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Statement of the problem

(Pε)

8>>>><>>>>:
∂tu + div (S1 u) = ε∆u + f (u)− ε−1F (u, v), in Ω× (0,T ]

∂tv + div (S2 v) = ε∆v + g(v)− α ε−1F (u, v), in Ω× (0,T ]
u = u, on ∂Ω× (0,T ]
v = v , on ∂Ω× (0,T ]
u(·, 0) = u0, v(·, 0) = v0, on Ω

I u, v mass concentrations of reactants
I f , g interspecific competition terms (e.g. f (u) = u(1− u),

g(v) = v(1− v))
I F intraspecific production term (e.g. F (u, v) = upvq , p > 1, q > 1)
I ε is the ratio of two characteristic time scales

Aim: Study the asymptotic behavior ε→ 0 ...
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Assumptions

Production by reaction:

• F ∈ C1((0, 1]× (0, 1]) ∩ C((0, 1]× (0, 1]),

• F (0, s) = F (s̃, 0) = 0 for s ∈ [0, 1], s̃ ∈ [0, 1],

• F (u, v) > 0 for (u, v) ∈ (0, 1]× (0, 1],

• F is nondecreasing in u and v .

Intra-specific source terms:

• f and g are continuously differentiable on [0,+∞) such that
f (0) = g(0) = 0;

• f (s) < 0, g(s) < 0 for all s > 1.

Initial and boundary conditions:

• u and v are functions with values in [0, 1],

• u, v ∈ C2,1(Ω× R+),

• u0 = u(·, 0), v0 = v(·, 0).
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Existence, uniqueness, estimates for (Pε)

Theorem
Problem (Pε) admits a unique classical solution

(uε, vε) ∈ C2,1(Ω× (0,T ]) ∩ C(Ω× [0,T ]) with 0 ≤ uε, vε ≤ 1.

Proof idea: For instance, apply arguments from Lunardi (Analytic semigroups
and optimal regularity in parabolic problems, Progress in Nonlinear Diff. Eqs.
Birkhaeuser(2005)) + the maximum principle.
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Lemma (Interspecific source term: estimates)
There exists a positive constant c0 which does not depend on ε such that

ε−1
ZZ

QT

F (uε, vε) ≤ c0.

Proof of Lemma 2: Integrating the equation for vε over QT yields

ε−1
ZZ

QT

F (uε, vε)

= α−1

 ZZ
QT

ε∆vε +

ZZ
QT

div (S2vε) + g(vε)−
Z

Ω

vε(·,T ) +

Z
Ω

v0

!
= α−1

„Z T

0

Z
∂Ω

ε ∂nvε +

Z T

0

Z
∂Ω

vε S2 · n + g(vε)−
Z

Ω

vε(·,T ) +

Z
Ω

v0

«
≤ α−1 `mes(Ω)

`
2 + T ‖g‖L∞(0,1)

´
+ mes(∂Ω) ‖S2‖`∞ T

´
.
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Energy estimates ...

Lemma
There are positive constants c1 and c2 which do not depend on ε such that

ε

ZZ
QT

|∇uε|2 ≤ c1.

ε

ZZ
QT

|∇vε|2 ≤ c2.
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Compactness ?

Idea: Use Riesz-Frechet-Kolmogorov compactness theorem/Simon’s paper

For r > 0 sufficiently small, say r ∈ (0, r̂), we define

Ωr = {x ∈ Ω, B(x , 2r) ⊂ Ω} , Ω′r =
[

x∈Ωr

B(x , r)⊂ Ω,

For any F ∈ L∞(QT ):

∀ξ ∈ B(0, r), ∀(x , t) ∈ Ω′r × (0,T ), SξF(x , t) := F(x + ξ, t),
∀τ ∈ (0,T ), ∀(x , t) ∈ Ω× (0,T ), TτF(x , t) := F(x , t + τ).
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Lemma
For each r ∈ (0, r̂), the following properties hold:

(i) There exist Gi ≥ 0 s.t. Gi(ξ) → 0 as ξ → 0 and

∀ξ ∈ B(0, r),
Z T

0

Z
Ωr

|Sξuε − uε| ≤ G1(ξ),

Z T

0

Z
Ωr

|Sξvε − vε| ≤ G2(ξ).

(ii) There exist c3 and c4 s. t.

∀τ ∈ (0,T ),

Z T−τ

0

Z
Ωr

|Tτ uε − uε| ≤ c3
√
τ ,

Z T−τ

0

Z
Ωr

|Tτ vε − vε| ≤ c4
√
τ .

