
Adaptation of a
mortar method

to model flow in
large-scale

fractured media
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Motivation

The simulation of the flow in Discrete Fracture Networks (DFNs).

Fracture network characteristics :

Many fractures intersecting each other (≈ 104 fractures, ≈ 105

intersections),

Fractures with broad ranges of length, shape, orientation and position
⇒ A stochastic discrete approach to model fractures

A set of 2D domains (fractures) intersecting each other.

30 fractures/125 intersections 8064 fractures/12943 intersections
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Some assumptions :

The rock matrix is impervious : flow is only simulated in the fractures,

Study of steady state flow,

There is no longitudinal flux in the intersections of fractures.

Numerical method : a Mixed Hybrid Finite Element Method

Makes it easy to deal with complex geometry (triangular elements) ;

A linear system with only trace of pressure unknowns, the flux at the
edges and the mean pressure are then easily derived locally on each
triangle.

Two main difficulties :

1 Classical mesh generation can be insufficient due to the amount of
intersections between fractures (FE with bad aspect ratio),
e.g. success in only 222 networks for 1620 generated networks
⇒ Local corrections are required, J. Erhel et al., submitted 2008

2 Matching grids at the intersection can be very costly (e.g. consider a
small fracture with a fine mesh intersecting a large one).
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Our objective :

Allowing independent mesh generation within the fractures
⇒ Non matching grid at the intersections between fractures

The challenge :

Implementation of a Mortar method for each intersection
between fractures to ensure continuity of the flux and trace of
pressure at the intersections,

The number of fractures and intersections can be large so that
we have to deal with numerous cases of non matching grids,

Handling the large variety of configurations leading to numerical
difficulties.

Mortar method : Bernardi, Maday et Patera, 1992 ; Arbogast,
Cowsar, Wheeler et Yotov, 2000
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1 Meshing process and local corrections

2 Mortar MHFEM

3 Implementation features and simulations
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Creating 3D Discrete Fracture Networks (DFNs)
and meshing

A software included in the scientific platform Hydrolab (written in C + +)
(Erhel et al., 2007) :

Allows the generation of random DFNs in a 3D domain,

Includes a mesh generator for general DFN structures (using a
procedure extracted from the software FreeFem++)

Includes projection of the intersections on a regular grid (H.
Mustapha, PhD, 2005) and local corrections to remove configurations
that would lead to triangles with bad aspect ratio, (J. Erhel, J.R. De
Dreuzy and B. Poirriez, submitted 2008)
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Flow equations in each fracture Ωf

∇ · u = f(x) for x ∈ Ωf

u = −K(x)∇p(x) for x ∈ Ωf

p(x) = pD(x) on ΓD

u(x).ν = qN(x) on ΓN

u(x).µ = 0 on Γf ,

ν (resp. µ) outer normal unit vector to the cube edge (resp.fracture side) ;
K(x) is a given 2D permeability field ; f(x) ∈ L2(Ωf ) represents the
sources/sinks ;
+ Continuity conditions at each intersection :

pk,h = pk , on Σk , ∀f ∈ Fk and
∑
f∈Fk

uk,f .nk,f = 0 on Σk ,

where pk,h is the trace of pressure and nk,f is the normal unit vector on the
boundary Σk of the fracture Ωf ,

Σk is the k-st intersection, Fk is the set of fractures with Σk as intersection.
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On a simple example with two fractures

Geometry :

A cubic domain Ω=[0, L]x[0, L]x[0, L],

Two fractures Ω1 and Ω2, with Γ = Ω1 ∩ Ω2.

