Modeling and numerical approximation of multi-component anisothermal flows in porous media

M. Amara^{*}, D. Capatina^{*}, <u>L. Lizaik</u>^{*,*}, P. Terpolilli^{*}

*Laboratory of Applied Mathematics, CNRS UMR 5142, University of Pau ^b TOTAL, CST Jean Feger, Pau

Journée des Doctorants, 18 avril 2008

Motivations

Optical fiber

- Send a light source
- Detect a backscattering light
- The time for the backscattered signal gives distance along fiber
- The ratio of wave lengths gives temperature

Possible applications

- Estimate virgin reservoir temperature
- Predict flow profiles and the flow rate of each layer

Motivations

Optical fiber

- Send a light source
- Detect a backscattering light
- The time for the backscattered signal gives distance along fiber
- The ratio of wave lengths gives temperature

Possible applications

- Estimate virgin reservoir temperature
- Predict flow profiles and the flow rate of each layer

 \square Coupling of monophasic reservoir and wellbore models with heat transfer

Coupling of monophasic reservoir and wellbore models with heat transfer

• Resevoir model :

$$\begin{cases} r\phi \frac{\partial \rho}{\partial t} + div(r\mathbf{G}) = 0\\ \rho^{-1}(\mu \mathbf{\underline{K}}^{-1}\mathbf{G} + F|\mathbf{G}|\mathbf{G}) + \nabla p = -\rho \mathbf{g}\\ r(\rho c)_* \frac{\partial T}{\partial t} + r\rho^{-1}(\rho c)_f \mathbf{G} \cdot \nabla T - div(r\mathbf{q}) - r\phi\beta T \frac{\partial p}{\partial t} - r\rho^{-1}(\beta T - 1)\mathbf{G} \cdot \nabla p = 0\\ \frac{1}{\lambda}\mathbf{q} - \nabla T = 0\\ \rho = \rho(p, T) \end{cases}$$

• Wellbore model

$$\begin{cases} \frac{\partial}{\partial t}(r\rho) + \nabla \cdot (r\rho \mathbf{u}) = 0 \\ \frac{\partial}{\partial t}(r\rho u_r) + \nabla \cdot (ru_r\rho \mathbf{u}) + r\frac{\partial p}{\partial r} - \frac{\partial}{\partial r}(r\tau_{rr}) - \frac{\partial}{\partial z}(r\tau_{zr}) + \tau_{\theta\theta} + r\kappa\rho |\mathbf{u}|u_r = 0 \\ \frac{\partial}{\partial t}(r\rho u_z) + \nabla \cdot (ru_z\rho \mathbf{u}) + r\frac{\partial p}{\partial z} - \frac{\partial}{\partial r}(r\tau_{rz}) - \frac{\partial}{\partial z}(r\tau_{zz}) + r\rho g + r\kappa\rho |\mathbf{u}|u_z = 0 \\ \frac{\partial}{\partial t}(r\rho E) + \nabla \cdot (r(\rho E + p)\mathbf{u}) - \nabla \cdot (r\underline{\tau}\mathbf{u}) - \nabla \cdot (r\lambda\nabla T) + r\rho gu_z = 0 \\ \rho = \rho(p, T) \end{cases}$$

* M. Amara, D. Capatina and L. Lizaik, Coupling of a Darcy-Forchheimer model and compressible Navier-Stokes equations with heat transfer, Accepted in SIAM J. Sci. Comp. 2008.
* M. Amara, D. Capatina and L. Lizaik, Numerical coupling of 2.5D reservoir and 1.5D wellbore models in order to interpret thermometrics, Int. J. Numer. Meth. Fluids, Vol. 56, No. 8, pp. 1115-1122, 2008.