(iii) For any η > 0, there exists ω b QT which does not depend on ε such
that ‖uε‖L1(QT \ω) < η, ‖vε‖L1(QT \ω) < η.
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L1 compactness. Reactants separation in space
Lemma (Strong convergence results)
Letting ε→ 0, there exists (u, v) ∈ (L∞(QT ; [0, 1]))2 such that, up to a
subsequence of {ε},

uε → u in L1(QT ).
vε → v in L1(QT ).

Lemma (Segregation principle)
One has:

uv = 0, a.e. in QT .

New variable:
wε = uε −

vε

α
, w = u − v

α
.

There exists w ∈ L∞(QT ) s. t.

uε −
vε

α
→ w , u = w+, v = αw−.
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Definition (Strong formulation of the fast reaction problem)
We define Problem (P?) as the following nonlinear transport problem:

(P?)

8<:
∂tw + div (S(w)) = F(w), in Ω× (0,T ],
w = w , on ∂Ω× (0,T ],
w(·, 0) = w0, on Ω.

with the flux function s 7→ S(s) and source term s 7→ F(s):

S(s) := S1 s+ − S2

α
s− F(s) := f (s+)− g(−αs−)

α
.
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Show that the limit of the sequence wε, denoted w , is the so-called “unique
weak entropy solution” of

Theorem
The sequence wε strongly converges to w in L1(QT ). Moreover, the function
w is the unique entropy solution of Problem (P?), i.e. satisfyingZ

QT

(
(w − k)± ∂tϕ+ sgn±(w − k)

“
S(w)− S(k)

”
∇ϕ− sgn±(w − k)F(w)ϕ

)

+

Z
Ω

(w0 − k)±ϕ(0, ·) + L
Z

ΣT

(w − k)±ϕ ≥ 0,

for all ϕ ∈ D(]−∞,T [×Rd), for all k ∈ R.

Proof following the lines of Malek/Necas/Rokyta/Ruzicka: Weak and
Measure-valued Solutions to Evolutionary PDEs(1996), S. Martin: J. Diff.
Eqs. (2007)
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Theorem
Let w be the unique solution of Problem (P?). Assume there exists a closed
hypersurface Γ(t) and two subdomains Ωu(t), Ωv (t) s.t.

Ω = Ωu(t) ∪ Ωv (t), Γ(t) = Ωu(t) ∩ Ωv (t),

w(·, t) > 0, on Ωu(t)
w(·, t) < 0, on Ωv (t).

Assume t 7→ Γ(t) smooth enough and (u, v) := (w+, αw−) is smooth up to
Γ(t). Then u and v satisfy

(P?)

8>>>>>>>>>>>><>>>>>>>>>>>>:

∂tu + S1 · ∇u = f (u), in Qu :=
[

t∈R+

{Ωu(t)× {t}},

∂tv + S2 · ∇v = g(v), in Qv :=
[

t∈R+

{Ωv (t)× {t}},h
−u +

v
α

i
V · n =

h
−u S1 +

v
α

S2

i
· n, on Γ :=

[
t∈R+

{Γ(t)× {t}},

u = u, on ∂Ω× R+,
v = v , on ∂Ω× R+,
u(·, 0) = u0, v(·, 0) = v0, on Ω.
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Concentration effect of the reaction term

Previous estimates ensure that ε−1F (uε, vε) ⇀ µ in the sense of measures.

Could we be a little bit more precise about µ?
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Theorem (Behaviour of the interspecific source term)
Under convenient regularity assumptions, one has

µ(x , t) =
1

1 + α
([u + v ] V · n− [u S1 + v S2] · n) δ(x − ξ(t)).

where ξ(t) is a parametrization of the free boundary Γ(t).
Proof: Defining µε = ε−1 F (uε, vε) and using ψ ∈ C∞

0 (QT ), we have:ZZ
QT

µε ψ =

ZZ
QT

(uε ∂tψ + uε S1 · ∇ψ + f (uε)ψ)

=
1
α

ZZ
QT

(vε ∂tψ + vε S2 · ∇ψ + g(vε)ψ) .

Passing to the limit ε→ 0 and integrating the result by parts, we obtainZZ
QT

µψ =

Z T

0

Z
Ωu(t)

(−∂tu − S1 · ∇u + f (u))| {z }
=0

ψ +

Z T

0

Z
Γ(t)

[−u]ψ (S1 − V) · n,

α

ZZ
QT

µψ =

Z T

0

Z
Ωv (t)

(−∂tv − S2 · ∇v + g(v))| {z }
=0

ψ +

Z T

0

Z
Γ(t)

[v ]ψ (V − S2) · n
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The case of a dissolution front propagating into a mineral

Corollary
Assume that α = 1 and S2 = 0. Then

µ(x , t) = [u] V · n δ(x − ξ(t))

or equivalently

µ(x , t) =
[−u] [v ]

[−u + v ]
S1 · n δ(x − ξ(t))
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