Ω1 and Ω2 independently meshed (mesh step in Ω1 : 0.08 ; in Ω2 : 0.2)

Choice of a master intersection side (e.g. domain 1) and a slave
intersection side (e.g. domain 2)

Remark : things will be more complicated with many fractures intersecting
each other ...
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Weak formulation of the problem

Pd(K) space of polynoms of total degree d defined on K , K ∈ Th :

RT 0(K) = {s ∈ (P1(K))2, s = ( a + b x1, c + b x2), a, b, c ∈ R}

RT 0(Th) = {φ ∈ L2(Ω), φ|K ∈ RT 0(K), ∀K ∈ Th}

We also need a space M0(Th) defined as :

M0(Th) = {ϕ ∈ L2(Ω), ϕ|K ∈ P0(K),K ∈ Th}

Eh,in set of edges of the two meshes not belonging to Γ,

EG
h,m (resp. EG

h,s ) : edges belonging to Γ on the master (resp. slave)
side

Eh = Eh,in ∪ EG
h,m ∪ EG

h,s .

We define the multiplier spaces

N 0(Eh) = {λ ∈ L2(Eh), λ|E ∈ P0(E),∀E ∈ Eh}

N 0
g,D(Eh) = {λ ∈ N 0(Eh), λ = g on ΓD}
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Weak MH Mortar formulation

Find (uh, ph, tph) ∈ RT 0(Th) x M0(Th) x N 0
pD ,D(Eh) such that :∫

Ω

K−1uh.χhdx+∑
K∈Th

∫
∂K

tphχh.νKdl =
∑

K∈Th

∫
K

ph∇ · χhdx,∀χh ∈ RT 0(Th),∫
Ω

∇ · uh.ϕhdx =
∫

Ω
f ϕhdx, ∀ϕh ∈M0(Th),∑

K∈Th

∫
∂K

uh.νKλhdl =
∫

∂Ω
qNλhdl ,∀λh ∈ N 0

0,D(Eh,in)

∑
E∈EG

h,m

∫
E

uh.νEηh = −
∑

E
′∈EG

h,s

∫
E

′
uh.νE

′ ηh,∀ηh ∈ Mm
h ,

∑
E∈EG

h,m

∫
E

tphβh.νEdl =
∑

E
′∈EG

h,s

∫
E

′
tphβh.νE

′ dl , ∀βh ∈ Ms
h .

with Mm
h = N 0(EG

h,m) and Ms
h the space spanned by the local RT basis

functions on the slave element sides.
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Those conditions can be written equivalently in matrix form :

Continuity of the flux :

Qm = −CTQs ,

with Qm (resp. Qs) flux unknowns along the master (resp. slave)
side of Γ,

Continuity of the trace of pressure :

Tps = CTpm,

with C a matrix representating the L2-projection from one side to the
other, of size NsxNm, whose coefficients Cij , i ∈ 1, ...,Ns ,
j ∈ 1, ...,Nm are

Cij =

( |Em
j ∩ E s

i |
|E s

i |

)
,

where |E | denotes the length of the edge E , Em
j (resp. E s

i ) denotes a
master (resp. slave) edge.
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Elimination of slave unknows



D P −
(

Rin Rm + RsC
)( Tpin

Tpm

)
= F ,

(
Min Mm + MsC
MT

m + CTMT
s Bm + CTBsC

)(
Tpin

Tpm

)

−
(

RT
in

RT
m + CTRT

s

)
P − V = 0.

where Tpin is the trace of pressure unknowns on edges in Eh,in, Tpm is the
trace of pressure unknowns on edges in Eh,m,
F vector of dimension NT (source/sink and Dirichlet BC), V vector of
dimension NE (Dirichlet and Neumann BC), with NE the cardinal of Eh
and NT the cardinal of Th.
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This system can be rewritten under the form, with M symmetric D −R

−RT M

 P

Tp

 =

 F

V

 .

The Schur complement matrix follows :

S = M − RT D−1 R.