Outline

- Physical modeling
- Primary and secondary variables
- Boundary conditions
- Numerical scheme
- Numerical simulations

└─Physical modeling

Physical modeling

- Three phases (p) : water(w), oil(o) and gas (g)
- *n_c* components: water, heavy hydrocarbons, light hydrocarbons, methan....
- n_h hydrocarbon components $(n_h = n_c 1)$

• 3D / Porous media Ω with n_W wells

Gridding

- Cartesian rectangular mesh
- The code is able to interface with any gridding software by reading some necessary informations

	Ŵ	n_1	<i>n</i> ₂			n_h
w	×					
0		×	×	×	X	×
8		×	×	×	×	×

└─Physical modeling

Physical modeling

- Three phases (p) : water(w), oil(o) and gas (g)
- *n_c* components: water, heavy hydrocarbons, light hydrocarbons, methan....
- n_h hydrocarbon components $(n_h = n_c 1)$
- **3D** / Porous media Ω with n_W wells

Gridding

- Cartesian rectangular mesh
- The code is able to interface with any gridding software by reading some necessary informations

	Ŵ	n_1	<i>n</i> ₂			n_h
w	×					
0		×	×	×	X	×
g		×	×	×	×	×

Physical modeling

Physical modeling

- Three phases (p) : water(w), oil(o) and gas (g)
- *n_c* components: water, heavy hydrocarbons, light hydrocarbons, methan....
- n_h hydrocarbon components $(n_h = n_c 1)$
- **3D** / Porous media Ω with n_W wells

Gridding

- Cartesian rectangular mesh
- The code is able to interface with any gridding software by reading some necessary informations

	Ŵ	n_1	<i>n</i> ₂			n_h
w	×					
0		×	×	×	X	×
g		×	×	×	×	×

Governing equations

• Mass conservation equation for each component *c* :

$$\mathcal{F}_{c} = \sum_{p=o,g,w} \left(\frac{\partial}{\partial t} (\phi S_{p} \rho_{p} y_{c,p}) + \nabla \cdot (\rho_{p} \mathbf{u}_{p} y_{c,p}) \right) = 0$$

 \mathbf{u}_p is given by the generalized Darcy law : $\mathbf{u}_p = -k_{rp}\mu_p^{-1}\mathbf{\underline{K}}(\nabla p_p - \rho_p \mathbf{g})$ • Energy equation :

$$\mathcal{F}_{T} = \frac{\partial}{\partial t} \left[\sum_{p=o,g,w} (\phi \ S_{p} \ \rho_{p} \ \mathcal{H}_{p} - p_{p}) + (1 - \phi) \rho_{s} \mathcal{H}_{s} \right] + \sum_{p=o,w,g} \nabla \cdot (\phi S_{p} \rho_{p} \mathcal{H}_{p} \mathbf{u}_{p})$$
$$-\nabla \cdot (\lambda \nabla T) + \sum_{p=o,g,w} \mathbf{u}_{p} \cdot \nabla p_{p} = 0$$

 \mathcal{H}_p enthalpy of phase pT temperature

 λ equivalent thermal conductivity $\lambda = (\lambda_s)^{(1-\phi)} \times (\lambda_w)^{s_w \times \phi} \times (\lambda_o)^{s_o \times \phi} \times (\lambda_g)^{s_g \times \phi}$

Take into account convective, diffusive, compressibility and viscous dissipation effects

Physical modeling

• Capillary pressure constraints :

 $p_{c,ow} = p_o - p_w$ (oil-water capillary pressure) $p_{c,go} = p_g - p_o$ (gas-oil capillary pressure)

Capillary pressures are measured in laboratories

• Saturation constraint :

$$\sum_{p=1}^{n_p} S_p = 1$$

• Component mole fraction constraints :

$$\sum_{c=1}^{n_c} y_{c,p} = 1 \quad \forall p = w, o, g$$

• Phase equilibrium relation for each hydrocarbon component c in oil and gas phases:

$$\mathcal{F}_e = f_{c,o} - f_{c,g} = 0$$

 $f_{c,o}$ and $f_{c,g}$ are the fugacities of hydrocarbon component c in oil and gas phases respectively, calculated from the Peng Robinson equation of state

