_i : h_i

- FETI methods Idea
- Domain decomposition
- $\overline{\Omega} = \bigcup_{i=1}^{N} \overline{\Omega}_{i}$
- $\Gamma_i := \partial \Omega_i$
- $H_i := \operatorname{diam} \Omega_i$
- Conforming FE mesh on Ω (p.w. linear FEs)
- Mesh size on subdomain Ω_i : h_i

Subdomain stiffness matrix A_i (including boundary, i.e. Neumann)

FETI methods – Idea

Tearing: Introduce local soln u_i , i.e. >1 dofs per interface node

Interconnecting: Enforce continuity by pointwise constraints:

$$u_i(x^h) - u_j(x^h) = 0, \ x^h \in \Gamma_i \cap \Gamma_j$$

or compactly written,

$$B u := \sum_i B_i u_i = 0$$

where $u := [u_1^\top u_2^\top \dots u_N^\top]^\top$

FETI methods – Idea

Tearing: Introduce local soln u_i , i.e. >1 dofs per interface node

Interconnecting: Enforce continuity by pointwise constraints:

Introduce **Lagrange multipliers** to obtain the new global system:

$$\begin{bmatrix} A & B^{\top} \\ B & 0 \end{bmatrix} \begin{bmatrix} u \\ \lambda \end{bmatrix} = \begin{bmatrix} f \\ 0 \end{bmatrix}$$

with $A := \text{diag}(A_i)$ & $f := [f_1^\top \dots f_N^\top]^\top$

FETI methods – Idea

Tearing: Introduce local soln u_i , i.e. >1 dofs per interface node

Interconnecting: Enforce continuity by pointwise constraints:

Eliminate *u* & solve dual problem

$$"BA^{-1}B^{\top}\lambda = BA^{-1}f"$$

with **preconditioner** " $\sum_{i} B_{i} \begin{bmatrix} 0 & 0 \\ 0 & S_{i} \end{bmatrix} B_{i}^{\top}$ " (Fully parallel!)

where $S_i := A_{i,\Gamma\Gamma} - A_{i,\Gamma I} A_{i,I\Gamma}^{-1} A_{i,I\Gamma}$ (Schur complement).

Elimination of *u* (substructuring):

$$\begin{bmatrix} A_1 & 0 & B_1^\top \\ 0 & \ddots & \vdots \\ & A_n & B_n^\top \\ B_1 & \dots & B_n & 0 \end{bmatrix} \begin{bmatrix} u_1 \\ \vdots \\ u_n \\ \lambda \end{bmatrix} = \begin{bmatrix} f_1 \\ \vdots \\ f_n \\ 0 \end{bmatrix}$$

If $\partial \Omega_i \cap \Gamma_D \neq \emptyset$ then A_i is SPD:

 $u_i = A_i^{-1}[f_i - B_i^{\top} \lambda]$

else (floating subdomains!)

$$u_i = A_i^{\dagger} [f_i - B_i^{\top} \lambda] + \text{kernel correction}$$

with compatibility condition on λ

FETI methods – Variants

"One-level" Methods [Farhat & Roux, '91]

Dual-primal Methods [Farhat, Lesoinne, LeTallec et al, '01]

use projection to deal with kernel

use primal dofs to avoid kernel

"One-level" FETI [Farhat & Roux, '91]

Projected Dual Problem:

Dirichlet B.C.

"One-level" FETI [Farhat & Roux, '91]

Projected Dual Problem:

 $P = P(\alpha) \dots \alpha$ -dependent kernel projection involving coarse solve

Preconditioner: [Klawonn, Widlund, '01]

$$P\left(\sum_{i}^{=:M^{-1}} D_{i}B_{i}\begin{bmatrix}0 & 0\\0 & S_{i}\end{bmatrix}B_{i}^{\top}D_{i}^{\top}\right)$$

 $D_i = D_i(\alpha) \dots \alpha$ -weighted diagonal scaling

values of d_i
$$\Omega_k$$

 α_k
 $\alpha_i + \alpha_j + \alpha_k$
 α_j α_j α_j α_j

New Coefficient-Explicit FETI Theory

Boundary Layer: For $\eta_i > 0$ let

 $\underline{\alpha}_{i}^{\eta_{i}} \leq \alpha(x) \leq \overline{\alpha}_{i}^{\eta_{i}} \quad \text{for all } x \in \ \Omega_{i,\eta_{i}} \,,$

where $\Omega_{i,\eta_i} := \{x : \text{dist}(x, \Gamma_i) < \eta_i\}$ (boundary layer).

