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Targets

• Computing efficiently the flow in solid-porous-fluid
media.

• To explore a tool to perform simultaneously all
computations:

• Low computational tasks;
• Low complexity of the method;
• Useful to solve different industrial problems.



Physical description
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We have to solve a problem involving three different
media, the solid body, the porous layers and the
incompressible fluid.



....physical description

From the solid to the main fluid (Vafai 81, Nield & Bejan 99):
• the boundary layer in the porous medium close to the solid

wall has a thickness thickness order of k1/2,
• the homogeneous porous flow with the very low Darcy

velocity uD,
• the porous interface region with the fluid velocity from uD

to ui at the boundary and the thickness about k1/2,
• the boundary layer in the fluid close to the porous frontier

that grows from the interface velocity ui instead of
zero,

• the main fluid flow with mean velocity u0.



Reduction of the porous layer to a
boundary condition

From the Darcy law, Beavers and Joseph (1972) derived the ad
hoc boundary condition

∂u
∂y

=
α

k1/2
(ui − uD) ; v = 0

with α: a slip coefficient.
Modified boundary condition (Jones 1973)

(
∂v
∂x

+
∂u
∂y

) =
α

k1/2
(ui − uD) ; v = 0

Normal transpiration (Perot & Moin 1995)

u = 0 ;
∂v
∂y

= 0 or u = 0 ; v = −βp′

with β: the porosity coefficient; p′ = p−G(t)x: fluctuation of
the wall pressure versus the mean pressure gradient.



Coupling of Darcy equations with Fluid
equations

Modelling both the porous medium and the flow
µp

k
U +∇p = 0 ; divU = 0

∂tU− ν ∆U +∇p = 0 ; divU = 0

Boundary condition at the interface (Das et al. 2002, Hanspal
et al. 2006, Salinger et al. 1994)
• Darcy equation as a boundary condition for the fluid
• Beavers & Joseph type condition and Brinkman equation

Interface velocity continuous with a stress jump

µp(
∂ui

∂y
)porous − µ(

∂ui

∂y
)fluid =

γ

k1/2
ui

where γ is a dimensionless coefficient of order one.



Penalisation method
Arquis & Caltagirone (88), Angot et al. (99), Kevlahan &
Ghidaglia (99).

Brinkman’s equation (valid only for high porosities close to one)
obtained from Darcy’s law by adding the diffusion term:

∇p = − µ

k
ΦU + µ̃Φ∆U

adding the inertial terms with the Dupuit-Forchheiner
relationship, the Forchheiner-Navier-Stokes equations:

ρ ∂tU + ρ (U · ∇)U +∇p = − µ

k
ΦU + µ̃Φ∆U

where k: intrinsic permeability, µ̃: Brinkman’s effective viscosity
and Φ: porosity. As Φ is close to 1 we have µ̃ close to µ/Φ:

ρ ∂tU + ρ (U · ∇)U +∇p = − µ

k
ΦU + µ∆U



Double penalisation method

Nondimensionalisation using the mean fluid velocity U and the
obstacles heigh H: U = U ′ U ; x = x′ H ; t = t′/U .

Penalised non dimensional Navier-Stokes equations adding U/K
to incompressible NS equations (K = ρkΦU

µH non dimensional
permeability coefficient of the medium):

∂tU + (U · ∇)U − 1
Re

∆U +
U
K

+∇p = 0 in ΩT

divU = 0 in ΩT

U(0, .) = U0 in Ω
U = U∞ on ΓD × I
U = 0 on ΓW × I
σ(U, p) n + 1

2 (U · n)−(U − Uref ) = σ(Uref , pref ) n on ΓN × I

Solid: K = 10−8, Fluid: K = 1016, Porous layer: K = 10−1 →

Specific interpolations needed in the fluid-porous interface.



Outline of the numerical simulation

• Second-order Gear scheme in time.
• The space discretization is performed on staggered grids

with strongly coupled equations.
• Second-order centred finite differences are used for the

linear terms - The location of the unknowns enforce the
divergence-free equation which is discretized on the
pressure points.

• The convection terms are approximated by a third order
Murman-like scheme.

• The resolution is achieved by a V-cycle multigrid algorithm
coupled to a cell-by-cell relaxation procedure. There is a
sequence of grids from a coarse 25× 10 cells grid to a fine
3200× 1280 cells grid for instance.



Applications to passive control (0):
Functionals to be minimized

• As the pressure is computed inside the solid body, the drag
and lift forces are computed by integrating the penalisation
term on the volume of the body:

FD = −
∫
body ∂x1p dx +

∫
body

1
Re∆u dx ≈

∫
body

u

K
dx(1)

FL = −
∫
body ∂x2p dx +

∫
body

1
Re∆v dx ≈

∫
body

v

K
dx.(2)

• Important quantities to quantify the control effect:

Cp = 2(p− p0)/(ρ|U |2)

CD =
2FD

H
; CL =

2FL

H

CLrms =

√
1
T

∫ T

0
C2

L dt ; Z =
1
2

∫
Ω
|ω|2dx



Applications to passive control (1):
Flow control around a riser using a porous ring

• Flow simulation behind a circular bluff body with a size
D = 0.16, located at the position (1.1, 1) in an open
computational domain.