Modeling and numerical approximation of multi-component anisothermal flows in porous media

Primary and secondary variables

* Number of equations :

Туре	Number
Mass conservation	$n_{h} + 1$
Energy equation	1
Capillary pressure constraints	2
Saturation constraint	1
Component mole fraction constraints	2
Equilibrium relation equations	n_h
Total	$2n_h + 7$

Primary and secondary variables

• According to Gibb's phase rule, the number of primary variables is equal to :

$$(n_c + 2 - n_{phase}) + (n_{phase} - 1) = n_c + 1$$

• Use linear constraint equations to remove two pressures, one saturation and two component mole fractions

 \rightarrow 2n_h + 2 number of non-linear equations and variables is left

Modeling and numerical approximation of multi-component anisothermal flows in porous media

Primary and secondary variables

* Number of equations :

Туре	Number
Mass conservation	$n_{h} + 1$
Energy equation	1
Capillary pressure constraints	2
Saturation constraint	1
Component mole fraction constraints	2
Equilibrium relation equations	n_h
Total	$2n_h + 7$

Primary and secondary variables

• According to Gibb's phase rule, the number of primary variables is equal to :

$$(n_c + 2 - n_{phase}) + (n_{phase} - 1) = n_c + 1$$

• Use linear constraint equations to remove two pressures, one saturation and two component mole fractions

 $\rightarrow 2n_h + 2$ number of non-linear equations and variables is left

• Multiple choices for the selection of primary variables and equations leading to different models

Coats Model

- Primary equations are the $n_c + 1$ mass and energy balance equations $(\mathbf{F}_v = \{\mathcal{F}_c, \mathcal{F}_T\})$
- Equations left over are the secondary equations $(\mathbf{F}_s = \{\mathcal{F}_e\})$
- Primary variables X_p are :

 \blacksquare p_g , T, S_g , S_o , $y_{c,g; c=3...n_b}$ when both oil and gaz phases are present

- p_{o} , T, S_{o} , $y_{c,o; c=1...n_{h}}$ when gaz phase is not present
- \mathbf{D} p_g , T, S_g , $y_{c,g; c=1...n_k}$ when oil phase is not present

s Adjacent gridblocks may have different sets of primary variables

adt morit salddraw yrabnosos adt staninila of besu era anoitaler, muirdiliupe ead% « anoitaler yranning vaning

After solving primary variables, secondary variables are updated explicitly gridblock by solidblock

• Multiple choices for the selection of primary variables and equations leading to different models

- Primary equations are the $n_c + 1$ mass and energy balance equations $(\mathbf{F}_p = \{\mathcal{F}_c, \mathcal{F}_T\})$
- Equations left over are the secondary equations ($\mathbf{F}_s = \{\mathcal{F}_e\}$
- Primary variables X_p are :
 - $0 p_{\nu}$, $1, S_{\nu}, S_{\nu}, y_{cv} = 0$, when both oil and gaz phases are present.
 - O p₀, 1, b₀, y₀₀ =1, y₀ when gaz phase is not present.

- estations with a solution of the selection as the selection of the selecti
- 1. Printee approximate and the field of a financial state secondary variables from the printee of the second se
- After solving primary variables, secondary variables are updated explicitly gridblock by gridblock

• Multiple choices for the selection of primary variables and equations leading to different models

Coats Model

- Primary equations are the $n_c + 1$ mass and energy balance equations $(\mathbf{F}_p = \{\mathcal{F}_c, \mathcal{F}_T\})$
- Equations left over are the secondary equations $(\mathbf{F}_s = \{\mathcal{F}_e\})$
- Primary variables X_v are :
 - $\bigcirc p_0, T, S_0, S_0, y_{ccc} = \dots$ when both oil and gaz phases are present
 -) p_0 , T_i , S_0 , $y_{c,c;\ c=1...n_0}$ when gaz phase is not present

Adjacent gridblocks may have different acts of primary variables.