Arbitrary variation in remainder !

Theorem (Pechstein/Sch., '08) Using $\overline{\alpha}_{i}^{\eta_{i}}$ as weights in D_{i} and P: (in 2D and 3D!) $\kappa(PM^{-1}P^{\top}F) \lesssim \max_{j} \left(\frac{H_{j}}{\eta_{j}}\right)^{2} \max_{i} \frac{\overline{\alpha}_{i}^{\eta_{i}}}{\underline{\alpha}_{i}^{\eta_{i}}} \left(1 + \log\left(\frac{H_{i}}{h_{i}}\right)\right)^{2}$

New Coefficient-Explicit FETI Theory

Boundary Layer: For $\eta_i > 0$ let

 $\underline{\alpha}_{i}^{\eta_{i}} \leq \alpha(\mathbf{x}) \leq \overline{\alpha}_{i}^{\eta_{i}} \quad \text{for all } \mathbf{x} \in \ \Omega_{i,\eta_{i}} \,,$

where $\Omega_{i,\eta_i} := \{x : \text{dist}(x, \Gamma_i) < \eta_i\}$ (boundary layer).

Additional Assumption:

 $\underline{lpha}_{i}^{\eta_{i}} \lesssim lpha(x) \quad ext{for } x \in \ \Omega ackslash \Omega_{i,\eta_{i}}$

Theorem (Pechstein/Sch., '08)
Using
$$\overline{\alpha}_{i}^{\eta_{i}}$$
 as weights in D_{i} and P : (in 2D and 3D!)
 $\kappa(PM^{-1}P^{\top}F) \lesssim \max_{j} \left(\frac{H_{j}}{\eta_{j}}\right) \max_{i} \frac{\overline{\alpha}_{i}^{\eta_{i}}}{\underline{\alpha}_{i}^{\eta_{i}}} \left(1 + \log\left(\frac{H_{i}}{h_{i}}\right)\right)^{2}$

• **Robustness** possible even for **large variation** of *α* inside subdomains.

- **Robustness** possible even for **large variation** of α inside subdomains.
- Previous theory only for resolved coefficients!

- **Robustness** possible even for **large variation** of *α* inside subdomains.
- Previous theory only for resolved coefficients!
- If $\underline{\alpha}_{i}^{\eta_{i}} = \mathcal{O}(\overline{\alpha}_{i}^{\eta_{i}})$ and $\eta_{i} = \mathcal{O}(H_{i})$, then $\kappa(PM^{-1}P^{\top}F) \leq \max_{i} (1 + \log(H_{i}/h_{i}))^{2}$

- **Robustness** possible even for **large variation** of *α* inside subdomains.
- Previous theory only for resolved coefficients!
- If $\underline{\alpha}_{i}^{\eta_{i}} = \mathcal{O}(\overline{\alpha}_{i}^{\eta_{i}})$ and $\eta_{i} = \mathcal{O}(H_{i})$, then $\kappa(PM^{-1}P^{\top}F) \leq \max_{i} (1 + \log(H_{i}/h_{i}))^{2}$
- Numerically already observed before:
 - Fixen, Farhat, 1998 & 1999]
 - [Klawonn, Rheinbach, 2006]

