Dispersion with memory in porous media: fractal MIM MODEL

fluxes and dispersion equation for the transport of particles, which can get trapped in some sites of the solid matrix

Marie-Christine Néel*, Boris Maryshev +, Maminirina Joelson*

UMR 1114 INRA - UAPV "Environnement Méditerranéen et Modélisation des Agro-Hydrosystèmes"

+ Institute of Continuous Media Mechanics, RAS, Ural Branch, Perm, Russia

*

organization

- 1. Motivation
- 2. Fractional MIM model for diffusion with memory
- 3. Random walk with IMMOBILIZATION PERIODS and limiting process
- 4. Non-Fickian flux with memory for such random walks
- 5. Illustration: comparisons random walks/discretization of Fractional MIM model

<u>1. Motivation</u>

<u>1.a. depending on medium AND tracer a contaminant can</u> spread FASTER or SLOWER than according to ADE with v=Darcy's flow <u>both effects may combine without equilibrating</u>

<u>SLOWER</u> is apparently the more significant <u>when tracer=colloid</u> (more especially BACTERIA) and WITH PASSIVE TRACERS in UNSATURATED MEDIA more especially in bounded domains?

1.b. Memory effects, not included in ADE: Breakthrough curves with heavy tails

particles seem to be retained in the medium then released

with bacteria

2. Fract(ion)al MIM model

2.a Models for diffusion with that memory effects

fractional Fokker Planck equation

$$\partial_t^{\gamma} C(x,t) = (K\Delta - v\nabla)C(x,t)$$

2.b Fractional MIM model /fractional diffusion equation

3. Random walks

3.a. Brownian motion

For particles performing random jumps after each time step τ w.r.t. a frame, moving at speed v

successive jumps: independent gaussian random variables, distributed as N(0,l)

 $K = l^{2}/2\tau \quad l, \tau \longrightarrow 0$ $Flux = vC(x,t) - K\partial_{x}C(x,t)$ $I = vC(x,t) - K\partial_{x}C(x,t)$ $I = vC(x,t) - K\partial_{x}C(x,t)$

Fick's law, Fourier's law, Einstein's reasoning

3.b. In some media, certain tracers stick the solid matrix or stay motionless during random periods

bacteria sand water

in a column

1 bacteria, immobilized in a small cave on a sand grain

4. The flux of walkers which can stick while performing a random walk

4.a. The random walk

Suppose, particles stick the solid matrix of a porous medium, after each time step and each gaussian jump during random sticking periods, of density $\psi(t) = \tau^{-1/\gamma} \varphi(t/\tau^{1/\gamma})$

2 phases: mobile and sticking $C_{tot}(x,t) = C_m(x,t) + C_{imm}(x,t)$ to be connected with Flux= $vC_m(x,t) - K\partial_x C_m(x,t)$

4.b. Mobile, immobile, or total population

Particles, sticking at x at time t, came from the mobile phase, at time [t', t'+dt']with probability $\frac{dt'}{\tau}C_m(x, t')$

then, sticked there, with (survival) probability $\Psi(t-t') = \int_{t-t'}^{+\infty} \psi(\theta) d\theta$

4.c. A mapping connecting total and mobile concentration, hence giving the flux

in the limit $\begin{bmatrix} \tau \\ l \end{bmatrix} \rightarrow 0$ with $K = l^2/2\tau$

$$C_{tot} = (Id + \lambda I^{1-\gamma}) C_m \qquad \longrightarrow \qquad C_m = (Id + \lambda I^{1-\gamma})^{-1} C_{tot}$$

Flux=
$$(v - K \partial_x) (Id + \lambda I^{1-\gamma})^{-1} C_{tot}$$

Fick's law for media where particles stick some immobile matrix

Riemann-Liouville derivative of the order of $1-\gamma$

with the definition

 $D^{\alpha}f(t) = \partial_{t}I^{1-\alpha}f(t)$

4.d. Consequence: Fract(ion)al MIM model with sources

$$\partial_{t}C(x,t) = -\nabla (K\nabla - v)(Id + \lambda I^{1-y})^{-1}C(x,t) + r(x,t)$$
source rate

equivalent to

$$(\partial_t + \lambda \,\partial_t^{\gamma}) C(x, t) = -\nabla . (K \nabla - v) C(x, t) + (Id + \lambda I^{\gamma}) r(x, t)$$

when K and v are constant

5. Numerical illustration

constant coefficients

5.a. Schemes for

 $\partial_t C(x,t) = -\nabla (K\nabla - v) (Id + \lambda I^{1-\gamma})^{-1} C(x,t) + r(x,t)$ equivalent to $(\partial_t + \lambda \partial_t^{\gamma}) C(x,t) = -\nabla (K\nabla - v) C(x,t) + (Id + \lambda I^{1-\gamma}) r(x,t)$

discretize $Id + \lambda I^{1-\gamma}$ then invert

2 interesting schemes:

or

use schemes for Caputo derivative

5.b.Comparisons against random walks

constant source at x=0.5 for t between 0 and 0.5

concentration profiles

flux at the outlet

Conclusion

A model for memory effects, coherent with immobilization periods In terms of fluxes Numerical discretization Some parameters are visible in the asymptotic behaviour

Gaussian jumps, separated by time intervals of duration τ hydrodynamic limit: U:Brownian motion

operational time=clock time t

with random immobilizations inserted

hydrodynamic limit: operational time+ U(operational time) =clock time t