- see the solution of the second s
- Phase equilibrium relations are used to eliminate the secondary variables from the
- primary equations
- - - After solving primary variables, secondary variables are updated explicitly gridblack by

• Multiple choices for the selection of primary variables and equations leading to different models

Coats Model

- Primary equations are the $n_c + 1$ mass and energy balance equations $(\mathbf{F}_p = \{\mathcal{F}_c, \mathcal{F}_T\})$
- Equations left over are the secondary equations $(\mathbf{F}_s = \{\mathcal{F}_e\})$
- Primary variables X_p are :

() p_{g} , T, S_{g} , S_{o} , $y_{c,g}$, $c=3...n_{h}$ when both oil and gaz phases are present

- **3** p_0 , T, S_0 , $y_{c,o;\ c=1...n_h}$ when gaz phase is not present
- 3) p_g , T, S_g , $y_{c,g; c=1...n_k}$ when oil phase is not present

gridblock

• Multiple choices for the selection of primary variables and equations leading to different models

- Primary equations are the $n_c + 1$ mass and energy balance equations $(\mathbf{F}_p = \{\mathcal{F}_c, \mathcal{F}_T\})$
- Equations left over are the secondary equations $(\mathbf{F}_s = \{\mathcal{F}_e\})$
- Primary variables X_p are :
 - **()** p_g , T, S_g , S_o , $y_{c,g; c=3...n_h}$ when both oil and gaz phases are present
 - **2** p_{o} , T, S_{o} , $y_{c,o; c=1...n_h}$ when gaz phase is not present
 - **(a)** p_g , T, S_g , $y_{c,g; c=1...n_h}$ when oil phase is not present

• Multiple choices for the selection of primary variables and equations leading to different models

Coats Model

- Primary equations are the $n_c + 1$ mass and energy balance equations $(\mathbf{F}_p = \{\mathcal{F}_c, \mathcal{F}_T\})$
- Equations left over are the secondary equations $(\mathbf{F}_s = \{\mathcal{F}_e\})$
- Primary variables X_v are :

p_g, T, S_g, S_o, y_{c,g; c=3...n_h} when both oil and gaz phases are present
 p_o, T, S_o, y_{c,o; c=1...n_h} when gaz phase is not present
 p_g, T, S_g, y_{c,g; c=1...n_h} when oil phase is not present

• Multiple choices for the selection of primary variables and equations leading to different models

- Primary equations are the $n_c + 1$ mass and energy balance equations $(\mathbf{F}_p = \{\mathcal{F}_c, \mathcal{F}_T\})$
- Equations left over are the secondary equations $(\mathbf{F}_s = \{\mathcal{F}_e\})$
- Primary variables X_v are :
 - p_g, T, S_g, S_o, y_{c,g; c=3...n_h} when both oil and gaz phases are present
 p_o, T, S_o, y_{c,o; c=1...n_h} when gaz phase is not present
 p_g, T, S_g, y_{c,g; c=1...n_h} when oil phase is not present

• Multiple choices for the selection of primary variables and equations leading to different models

- Primary equations are the $n_c + 1$ mass and energy balance equations $(\mathbf{F}_p = \{\mathcal{F}_c, \mathcal{F}_T\})$
- Equations left over are the secondary equations $(\mathbf{F}_s = \{\mathcal{F}_e\})$
- Primary variables X_p are :
 - **()** p_g , T, S_g , S_o , $y_{c,g; c=3...n_h}$ when both oil and gaz phases are present
 - 2 p_o , T, S_o , $y_{c,o; c=1...n_h}$ when gaz phase is not present
 - **3** p_g , T, S_g , $y_{c,g}$, $c=1...n_h$ when oil phase is not present
- Adjacent gridblocks may have different sets of primary variables
 → need to switch variables when a hydrocarbon phase disappears or reappears
- Phase equilibrium relations are used to eliminate the secondary variables from the primary equations
- After solving primary variables, secondary variables are updated explicitly gridblock by gridblock

