Discontinuous Galerkin and Nonconforming in Time Optimized Schwarz Waveform Relaxation for Coupling Heterogeneous Problems

> Caroline Japhet Laurence Halpern, Jérémie Szeftel

University Paris 13, Princeton University

1 Motivation: Application for nuclear waste disposal

2 Subdomain time stepping with nonconforming time grids

3 Numerical results

1 Motivation: Application for nuclear waste disposal

2 Subdomain time stepping with nonconforming time grids

3 Numerical results

4 Conclusions

Far field 3D : The computational domain

Research Group MOMAS

with Jérôme Jaffré, Michel Kern and Jean Roberts (INRIA)

A blow-up in the vertical direction (30 times)

Actual dimensions: $40km \times 40km \times 500m$

The repository is located in the red part of the bottom layer.

C. Japhet (University Paris 13) Nonconforming time Discontinuous Galerkin Dubrovnik, 13-16 october 2008 4 / 28

Hydrogeological data

Hydrogeologic layers	Thickness [m]	Porosity [%]	Permeability [m/s]		Effective diffusion coefficient [m ² /s]	Dispersivity Coefficients [m]
			Regional	Local		
Tithonian	Variable	10	3.10-5	3.10-5	10-9	6.0, 0.6
Kimmeridgian when it outcrops	Variable	10	3.10 ⁻⁴	3.10-4	10 ⁻⁹	6.0, 0.6
Kimmeridgian under cover			10-11	10-12		
Oxfordian L2a-L2b	165	6	2 10-7	10-9	10-9	6.0, 0.6
Oxfordian Hp1-Hp4	50	18	6 10-7	8 10-9	10-9	1600, 30
Oxfordian C3a-C3b	60	1	10-10	10-12	4.10-12	6.0, 0.6
Callovo-Oxfordian Cox	135	1	$K_v = 10^{-14} K_h = 10^{-12}$		4.10-12	6.0, 0.6

\Rightarrow use different time and space steps, adapted to the physics

Goal :

- decompose the time interval into windows
- in each window:

use an Optimized Schwarz Waveform Relaxation method with non conforming space-time grids and discontinuous Galerkin method in time as subdomain solver

Motivation: Application for nuclear waste disposal

2 Subdomain time stepping with nonconforming time grids

3 Numerical results

4 Conclusions

Advection-diffusion equation with discontinuous coefficients

$$\mathcal{L}u = \frac{\partial u}{\partial t} + bu + \nabla \cdot (\mathbf{a}(\mathbf{x})u - \nu(\mathbf{x})\nabla u) = f \text{ in } \Omega \times [0, T]$$
$$u = 0 \text{ on } \partial\Omega \times [0, T], \quad u(., 0) = u_0, \text{ on } \partial\Omega$$

with $\mathbf{a}(\mathbf{x})$ and $\nu(\mathbf{x})$ discontinuous, $\nu(\mathbf{x}) > 0$

Optimized Schwarz Waveform Relaxation Method

(Gander/Halpern/Nataf (DD11, 1998), Martin (2003), Bennequin/Gander/Halpern (2004), Gander/Halpern/Kern (2004), Blayo/Halpern/Japhet (2004))

Choose Λ_1 and Λ_2 in order to optimize the convergence rate

Optimized Schwarz Waveform Relaxation Method

 $\Lambda_1 = \alpha_2 + \beta_2(\partial_t + \mathbf{a}.\tau_2 \partial_{\tau_2} - \partial_{\tau_2}(\nu_2 \partial_{\tau_2})), \quad \Lambda_2 = \alpha_1 + \beta_1(\partial_t + \mathbf{a}.\tau_1 \partial_{\tau_1} - \partial_{\tau_1}(\nu_1 \partial_{\tau_1}))$

where $\alpha_1, \alpha_2, \beta_1, \beta_2$ optimize the convergence rate

$$(\nu_{1}\frac{\partial}{\partial \mathbf{n}_{1}} - \mathbf{a}.\mathbf{n}_{1} + \Lambda_{1})u_{1}^{n} = (\nu_{2}\frac{\partial}{\partial \mathbf{n}_{2}} - \mathbf{a}.\mathbf{n}_{2} + \Lambda_{2})u_{2}^{n} = (-\nu_{2}\frac{\partial}{\partial \mathbf{n}_{2}} + \mathbf{a}.\mathbf{n}_{2} + \Lambda_{1})u_{2}^{n-1} t + (-\nu_{1}\frac{\partial}{\partial \mathbf{n}_{1}} + \mathbf{a}.\mathbf{n}_{1} + \Lambda_{2})u_{1}^{n-1}$$

How to discretize these conditions with nonmatching grids in time ?

