Scaling Up for Flow in Porous Media, October 13-18, 2008, Dubrovnik

ON NUMERICAL UPSCALING FOR STOKES AND STOKES-BRINKMAN FLOWS

<u>Oleg Iliev</u>, Z.Lakdawala, J.Willems, Fraunhofer Institute for Industrial Mathematics, Kaiserslautern, Germany

> V.Starikovicius, Vilnius Gediminas Technical University, Lithuania

P.Popov, Inst. Scientific Computation, Texas A&M University, USA

Fraunhofer Institut Techno- und Wirtschaftsmathematik October 14, 2008

Content

- 1. Motivation and aims
- 2. Basic solver
- 3. Multiple scales. Subgrid approach
- 4. Computer simulations
- 5. Perspectives

Motivation and aims

CFD simulations for filtration

Main criteria determining the performance of a filter element:

- 1) Pressure drop flow rate ratio;
- 1) Dirt storage capacity;
- 1) Size of penetrating particles.

depend on:

microscale (*e.g. fibrous geometry local deposition of particles, etc*), and

macroscale (*e.g., filter element geometry, pressure, velocity distribution, etc.*)

Challenges to CFD simulations

- > Multiple scales (particles, fibres, pleats, ribs, housing,...);
- > Time-dependent performance;
- > Shortening the design time and Needs for new design ideas;
- > Virtual filter element design;
- Extensive computational time;

Parameters measurement or calculation (permeability, deposition rate,..)

Validation of the numerical simulation results;

Basic solver

Basic CFD solver: SuFiS

- Grids: Cartesian grid
- Finite volume discretization on cell-centred collocated grid
- Chorin projection method with implicit treatment of Darcy term
- Proper treatment of discontinuous coefficients in pressurecorrection equation
- Subgrid approach incorporated
- Specialized for filtration applications
- > Paralleization

Macro scale: Flow through fluid and porous regions

3. Multiple scales. Subgrid approach

Multiple scales. Subgrid approach

- State of the art (Stokes to Darcy; Darcy to Darcy; two-level DD for multiscale)
- Microscale to mesoscale upscaling (Stokes to Darcy or to Brinkman
- Mesoscale to macroscale upscaling (Brinkman to Brinkman)

3. Multiple scales. Known: Upscaling Stokes to Darcy

+boundary conditions:
> periodic (Sanchez Palencia)
> const. velocity (Allaire)

> engineering approach

3. Multiple scales. Known: Darcy to Darcy

$$-\mu K^{-1}u = \nabla p$$

$$-\mu \tilde{K}^{-1}u = \nabla p$$

$$\nabla \bullet u = 0$$

$$\nabla \bullet u = 0$$

+boundary conditions:

- ➤ periodic
- linear
- > presure drop+oscilatory
- > presure drop+Neumann

		П	٢V
_			

Fraunhofer Institut Techno- und Wirtschaftsmathematik

Note:

Some results available for Macroheterogeneous case (block permeability, e.g., Wu, Efendiev,Hou)

3. Multiple scales. Brinkman to Darcy or Brinkman

Solve the local problem

Solve auxiliary cell problem in each direction for each quasi porous cell

$$eglinear -
abla \cdot (\mu
abla ec{u}) + \hat{K}^{-1} \mu ec{u} +
abla p = f \qquad ext{momentum eqn}
onumber \nabla \cdot ec{u} = 0 \qquad ext{continuity eqn}$$

where

 $\hat{K}^{-1} = \begin{cases} K^{-1}, x \in \Omega_p & \text{Fictitious Region Method - type continuation of coefficients} \\ 0, x \in \Omega_f \end{cases}$

Get an upscaled block permeability tensor

- Choose a basic grid on which the simulations are possible;
- Provide information about the fine geometrical details;
- For each grid cell check if it overlaps unresolved fine geometry details
- In marked cells (or their agglomeration) solve auxiliary problems on fine grid, and calculate effective permeability tensor;
- Solve the modified equations on the chosen grid (the fine details are accounted via the effective permeability).

Usage of the subgrid approach:

> Upscale and solve upscaled equations;

Upscale, solve upscaled equations and prolong the solution to the fine scale;

> Iterate over scales (two-level DD with upscaling-based coarse scale operator).

Open problems:		
 No theory for upscaling blocks containing solid, porous and fluid; No theory for macroheterogeneous case; 		
There are a second s		

4. Computer simulations

Computer simulations using subgrid approach

4. Computer simulations

Pleated filter, simulations with subgrid approach

4. Computer simulations

	dp (mbar)	time (s)
1mm	2700	1421
0.5mm	1874	149102
subgrid-1mm-0.5mm	1760	65000

Fraunnoter Institut

Techno- und Wirtschaftsmathematik

ombi Filter with multiple porous media separated by a mesh

	dp (mbar)	time (s)
1mm	115	1248
0.25mm	16.8	73703
subgrid-1mm-0.25mm	17.0	5000

5. Perspectives

Perspectives

Thank you

www.itwm.fhg.de Fraunhofer ITWM

www.dasmod.de Dependable Adaptive Systems and Mathematical Modeling, TU Kaiserslautern