• Multiple choices for the selection of primary variables and equations leading to different models

- Primary equations are the $n_c + 1$ mass and energy balance equations $(\mathbf{F}_p = \{\mathcal{F}_c, \mathcal{F}_T\})$
- Equations left over are the secondary equations $(\mathbf{F}_s = \{\mathcal{F}_e\})$
- Primary variables X_v are :
 - **1** p_g , T, S_g , S_o , $y_{c,g;\ c=3...n_h}$ when both oil and gaz phases are present **2** p_o , T, S_o , $y_{c,o;\ c=1...n_h}$ when gaz phase is not present
 - **3** p_{g} , T, S_{g} , $y_{c,g}$, $c=1...n_{h}$ when oil phase is not present
- Adjacent gridblocks may have different sets of primary variables \rightarrow need to switch variables when a hydrocarbon phase disappears or reappears
- Phase equilibrium relations are used to eliminate the secondary variables from the primary equations

• Multiple choices for the selection of primary variables and equations leading to different models

Coats Model

- Primary equations are the $n_c + 1$ mass and energy balance equations $(\mathbf{F}_p = \{\mathcal{F}_c, \mathcal{F}_T\})$
- Equations left over are the secondary equations $(\mathbf{F}_s = \{\mathcal{F}_e\})$
- Primary variables X_p are :

() p_g , T, S_g , S_o , $y_{c,g; c=3...n_h}$ when both oil and gaz phases are present

- 2 p_o , T, S_o , $y_{c,o; c=1...n_h}$ when gaz phase is not present
- **3** p_{g} , T, S_{g} , $y_{c,g}$, $c=1...n_{h}$ when oil phase is not present
- Adjacent gridblocks may have different sets of primary variables
 → need to switch variables when a hydrocarbon phase disappears or reappears
- Phase equilibrium relations are used to eliminate the secondary variables from the primary equations
- After solving primary variables, secondary variables are updated explicitly gridblock by gridblock

∟_{Boundary} conditions

Boundary conditions

• On each surface boundary, choice between :

- **1** mass flow / constant pressure
- **2** heat flux / constant temperature

• On the top and the bottom of the reservoir, no flow and the geothermal gradient are imposed

Well treatment

Two types of well control are implemented :

• Bottom hole pressure Reservoir equations will depend only on reservoir variables

- **2** Constant phase volumetric flow rate
 - An extra well variable p^{u}
 - An extra well equation based on component mass balance within the wellbore

Ex : for a constant oil phase flow rate q_o^{SP} , we have : $\sum_l \sum_p WI_l \lambda_{p,l} \rho_{p,l}(p_{p,l} - p^w) \frac{p^w}{q_o^{SP}} - q_o^{SP} = 0$

well temperature/ null heat flux

∟_{Boundary} conditions

Boundary conditions

• On each surface boundary, choice between :

- **1** mass flow / constant pressure
- **2** heat flux / constant temperature
- On the top and the bottom of the reservoir, no flow and the geothermal gradient are imposed

Well treatment

Two types of well control are implemented :

• Bottom hole pressure Reservoir equations will depend only on reservoir variables

- **2** Constant phase volumetric flow rate
 - An extra well variable p^{u}
 - An extra well equation based on component mass balance within the wellbore

Ex : for a constant oil phase flow rate q_o^{SP} , we have $: \sum_l \sum_p WI_l \lambda_{p,l} \rho_{p,l}(p_{p,l} - p^w) \frac{P^p}{\sigma_o^{SP}} - q_o^{SP} = 0$

 \oplus well temperature/ null heat flux

Boundary conditions

Boundary conditions

- On each surface boundary, choice between :
 - **1** mass flow / constant pressure
 - **2** heat flux / constant temperature
- On the top and the bottom of the reservoir, no flow and the geothermal gradient are imposed

Well treatment

Two types of well control are implemented :