- **Robustness** possible even for **large variation** of *α* inside subdomains.
- Previous theory only for resolved coefficients!
- If $\underline{\alpha}_{i}^{\eta_{i}} = \mathcal{O}(\overline{\alpha}_{i}^{\eta_{i}})$ and $\eta_{i} = \mathcal{O}(H_{i})$, then $\kappa(PM^{-1}P^{\top}F) \leq \max_{i} (1 + \log(H_{i}/h_{i}))^{2}$
- Numerically already observed before:
 - Fixen, Farhat, 1998 & 1999]
 - ▶ [Klawonn, Rheinbach, 2006]
- Same theory for **FETI-DP** and other variants (e.g. Balancing Neumann-Neumann or BDDC)

- **Robustness** possible even for **large variation** of *α* inside subdomains.
- Previous theory only for resolved coefficients!
- If $\underline{\alpha}_{i}^{\eta_{i}} = \mathcal{O}(\overline{\alpha}_{i}^{\eta_{i}})$ and $\eta_{i} = \mathcal{O}(H_{i})$, then $\kappa(PM^{-1}P^{\top}F) \leq \max_{i} (1 + \log(H_{i}/h_{i}))^{2}$
- Numerically already observed before:
 - Fixen, Farhat, 1998 & 1999]
 - ▶ [Klawonn, Rheinbach, 2006]
- Same theory for **FETI-DP** and other variants (e.g. Balancing Neumann-Neumann or BDDC)
- New Poincaré-Friedrichs-type inequalities

Numerical Results – One Island (PCG Its)

 $\begin{array}{l} \alpha_{I} = \text{lognormal} \\ \hline \textbf{Blue:} \ \alpha_{I} \geq 1 = \alpha_{BL} \\ \hline \textbf{Red:} \ \alpha_{I} \leq 1 = \alpha_{BL} \end{array}$

PCG Its	$\frac{H}{h} = 3$	6	12	24	48	96	192	384	
$\frac{H}{n} = 3$	10 10	12 12	13 13	15 15	15 17	18 18	18 19	19 20	
6	-	12 12	13 14	15 16	17 18	18 19	18 20	29 21	
12	-	_	14 15	16 17	17 19	18 21	19 21	29 24	
24	-	_	_	15 19	18 20	19 21	20 23	22 25	
48	-	_	_	-	19 22	20 23	22 26	24 28	
96	-	_	_	-	-	23 26	24 28	25 30	
192	-	-	-	-	-	-	26 30	27 32	
384	-	_	_	_	_	_	-	31 34	
$\eta = 0$	10 11	13 14	15 17	17 19	19 23	21 26	24 32	26 39	
$\alpha_I \equiv 1$	10	12	14	15	16	17	17	18	
R. Scheichl (Bath)			DD for Multiscale PDEs				Dubrovnik, Wed 10-15-08 15 / 24		

Numerical Results – Multiple Islands

 $\alpha_I = \mathsf{lognormal}$

<u>Blue:</u> $\alpha_I \geq 1 = \alpha_{BL}$

<u>Red:</u> $\alpha_I \leq 1 = \alpha_{BL}$

PCG Its	$\frac{H}{h} = 8$	16	32	64	128	256	512
$\frac{H}{n} = 8$	15 16	17 19	20 21	21 23	23 25	25 26	27 28
16	—	18 26	20 24	22 28	24 29	27 31	27 34
32	—		21 28	24 31	25 47	28 36	30 38
64	_		—	26 35	28 39	29 41	31 44
128	_		—	—	31 43	33 54	35 51
256	_		—	—	—	41 52	41 56
512	—						37 58

Condition Number Estimate (based on Ritz values)

