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Targets

Computing efficiently the flow in solid-porous-fluid
media.

To explore a tool to perform simultaneously all
computations:

Low computational tasks;
Low complexity of the method;

Useful to solve different industrial problems.



Physical description

Fluid domain

Up

We have to solve a problem involving three different
media, the solid body, the porous layers and the
incompressible fluid.



....physical description

From the solid to the main fluid (Vafai 81, Nield & Bejan 99):

e the boundary layer in the porous medium close to the solid
wall has a thickness thickness order of k/2,

e the homogeneous porous flow with the very low Darcy
velocity up,

e the porous interface region with the fluid velocity from up
to u; at the boundary and the thickness about k'/2,

e the boundary layer in the fluid close to the porous frontier
that grows from the interface velocity u; instead of
zero,

e the main fluid flow with mean velocity ug.



Reduction of the porous layer to a
boundary condition

From the Darcy law, Beavers and Joseph (1972) derived the ad
hoc boundary condition
ou e

@:ruz(ui_ur’) ; v=0

with «: a slip coefficient.
Modified boundary condition (Jones 1973)
ov  Ou @

Normal transpiration (Perot & Moin 1995)
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with : the porosity coefficient; p’ = p — G(t)x: fluctuation of
the wall pressure versus the mean pressure gradient.

u=20 ;



Coupling of Darcy equations with Fluid
equations

Modelling both the porous medium and the flow

%PUJrvp:o . divU=0

oU—-— vAU+Vp =0 ; divU=0

Boundary condition at the interface (Das et al. 2002, Hanspal
et al. 2006, Salinger et al. 1994)

e Darcy equation as a boundary condition for the fluid

e Beavers & Joseph type condition and Brinkman equation

Interface velocity continuous with a stress jump

(%) _ (%) R .
Hp By porous — H dy fluid — k1/2U1

where v is a dimensionless coefficient of order one.



Penalisation method

Arquis & Caltagirone (88), Angot et al. (99), Kevlahan &
Ghidaglia (99).

Brinkman’s equation (valid only for high porosities close to one)
obtained from Darcy’s law by adding the diffusion term:

Vp = — gcbu 1 i®AU

adding the inertial terms with the Dupuit-Forchheiner
relationship, the Forchheiner-Navier-Stokes equations:

p®U+ p(U-V)U +Vp =— %@UJrﬁ@AU
where k: intrinsic permeability, fi: Brinkman’s effective viscosity

and ®: porosity. As ® is close to 1 we have fi close to pu/®:

pU+ p(U-V)U —i—sz—%@U—i—uAU



Double penalisation method

Nondimensionalisation using the mean fluid velocity U and the
obstacles heigh H: U=U'U ; x=2'H ; t=1t/U.
Penalised non dimensional Navier-Stokes equations adding U/K
to incompressible NS equations (K = ”Z% non dimensional

permeability coefficient of the medium):

8tU+(U-V)U—éAU+%+Vp:0 in Qr
divU =0 in Qp
U(O,) :U() in Q
U=Uy, onT'p x 1
U=0 onTyw x 1

o(U,p) n + %(U n)"(U—=Upes) =0(Upefspref) . onTy x I

Solid: K = 1078, Fluid: K = 10'%, Porous layer: K =10"1 —

Specific interpolations needed in the fluid-porous interface.



Outline of the numerical simulation

Second-order Gear scheme in time.

The space discretization is performed on staggered grids
with strongly coupled equations.

Second-order centred finite differences are used for the
linear terms - The location of the unknowns enforce the
divergence-free equation which is discretized on the
pressure points.

The convection terms are approximated by a third order
Murman-like scheme.

The resolution is achieved by a V-cycle multigrid algorithm
coupled to a cell-by-cell relaxation procedure. There is a
sequence of grids from a coarse 25 x 10 cells grid to a fine
3200 x 1280 cells grid for instance.



Applications to passive control (0):
Functionals to be minimized
As the pressure is computed inside the solid body, the drag

and lift forces are computed by integrating the penalisation
term on the volume of the body:

Fp fbody 1P dx —l—fbody ReAu dx /bd d(1)
o y

FL = = fyoqy Ou2p dx + [ gelv de ~ E da(2)
body

Important quantities to quantify the control effect:

Cp =2(p—po)/(p|U*)

2Fp 9OF;
Cp="2L . ¢, =L
p="gmg T g

ClLrms = 1/Tc2dt~ Z—1/| %d
Lrms — T(] L ) —QQW x



Applications to passive control (1):
Flow control around a riser using a porous ring

Flow simulation behind a circular bluff body with a size
D = 0.16, located at the position (1.1,1) in an open
computational domain.

The pipe is surrounded by a solid (larger diameter), a
porous or a fluid sheath (smaller diameter): D = 0.2.

The Reynolds number based on the pipe diameter D is
Rp = 30000 for the solid case.