- Bottom hole pressure Reservoir equations will depend only on reservoir variables
- **2** Constant phase volumetric flow rate
 - An extra well variable p^w
 - An extra well equation based on component mass balance within the wellbore

Ex : for a constant oil phase flow rate q_o^{SP} , we have : $\sum_l \sum_p WI_l \lambda_{p,l} \rho_{p,l} (p_{p,l} - p^w) \frac{I^{SP}}{\rho_o^{SP}} - q_o^{SP} = 0$

 \oplus well temperature/ null heat flux

Boundary conditions

Boundary conditions

- On each surface boundary, choice between :
 - **1** mass flow / constant pressure
 - **2** heat flux / constant temperature
- On the top and the bottom of the reservoir, no flow and the geothermal gradient are imposed

Well treatment

Two types of well control are implemented :

- Bottom hole pressure Reservoir equations will depend only on reservoir variables
- **2** Constant phase volumetric flow rate
 - An extra well variable p^w
 - An extra well equation based on component mass balance within the wellbore

<u>Ex</u> : for a constant oil phase flow rate q_o^{SP} , we have : $\sum_l \sum_p WI_l \lambda_{p,l} \rho_{p,l} (p_{p,l} - p^w) \frac{l^{SP}}{\rho_o^{SP}} - q_o^{SP} = 0$

 \oplus well temperature/ null heat flux

- Extend an existing isothermal simulator in the reservoir (GPRS General Purpose Reservoir Simulator)
- \bullet Finite volume scheme : equations integrated over each gridblock V
- FIM scheme
- Iterative Newton Raphson method :

• The non-linear set of equations can be expressed as :

$$: \begin{cases} \mathbf{F}_p(\mathbf{X}_p, \mathbf{X}_s) = 0\\ \mathbf{F}_s(\mathbf{X}_p, \mathbf{X}_s) = 0 \end{cases}$$

Jacobian matrix can be written as :

$$\mathbf{J} = \begin{bmatrix} \frac{\partial \mathbf{F}_p}{\partial \mathbf{X}_p} & \frac{\partial \mathbf{F}_p}{\partial \mathbf{X}_s} \\ \frac{\partial \mathbf{F}_s}{\partial \mathbf{X}_p} & \frac{\partial \mathbf{F}_s}{\partial \mathbf{X}_s} \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \text{ and } -\mathbf{E} = \begin{bmatrix} -\mathbf{F}_p \\ -\mathbf{F}_p \end{bmatrix} = \begin{bmatrix} \mathbf{M} \\ \mathbf{N} \end{bmatrix}$$

└─Numerical scheme

Reduce Full set F(X) = 0 to Primary set $F_p(X_p) = 0$

• Primary equation set can be extracted and written as :

$$(A - B D^{-1} C) \Delta \mathbf{X}_p = (\mathbf{M} - B D^{-1} \mathbf{N})$$

• After solving primary variables, secondary ones are updated gridblock by gridblock as follows :

 $\Delta \mathbf{X}_s = (D^{-1} \mathbf{N}) - (D^{-1} C) \Delta \mathbf{X}_p$

Flash calculation

- Build relations between secondary and primary variables
 → This role is only necessary when both hydrocarbon phases exist in a gridblo
- One Check the state of hydrocarbon phases in gridblocks
 - Phase disappearance for a gridblock with two hydrocarbon phases If either S_o or S_g is negative, the corresponding hydrocarbon phase has disappeared \rightarrow set the negative saturation to zero and reassign mole fractions
 - Phase reappearance for a gridblock with only one hydrocarbon phase
 Do a flash and calculate the tangent plane distance for the current phase
 →if it is less than zero, a second hydrocarbon phase reappear and need to reassign saturations and mole fractions