The Schur complement system becomes then S Tp = RT D−1 F + V ,

D P = R Tp + F ;

with

Tp =

(
Tpin

Tpm

)
⇒ A linear system in Tp.
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Algorithm

1 Initialize geometry and physical parameters of the problem (a
domain independant meshing process is now possible) ;

2 Choice of slave and master sides for the intersections
between fractures and compute the matrices C for each
intersection ;

3 Create the Schur complement matrix ;

4 Find Tp by solving the first system ;

5 Find P by solving the second system ;

6 Find Tps thanks to Tpm ;
7 Loop on the triangle elements :

Compute the flux QK on each triangle thanks to local relations
involving pK and TpK .
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Conflictual configurations

Discretization of the intersections within a fracture using the grid
projection - J. Erhel et al, submitted 2008

Some edges may belong to several intersections.
What happens when an egde belongs simultaneously to a master and
a slave intersection ?
⇒ We duplicate the edges in common (with care to keep a system like the
one we gave previously - the one with the Schur complement)
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Flow computation using the Mortar method

⇒ a code we wrote in Matlab :

The Hydrolab mesh and intersections information are loaded in
Matlab,

The solver used in Matlab is the direct solver UMFPACK,

Rules for the affectation of the master/slave properties :

Known Property Contains ME Contains SE Duplicated edges Reused edges
No Master No No No No

Master Master Yes No No Master
Slave Slave Yes No M → S No
Slave Slave No Yes No Slave

No Master Yes Yes S → M Master
No Master Yes No No Master
No Slave No Yes No Slave

Remark : Additionnal equality equations in the system between
duplicated edges and their duplicata.
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For some particular 3D geometries

Example of fracture network with its 2D slice - 15 fractures

Imposed Boundary Conditions :

On top of the cube : Dirichlet BC (imposed pressure =10) ;

On the lateral sides : nul flux ;

On bottom : Dirichlet BC (imposed pressure =0) ;
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Meshing process

Matching grids Non matching grids
33164 egdes, mesh step=0.1 23362 egdes, mesh steps from 0.3 to 0.08
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Computed solution - Matching grid case

Computed mean pressure

Relative error by comparison with the 2D solution : 4.25e-6,

Input flux : Qinput = 80.46m3.s−1,

Equivalent permeability : K =
Qinput

L δh
= 4.0235m2.s−1,

Sum of flux on intersections : 3e − 13

Number of edges : 33164 ; Nb of intersections : 85
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Computed solution - Non matching grid case

Computed mean pressure

Relative error by comparison with the 2D solution : 4.25e-6,

Input flux : Qinput = 80.46m3.s−1,

Equivalent permeability : K =
Qinput

L δh
= 4.0235m2.s−1,

Sum of flux on intersections : 4e − 13

Number of edges : 23362
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A more complex geometry - Matching grids

With 30 fractures of various lengths, mesh step : 0.08

Initial geometry and computed mean pressure

Qinput = 49.53m3.s−1 ; K = 2.47m2.s−1 ; Sum flux on intersections : 1e-13 ;
Nb of intersections : 114 ; Nb of edges : 37794 (1499 master - 1516 slave)

Nb of conflicts : 12 (slave)+ 31(master) ; Nb edges reused : 69 master + 77 slave
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A more complex geometry - Non matching grids

With 30 fractures of various lengths, mesh step ranges from 0.07 to 0.2

Initial geometry and computed mean pressure

Qinput = 49.14m3.s−1 ; K = 2.45m2.s−1 ; Sum flux on intersections : 2e-13 ;
Nb of intersections : 114 ; Nb of edges : 31975 (1370 master - 1304 slave)

Nb of conflicts : 9 (slave)+ 36(master) ; Nb edges reused : 94 master + 76 slave
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Conclusions and Perpectives

Conclusions

1 Validation of the method for some particular geometries,

2 Promising results for more general networks with many fractures in
intersection.

Perpectives

1 Studying the properties of the Schur complement matrix with Mortar,

2 Reducing (if possible) the system to a system with only master
unknowns, performing its parallel implementation and choosing the
appropriate solver (B. Poirriez, PhD Inria),

3 Integrating the Mortar method into Hydrolab and performing
simulations for larger networks,

4 Optimizing the mesh step within each fracture to keep a good
precision on the results with a reduced number of unknowns.
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