Discontinuous Galerkin in time

(Eriksson-Johnson-Thomée, 1985, Halpern-Japhet, 2005) Non conforming finite elements in space

(Gander-Japhet-Maday-Nataf, 2004)

Subdomain problem in Ω_j , in one time window $I = (T_i, T_{i+1})$

$$\begin{cases} \mathcal{L}u = f & \text{in } \Omega_j \times I, \\ u(\cdot, T_i) = u_0 & \text{in } \Omega_j, \end{cases}$$
$$(\nu \frac{\partial}{\partial \mathbf{n}} - \mathbf{a}.\mathbf{n} + \alpha + \beta(\frac{\partial}{\partial t} + \delta \frac{\partial}{\partial \tau} - \frac{\partial}{\partial \tau}(r \frac{\partial}{\partial \tau}))) u = g & \text{on } \Gamma \times I \end{cases}$$

Weak Formulation

Let $H_s^s(\Omega) = \{ v \in H^s(\Omega), v_{|\Gamma} \in H^s(\Gamma) \}$, equipped with $(u, v)_{H_s^s(\Omega)} = (u, v)_{H^s(\Omega)} + \beta(u, v)_{H^s(\Gamma)}$

Find u such that

$$(\partial_t u, v)_{H^0_0(\Omega)} + a(u, v) = \ell(v), \quad \forall v \in H^1_1(\Omega)$$

with

$$\begin{cases} a(u, v) = \int_{\Omega} \nabla \cdot (\mathbf{a}u) v \, dx + \int_{\Omega} v \nabla u . \nabla v \, dx + \int_{\Omega} buv \, dx \\ + \int_{\Gamma} ((\alpha - \mathbf{a}.\mathbf{n})uv) + \beta \partial_{\tau} uv + \beta r \partial_{\tau} u \partial_{\tau} v) \, ds \\ \ell(v) = (f, v)_{L^{2}(\Omega)} + (g, v)_{L^{2}(\Gamma)} \end{cases}$$

Time Discontinuous Galerkin

Let \mathcal{T} be a decomposition of $I = \bigcup_{k=1}^{K} I^k$ with $I^k = [t_k, t_{k+1}]$. We define

$$\begin{aligned} \mathbf{P}_{\boldsymbol{q}}(\boldsymbol{V}) &= \{ \varphi : \varphi(t) = \sum_{i=0}^{\boldsymbol{q}} \varphi_i t^i, \ \varphi_i \in \boldsymbol{V} \} \\ \mathcal{P}_{\boldsymbol{q}}(\boldsymbol{V},\mathcal{T}) &= \{ \varphi : \boldsymbol{I} \to \boldsymbol{V}, \ \varphi_{|I_k} \in \mathbf{P}_{\boldsymbol{q}}(\boldsymbol{V}), \ \boldsymbol{0} \leq \boldsymbol{k} \leq \boldsymbol{K} \}. \end{aligned}$$

Let $\varphi(t_k^{\pm}) = \lim_{t \to t_k \pm 0} \varphi(t)$

The discontinuus Galerkin method defines recursively on I_k , an approximate solution U in $\mathcal{P}_q(H_1^1(\Omega), \mathcal{T})$ such that

$$\begin{array}{l} \forall \varphi \in \mathcal{P}_{\boldsymbol{q}}(\mathcal{H}_{1}^{1}(\Omega), \mathcal{T}) : \quad \int_{I_{k}} \left[\left(\frac{dU}{dt}, \varphi \right)_{\mathcal{H}_{0}^{0}(\Omega)} + \boldsymbol{a}(U, \varphi) \right] dt \\ \\ + \left(\left(U(t_{k}^{+}, \cdot) - U(t_{k}^{-}, \cdot), \varphi(t_{k}^{+}, \cdot) \right) \right)_{\mathcal{H}_{0}^{0}(\Omega)} = \int_{I_{k}} \ell(\varphi) dt \end{array}$$

Domain decomposition

The continuous matching conditions for Ω_1 is

$$f_1(t) = g_2(t), \quad \forall t \in I$$

with :

$$f_1(t) = (\nu_1 \partial_{\mathbf{n}_1} - \mathbf{a}.\mathbf{n}_1 + \Lambda_1) u_1^n$$

$$g_2(t) = (-\nu_2 \partial_{\mathbf{n}_2} + \mathbf{a}.\mathbf{n}_2 + \Lambda_1) u_2^{n-1}$$

Projections between time grids

 L^2 orthogonal projection on $\mathcal{P}_q(\mathbb{R}, \mathcal{T}_1)$, restricted to $\mathcal{P}_q(\mathbb{R}, \mathcal{T}_2)$

The discrete approximations F_1 of f_1 in $\mathcal{P}_q(\mathbb{R}, \mathcal{T}_1)$, and G_2 of g_2 in $\mathcal{P}_q(\mathbb{R}, \mathcal{T}_2)$ verify the nonconforming matching condition

$$\int_{I} [F_1 - G_2] V_1 = 0, \quad \forall V_1 \in \mathcal{P}_q(\mathbb{R}, \mathcal{T}_1)$$

An efficient way to perform the projections between time grids

Let V_k^1 (resp. V_ℓ^2) the shape functions of $\mathcal{P}_q(\mathbb{R}, \mathcal{T}_1)$ (resp. $\mathcal{P}_q(\mathbb{R}, \mathcal{T}_2)$) How to compute $M_{k,\ell} = \int_I V_k^1 V_\ell^2$?