└─Numerical scheme

Reduce Full set F(X) = 0 to Primary set $F_p(X_p) = 0$

• Primary equation set can be extracted and written as :

$$(A - B D^{-1} C) \Delta \mathbf{X}_p = (\mathbf{M} - B D^{-1} \mathbf{N})$$

• After solving primary variables, secondary ones are updated gridblock by gridblock as follows :

$$\Delta \mathbf{X}_s = (D^{-1} \mathbf{N}) - (D^{-1} C) \Delta \mathbf{X}_p$$

Flash calculation

- Build relations between secondary and primary variables
 → This role is only necessary when both hydrocarbon phases exist in a gridblock
- **2** Check the state of hydrocarbon phases in gridblocks
 - Phase disappearance for a gridblock with two hydrocarbon phases If either S_o or S_g is negative, the corresponding hydrocarbon phase has disappeared \rightarrow set the negative saturation to zero and reassign mole fractions
 - Phase reappearance for a gridblock with only one hydrocarbon phase
 Do a flash and calculate the tangent plane distance for the current phase
 →if it is less than zero, a second hydrocarbon phase reappear and need to reassign saturations and mole fractions

Essential steps of the code

- **1** Read input data
- **2** Initialize with initial conditions
 - \hookrightarrow Assign initial pressure, temperature, saturations
 - \hookrightarrow Do a flash calculation in order to assign initial mole fractions and define cell status

3 Start time step calculations (the Newton iteration)

- Calculate gridblock properties
 - \hookrightarrow For water phase, calculate the thermodynamic properties (Enthalpy, density, viscosity...)
 - \hookrightarrow Check disapper ence or reappearence of hydrocarbon phases and calculate their
 - thermodynamic properties
 - \hookrightarrow calculate fugacities when both hydrocarbon phases are present
- Solve the linear system
 - \hookrightarrow calculate the full jacobian matrix: J. $\Delta X = -F(X)$
 - \hookrightarrow calculate primary variables: $(\mathbf{A} \mathbf{B}\mathbf{D}^{-1}\mathbf{C})\Delta \mathbf{X}_p = (\mathbf{M} \mathbf{B}\mathbf{D}^{-1}\mathbf{N})$
 - \hookrightarrow update secondary variables: $\Delta X_s = (\mathbf{D}^{-1}\mathbf{N}) (\mathbf{D}^{-1}\mathbf{C})\Delta X_p$
- Perform Newton update : $X^{n+1} = X^n + \Delta X$
- Check convergence, do another iteration if necessary

④ Print results, increment time ang go to step **3**

-Numerical tests

 $\cap_{
m Comparison}$ with isothermal GPRS

Comparison with isothermal GPRS

- Reservoir with dimensions $5000ft \times 5000ft \times 50ft$
- Three components: methan CH_4 , butan C_4H_{10} and heptan C_7H_{16}
- Production for 50 days by imposing a BHP of 300 psi

L_{Numerical tests}

└─Comparison with isothermal GPRS

Behaviour of the pressurre during 50 days production

-Numerical tests

└─Comparison with isothermal GPRS

Behaviour of the temperature during 50 days production

-Numerical tests

└─Comparison with isothermal GPRS

Behaviour of the gas saturation during 50 days production

days

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □豆 - のへで

L_{Numerical tests}

└─Comparison with isothermal GPRS

Comparison of production rates

└─Numerical tests

└─Comparison with isothermal GPRS

Comparison of pressure and saturations at the well block

└─Numerical tests

└─Production of gas for 90 days

Production of gas for 90 days Sensibility via boundary conditions

- Reservoir with dimensions $9000ft \times 9000ft \times 30ft$
- Two components: methan CH_4 and butan C_4H_{10}
- Production for 90 days by imposing constant gas flow rate at the well

-Numerical tests

└─Production of gas for 90 days

Behaviour of the pressure by imposing constant pressure on the exterior boundary

Behaviour of the pressure by imposing no flow on the exterior boundary

L_{Numerical tests}

└─Production of gas for 90 days

Comparison of pressures in the well block and in the well

 $L_{\text{Remerciements}}$

Thank you for your attention