• The pipe is surrounded by a solid (larger diameter), a
porous or a fluid sheath (smaller diameter): δD = 0.2.

• The Reynolds number based on the pipe diameter D is
RD = 30000 for the solid case.

• The control target is to reduce the VIV (Vortex Induced
Vibrations) around the riser.



Vorticity field for a fluid (bottom) and a porous (top) sheath for
the same time at RD = 30000.



Mean values of the enstrophy and the drag coefficient and
asymptotic value of the CLrms for RD = 30000.

Grid K Enstrophy Drag CLrms

3200× 1280 10E-1 291 1.56 0.081
10E+16 810 1.10 0.293

• A patent in 2004 on the passive control of VIV
around riser pipes using porous media with IFP.



Applications to passive control (2):
Drag reduction for a simplified car model using

porous devices (collaboration with Renault)

!
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Computational domain for the Ahmed body without or with a
rear window.



Passive flow control around the square
back Ahmed body

1

2 3
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From left to right and top to bottom: porous cases 0, 1, 2, 3, 4
and 5 geometries for the square back Ahmed body.



Mean vorticity isolines for the flow around square back Ahmed
body on top of a road at RL = 30000. Cases 0 (top left), 1 (top
right), 2 (middle left), 3 (middle right), 4 (bottom left) and 5
(bottom right).



Pressure isolines for the flow around square back Ahmed body
on top of a road at RL = 30000. Cases 0 (top left), 1 (top
right), 2 (middle left), 3 (middle right), 4 (bottom left) and 5
(bottom right).



The value and the location of the minimum pressure in the close
wake of the square back Ahmed body on top of a road at

RL = 30000.

Pmin value in the wake Pmin Location
case 0 -1.636 (10.11 , 1.53)
case 1 -1.758 (10.11 , 1.53)
case 2 -0.678 (10.22 , 1.39)
case 3 -0.850 (10.09 , 1.52)
case 4 -0.540 (10.89 , 1.34)
case 5 -0.510 (10.16 , 1.34)



Mean values of the enstrophy and the drag coefficient and
asymptotic values of CLrms for square back Ahmed body on top

of a road at RL = 30000.

CLrms Z Up D Down D Drag
case
0

0.517 827 0.173 0.343 0.526

case
1

0.545 (+ 5%) 835 (+ 1%) 0.231 0.330 0.567 (+ 8%)

case
2

0.396 (-23%) 592 (-28%) 0.156 0.166 0.332 (-37%)

case
3

0.674 (+30%) 732 (-11%) 0.214 0.176 0.391 (-26%)

case
4

0.381 (-26%) 541 (-35%) 0.213 0.139 0.362 (-31%)

case
5

0.352 (-32%) 533 (-36%) 0.217 0.127 0.354 (-33%)



Flow control around the Ahmed body
with a rear window using porous

materials

Cas 0
Cas 1

Cas 2 Cas 3 

From left to right and top to bottom: cases 0, 1, 2 and 3
geometries for the Ahmed body with a rear window.



Mean pressure isolines for the flow around the Ahmed body with
a rear window on top of a road at RL = 30000. Cases 0 (top
left), 1 (top right), 2 (bottom left) and 3 (bottom right).



Mean values of the enstrophy and the drag coefficient and
asymptotic values of CLrms for the Ahmed body with a rear

window on top of a road at RL = 30000.

CLrms Z Up D Down D Drag
case 0 0.817 726 0.099 0.176 0.282
case 1 0.600 (-27%) 605 (-17%) 0.100 0.190 0.300 (+ 6%)
case 2 0.801 (- 2%) 670 (-18%) 0.093 0.124 0.224 (- 21%)
case 3 0.534 (-35%) 552 (-24%) 0.092 0.151 0.254 (-10%)



3D Control of the body with a rear
window

• Passive control with porous surface at the bottom or/and
active control with act = 0.3V0:

act

!act

• Work in progress : study of the fields, computation on finer
grids, work with closed-loop control...)



Three-dimensional Ahmed body

• Ahmed body with a rear window (25◦) on the top of a road
(h = 0.6)

• Reynolds number Re = 30000
• Isosurface of total pressure coefficient Cpi = 1 with CP

colors:



Conclusion

• It is shown that the double penalisation method handles
efficiently the solid-porous-fluid problems.

• Simulations in the three media are accurate and
simultaneous.

• Applications with porous interfaces, to implement passive
control techniques in different industrial area are very
promising.

• 3D computations to achieve a realistic knowledge of the
control around the Ahmed body are in progress.
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