⇒ Linear complexity algorithm without an additional grid

Convergence - Error estimates

based on the theoretical results in Eriksson/Johnson/Larsson (1998), Makridakis/Akrivis (2004), Szeftel (2004)

Convergence : the continuous algorithm converges for

- $\beta_1 = \beta_2 = 0$, $\alpha_1 \neq \alpha_2$, $\nu_1 \neq \nu_2$, $\mathbf{a}_1 \neq \mathbf{a}_2$ and general decomposition
- if $\beta_1 \neq 0$, $\beta_2 \neq 0$, $\beta_1 = \beta_2$, $\alpha_1 \neq \alpha_2$, $\nu_1 \neq \nu_2$, $\mathbf{a}_1 \neq \mathbf{a}_2$ and decomposition into strips

The coupled discret problem in time, has a unique solution and the discret Schwarz algorithm is convergent.

Error estimates : for $\beta_1 = \beta_2 = 0$

$$\sum_{i=1}^{l} \|u - U_i\|_{L^{\infty}(0,T,L^2(\Omega_i))}^2 = \mathcal{O}(\Delta t^{q+1})$$

with $\Delta t = sup_k \Delta t_k$

Motivation: Application for nuclear waste disposal

2 Subdomain time stepping with nonconforming time grids

3 Numerical results

4 Conclusions

Numerical Results

Replace $H_1^1(\Omega_i)$ with V_i^h (P_1 finite element space)

Exact solution $u(x, t) = cos(\pi x)sin(\pi y)cos(\pi t)$, in $[0, 1]^3$

 $\mathbf{a} = (-\sin(\pi * (y - \frac{1}{2})) \cdot * \cos(\pi * (x - \frac{1}{2})), \cos(\pi * (y - \frac{1}{2})) \cdot * \sin(\pi * (x - \frac{1}{2}))), \\ \nu_1 = \nu_2 = 1$

Stopping criterion : the jump of interface conditions is smaller than 10^{-6} Space-time non conforming grids

C. Japhet (University Paris 13)

Nonconforming time Discontinuous Galerkin Dubrovnik, 13-16 october 2008 19 / 28

Error in $L^{\infty}(I; L^2(\Omega_1))$ norm

Error in $L^{\infty}(I; L^2(\Omega_2))$ norm

Example with discontinuous coefficients

$$\mathcal{L}u = \frac{\partial u}{\partial t} + \nabla \cdot (\mathbf{a}(\mathbf{x})u - \nu \nabla u) = e^{-100((x - 055)^2 + (y - 1.7)^2)} \text{ in } \Omega \times [0, T]$$

= 0 on $\Gamma_0 \times [0, T]$, $\partial_n u = 0$ on $\partial \Omega \setminus \Gamma_0 \times [0, T]$, $u(., 0) = e^{-100((x - 055)^2 + (y - 1.7)^2)}$ on $\partial \Omega$

3 OSWR iterations

U =

у		
$\boldsymbol{a}_1=(0,-1)$		$a_2 = (-1, 0)$
$ u_1 = 0.003 $		$\nu_2 = 0.1$
$\Delta x_{1} = 0.035$		$\Delta x_2 = 0.07$
$\Delta t_{1} = 0.01$		$\Delta t_2 = 0.02$
		- X

Non conforming space grid

Monodomain Solution at time T=1

C. Japhet (University Paris 13)

Nonconforming time Discontinuous Galerkin Dubrovnik, 13-16 october 2008 24 / 28

OSWR Solution at time T=1

C. Japhet (University Paris 13)

Nonconforming time Discontinuous Galerkin Dubrovnik, 13-16 october 2008 25 / 28

Error between monodomain and multidomain solutions at time T=1 $\,$

C. Japhet (University Paris 13)

Nonconforming time Discontinuous Galerkin Dubrovnik, 13-16 october 2008 26 / 28

Motivation: Application for nuclear waste disposal

2 Subdomain time stepping with nonconforming time grids

3 Numerical results

- Time discontinuous Galerkin method with Optimized Schwarz Waveform Relaxation
 - \Rightarrow lead to physical transmission conditions in very few iterations
 - $\Rightarrow\,$ independant time steps with preservation of the scheme global order in time in the subdomains
 - \Rightarrow a simple and efficient algorithm to perform projection between nonmatching time grids

Work in progress

- numerical and mathematical analysis of the convergence rate (with M.J. Gander)
- Extension to the MOMAS approach (Mixte Finite Element)