The control target is to reduce the VIV (Vortex Induced
Vibrations) around the riser.




Vorticity field for a fluid (bottom) and a porous (top) sheath for
the same time at Rp = 30000.



Mean values of the enstrophy and the drag coefficient and
asymptotic value of the CLrms for Rp = 30000.

Grid K Enstrophy Drag Crrms
3200 x 1280  10E-1 291 1.56  0.081
10E+16 810 1.10 0.293

e A patent in 2004 on the passive control of VIV
around riser pipes using porous media with TFP.



Applications to passive control (2):
Drag reduction for a simplified car model using
porous devices (collaboration with Renault)

_.——  Witha square back

—— With arear window

Computational domain for the Ahmed body without or with a
rear window.



Passive flow control around the square

back Ahmed body
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From left to right and top to bottom: porous cases 0, 1, 2, 3, 4
and 5 geometries for the square back Ahmed body.



Mean vorticity isolines for the flow around square back Ahmed
body on top of a road at Ry, = 30000. Cases 0 (top left), 1 (top
right), 2 (middle left), 3 (middle right), 4 (bottom left) and 5
(bottom right).



Pressure isolines for the flow around square back Ahmed body
on top of a road at Ry, = 30000. Cases 0 (top left), 1 (top
right), 2 (middle left), 3 (middle right), 4 (bottom left) and 5
(bottom right).



The value and the location of the minimum pressure in the close
wake of the square back Ahmed body on top of a road at
Ry, = 30000.

H H P,.in value in the wake ‘ P,,in Location H

case 0 “1.636 (10.11, 1.53)
case 1 -1.758 (10.11 , 1.53)
case 2 -0.678 (10.22, 1.39)
case 3 -0.850 (10.09 , 1.52)
case 4 -0.540 (10.89 , 1.34)
case 5 -0.510 (10.16 , 1.34)




Mean values of the enstrophy and the drag coefficient and
asymptotic values of Cr,.ms for square back Ahmed body on top

of a road at Ry, = 30000.

H H ClLrms 7 ‘ UpD ‘ Down D ‘ Drag
case 0.517 827 0.173 [ 0.343 0.526
(c)ase 0.545 (+ 5%) | 835 (+ 1%) | 0.231 | 0.330 0.567 (+ 8%)
(1:ase 0.396 (-23%) | 592 (-28%) | 0.156 | 0.166 | 0.332 (-37%)
(2:ase 0.674 (+30%) | 732 (-11%) | 0.214 | 0.176 0.391 (-26%)
zase 0.381 (-26%) | 541 (-35%) | 0.213 | 0.139 | 0.362 (-31%)
3ase 0.352 (-32%) | 533 (-36%) | 0.217 | 0.127 | 0.354 (-33%)
5




Flow control around the Ahmed body
with a rear window using porous

Cas 0

materials

Cas 1

Cas 2

Cas 3

From left to right and top to bottom: cases 0, 1, 2 and 3
geometries for the Ahmed body with a rear window.




Mean pressure isolines for the flow around the Ahmed body with
a rear window on top of a road at Ry, = 30000. Cases 0 (top
left), 1 (top right), 2 (bottom left) and 3 (bottom right).



Mean values of the enstrophy and the drag coefficient and
asymptotic values of Cfps for the Ahmed body with a rear
window on top of a road at Ry, = 30000.

H H Crrms Z ‘ Up D ‘ Down D ‘ Drag
case 0 0.817 726 0.099 0.176 0.282
case 1 0.600 (-27%) | 605 (-17%) | 0.100 0.190 0.300 (+ 6%)
case 2 0.801 (- 2%) | 670 (-18%) | 0.093 0.124 0.224 (- 21%)
case 3 0.534 (-35%) | 552 (-24%) | 0.092 0.151 0.254 (-10%)




3D Control of the body with a rear
window

e Passive control with porous surface at the bottom or/and
active control with act = 0.3Vj:

%

act

e Work in progress : study of the fields, computation on finer
grids, work with closed-loop control...)



Three-dimensional Ahmed body

e Ahmed body with a rear window (25°) on the top of a road
(h =0.6)

e Reynolds number Re = 30000

e Isosurface of total pressure coefficient C); = 1 with Cp
colors:




Conclusion

e It is shown that the double penalisation method handles
efficiently the solid-porous-fluid problems.

e Simulations in the three media are accurate and
simultaneous.

e Applications with porous interfaces, to implement passive
control techniques in different industrial area are very
promising.



Conclusion

It is shown that the double penalisation method handles
efficiently the solid-porous-fluid problems.

Simulations in the three media are accurate and
simultaneous.

Applications with porous interfaces, to implement passive
control techniques in different industrial area are very
promising.

3D computations to achieve a realistic knowledge of the
control around the Ahmed body are in progress.
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