 $\alpha_I = \mathsf{lognormal}$

<u>Green:</u> $\alpha_I \geq 1 = \alpha_{BL}$

Orange: $\alpha_I \leq 1 = \alpha_{BL}$

	$\frac{H}{h} = 8$	16	32	64	128	256
$\frac{H}{n} = 8$	<i>3.7</i> 4 <i>.2</i>	4.6 <mark>5.6</mark>	5.6 7.1	6.8 <mark>8.9</mark>	<i>8.2 10.7</i>	9.7 12.6
16	—	5.6 <mark>28</mark> .1	6.5 11.7	7.6 14.3	8.8 17.2	10.2 <mark>20.2</mark>
32	—	—	9.3 <mark>18</mark> .1	10.1 <mark>22.1</mark>	11.1 <mark>85.2</mark>	12.2 <mark>32.5</mark>
64	—	—	—	16.3 <mark>33.2</mark>	17.1 <mark>41.3</mark>	18.0 <mark>49.4</mark>
128	—	—	—		28.8 <mark>58.6</mark>	30.6 <mark>81.5</mark>
256	_		—	—	—	55.5 <mark>93.4</mark>

New Theory for Interface Variation

Per subdomain Ω_i , three materials are allowed:

- Ω⁽¹⁾_i, Ω⁽²⁾_i connected regions with mild variation (but possibly huge jumps between them!)
- $\Omega_i^{(R)}$ away from the interface, arbitrary variation

R. Scheichl (Bath)

Define nodal weights:

$$\widehat{\alpha}_i(x) := \max_{T \in \mathcal{T}_i: x \in \overline{T}} \frac{1}{|T|} \int_T \alpha(x) \, dx$$

i.e. maximum on patch
$$\omega_x := igcup_{T:x\in\overline{T}}$$
 7
"Superlumping" [Rixen & Farhat, '98]

Theorem (Pechstein/Sch., upcoming paper) Using $\widehat{\alpha}_{i}(x)$ as weights in D_{i} and P and all-floating FETI: $\kappa(PM^{-1}P^{\top}F) \lesssim \max_{i} \left(\frac{H_{i}}{\eta_{i}}\right)^{\beta} \left\{ \max_{j} \max_{k} \max_{k} \frac{\overline{\alpha}_{j}^{(k)}}{\alpha_{j}^{(k)}} \left(1 + \log(H_{j}/h_{j})\right)^{2} \right\}$ where β depends on exponent in **new** weighted Poincaré inequality.

(For certain geometries we get $\beta = 2$, or if interior coefficient is larger, $\beta = 1$.)

Numerical Results – Edge Island

Numerical Results – Cross Point Island

Conclusions

- Small modifications of standard DD methods render them robust wrt. coefficient variation & mesh refinement
- Rigorous theory even for non-resolved coefficients
- Multilevel iterative solution on fine grid asymptotically as costly/cheap as numerical homogenisation/upscaling
- Excellent parallel efficiency results to come!

Nonlinear magnetostatics

$$- \nabla \cdot \left[\nu(|\nabla u|) \nabla u \right] = f \quad \text{in } \Omega$$

+ boundary conditions
+ interface conditions

Linearize via Newton

Nonlinear magnetostatics

$$\begin{split} &-\nabla\cdot\left[\nu(|\nabla u|)\nabla u\right]=f\quad\text{in }\Omega\\ &+\text{ boundary conditions}\\ &+\text{ interface conditions} \end{split}$$

Linearize via Newton

Large variation of $\nu(\nabla u)$:

- from material to material: $\mathcal{O}(10^5)$ (discontinuous)
- within nonlinear material: $\mathcal{O}(10^3)$ (smooth)

reluctivity
$$|\nabla u| \mapsto \nu(|\nabla u|)$$

Strong variation along interface

One-level FETI with 16 subdomains: $(\varepsilon_{lin} = 10^{-8}, H = 1/4, h = 1/512, H/h = 128)$

Problem	α	PCG Its	Cond $\#$
homog.	1	13	8.26
pw. const.	1, 10 ⁶	14	8.48
Case 1	$\nu(x)$	18.8	8.45
Case 2	$\nu(x)$	15.5	13.6

Variation of ν along interface in Case 2: $\sim 2000!$

Contrary to common folklore: Not necessarily best to allign subdomains with material interfaces!

Reluctivity $\nu(x)$ (Case 1)

Reluctivity $\nu(x)$ (Case 2)